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Abstract: Recently, two completely different types of lasers—a fiber laser and a gas-discharge laser—
were combined into a single device by demonstrating 2.03 µm laser generation in He-Xe plasma
that was produced by a microwave discharge directly inside a hollow-core fiber. This new type of
laser—a gas-discharge fiber laser—provides excellent opportunities to greatly enrich the wavelength
range of the operation of fiber lasers. In this work, we investigate a He-Kr gas mixture as an active
medium of this new type of laser. As a result, a He-Kr gas-discharge fiber laser is demonstrated for
the first time. The laser was pumped by a microwave discharge in a He:Kr (40:1) mixture that was
filled into a revolver fiber with the hollow-core diameter of 130 µm. The total gas pressure was about
100 torr. With broadband mirrors of the laser resonator, generation was observed simultaneously
at wavelengths of 2190 and 2523 nm. The output power of the He-Kr gas-discharge fiber laser was
about 1 mW.

Keywords: hollow-core fiber; gas discharge; fiber laser; gas laser; microwave

1. Introduction

Gas-filled hollow-core fibers (HCFs) have enabled numerous opportunities in the field
of gas-based photonics and fiber optics [1–4]. One of these opportunities is to merge gas-
discharge lasers and fiber lasers into a single device—a gas-discharge fiber laser (GDFL).

The idea behind the GDFL is rather straightforward—an electrical discharge should be
somehow ignited inside a gas-filled HCF, thus forming an active medium, and this active
HCF should be placed between two mirrors, which form the laser cavity. Each component
of such a laser would add its own advantages to the final device. First, the low-loss HCF
would provide a very long interaction length, while still maintaining the compactness of a
flexible fiber coiled on a spool. Second, a variety of active gas mixtures would enable access
to an enormous number of wavelengths spanning from the ultraviolet to mid-infrared
range, thus far surpassing solid-state fiber lasers, which are based on a limited number
of active ions. Importantly, the hollow-core fibers do support low-loss transmission in
the wide spectral range mentioned. Third, the electric discharge would provide a unified
pumping scheme that does not rely on other lasers and does not require precise matching
to the narrow absorption lines of the gases used. And forth, the spectral selectivity of the
cavity mirrors would provide a choice of desired wavelengths.

Although steps towards gas-discharge fiber lasers have been undertaken since 2007 [5],
the first GDFLs have been demonstrated only recently [6,7]. To realize the GDFL, the key
was a suitable pumping scheme, which was based on the application of a microwave
(2.45 GHz) electric field across the gas-filled HCF. This pumping scheme not only enables
the contactless and stable maintenance of the discharge inside a hollow core of a small
diameter (~130 µm), but also leaves both ends of the HCF free for coupling to the cavity
mirrors.
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The reported GDFLs relied on neutral Xe atoms, one of the transitions of which
resulted in lasing at a wavelength of 2.03 µm [6,7]. The output characteristics of the laser
were similar, when both three-component (He:Ar:Xe, 100:10:1) [6] and two-component
(He:Xe, 100:1) [7] gas mixtures were used. An investigation into other gas mixtures is of
evident interest, since it is one way to extend the wavelength range of the GDFL’s operation.

In this work, a helium–krypton mixture as an active medium of the GDFL is investi-
gated. As a result, the He-Kr gas-discharge fiber laser is demonstrated for the first time. The
laser generates in a quasi-continuous wave regime with a total output power of about 1 mW.
Based on the transitions of neutral krypton atoms, the lasing is observed simultaneously at
the wavelengths of 2190 and 2523 nm.

2. Materials and Methods

The scheme of the gas-discharge fiber laser (Figure 1a) includes a 120 cm long piece of
revolver-type HCF (1) with a hollow core diameter of 130 µm. A microphotograph of the
fiber cross-section and transmission spectrum of the fiber are shown in Figures 1b and 2,
respectively. The ends of the HCF were hermetically fixed in small vacuum chambers
(2) that had a gas inlet/outlet to enable evacuation of the hollow core down to a pressure
of ~10−2 torr and then filling it with a required gas mixture. In our experiments, the He:Kr
mixtures were used as an active medium. The laser cavity was formed by plane mirrors, a
highly reflective (HR) mirror and an output coupler (OC), both of which were attached to
the vacuum chambers via sylphons that allowed fine alignment of the cavity.
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The inset PH shows a real photograph of microwave discharge luminescence in the hollow-core 
fiber placed in the slit. (b) Microphotograph of the hollow-core fiber cross-section. 

A 30 cm long middle section of the fiber was placed in a slit (4) that was made in the 
side wall of a special metallic microwave waveguide (3). The length and width of the slit 
were 32 cm and 2 mm, respectively. The waveguide had a rectangular cross-section of 90 
× 45 mm and supported a single-mode propagation of H10 wave at the frequency of 2.45 
GHz. One end of the waveguide was short-circuited by a metallic plunger. 

Figure 1. (a) The scheme of experimental setup. 1—Revolver-type hollow-core fiber; 2—small vacuum
chambers; 3—a section of a microwave waveguide; 4—a slit in the side surface of the waveguide.
Red arrows illustrate direction and intensity of the microwave electric field E0 in the slit. HR—high-
reflection mirror; OC—output coupler; UV—mercury lamp for the discharge ignition. The inset PH
shows a real photograph of microwave discharge luminescence in the hollow-core fiber placed in the
slit. (b) Microphotograph of the hollow-core fiber cross-section.

A 30 cm long middle section of the fiber was placed in a slit (4) that was made in the
side wall of a special metallic microwave waveguide (3). The length and width of the slit
were 32 cm and 2 mm, respectively. The waveguide had a rectangular cross-section of
90 × 45 mm and supported a single-mode propagation of H10 wave at the frequency of
2.45 GHz. One end of the waveguide was short-circuited by a metallic plunger.
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Figure 2. Transmission spectrum of the hollow-core fiber used in the experiments. Red dashed lines
point out the wavelengths, at which lasing of the He-Kr GDFL is observed in this work.

To apply a microwave electric field across the HCF, the open end of the waveguide (3)
was coupled to a magnetron (not shown) generating at a frequency of 2.45 GHz in pulsed
mode. The pulse repetition rate was 400 Hz, while the pulse duration ranged from 20 to
80 µs. The peak power of microwave radiation in the waveguide was varied in the range
from 1.4 to 3.2 kW. This microwave power defines unambiguously the average amplitude
of a microwave electric field E0 that is applied across the hollow-core fiber mounted in
the slit (4). We determined the value of E0 both by estimates on the basis of the simple
analytical model we proposed earlier [8], and by numerical simulation of microwave pulse
propagation in the waveguide we used. Both methods gave similar results, showing that in
our experimental conditions, the value of E0 was varied in the range from 3.6 to 5.3 kV/cm.
Throughout the paper, it is the value of E0 that will be used for the indication of the pump
level for the GDFL.

Applying the microwave electric field across the HCF was not enough to initiate
the discharge. That is why short-time (~1 s) irradiation by UV light of a mercury lamp
was implemented to pre-ionize the gas mixture inside the hollow core. Since the fiber is
coated by a polymer, which is highly absorptive for UV light, the polymer coating had to
be removed from a ~1 cm long section of the HCF for the pre-ionization to work. After
initiation, the discharge was stably maintained by a microwave electric field only, with the
mercury lamp turned off.

The discharge took place in five fiber sections (Figure 1, inset PH), which correspond to
the maxima of the standing wave pattern that is formed through interference of microwaves.
Note, the uncoated section of the HCF was only present in one of the standing wave
maxima, and thus, the discharge was initially ignited in that section only. Nevertheless, the
discharge appears in all five sections with a delay of 1–2 µs relative to the leading edge of
the microwave pulse. Such spreading of the discharge along the HCF becomes possible due
to ability of the HCF to guide UV light. Ignited initially in the uncoated HCF section, the
plasma emits UV radiation, some portion of which is guided along the hollow-core fiber
and pre-ionizes the gas mixture in other sections of the fiber, thus initiating the discharge
in those HCF sections that are located in the maxima of the microwave electric field.

It should be noted that the volume occupied by the discharge was as small as ~4 mm3,
which is much less compared with the ~106 mm3 volume of that part of the gas filling
system, which was permanently connected to the HCF. Therefore, the equilibrium pressure
in the hollow core remained almost constant during the experiments.

The cavity mirrors, both HR and OC, were chosen to be as broadband as possible.
The HR mirror was made of a mechanically polished aluminum plate, while a polished
silicon plate with multilayer coating was used as an output mirror (OC). Spectra of the
effective reflectivity for both mirrors in the wavelength range from 1.5 to 3.5 µm are
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shown in Figure 3. The spectra were obtained on the basis of reflectivity of polished
aluminum [9] and the measured transmission spectrum of the OC used [6]. The mirrors
were pre-aligned to minimize the optical losses of the cavity before the beginning of laser
experiments. The separation distance between the ends of the fiber and the cavity mirrors
was about D ~ 100 µm, which is much less compared to Rayleigh range of the output beam
ZR ~ 3.5 mm and, thus, provides efficient back-coupling of laser radiation.
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Blue dashed lines point out the wavelengths, at which lasing of the He-Kr GDFL was observed.

The radiation emitted through the cavity output mirror (OC) was registered by using
(1) a photoresistor with high sensitivity in a spectral range from 1500 to 4500 nm comple-
mented by a set of band-pass optical filters, (2) an optical spectrum analyzer with spectral
range from 1200 to 2400 nm (AQ6375B, Yokogawa, Tokyo, Japan), and (3) a monochromator
(MS2004, SOLAR TII, Minsk, Belarus) for the range from 1600 to 3700 nm followed by the
photoresistor mentioned above. The time resolution of the photoresistor was about ~3 µs.

The radiation of the discharge plasma emitted through the side surface of the HCF
was collected by multimode silica fiber and registered by silicon photodetector with a time
resolution of at least 0.1 µs. Spectral composition of this radiation was also measured in
the range from 200 to 1100 nm by using a spectrometer (Flame-TXPI-ES, Ocean Insight,
Dunedin, FL, USA). A detailed description of the experimental setup and justification of
the chosen discharge excitation scheme in the HCF can be found in [6–8].

3. Results and Discussion

He:Kr gas mixtures with different mole fractions of krypton were studied as an active
medium of the GDFL. The use of pure krypton can provide a longer operating time of the
gas laser due to the absence of cataphoresis [10]. At the same time, it is known that the
addition of helium as a buffer gas provides higher optical gain for the discharges in noble
gases. Moreover, the laser generation in the noble gas mixtures with helium is observed at
a greater number of wavelengths [11–13].

In our experiments with pure krypton at a pressure of about 100 torr, the microwave
discharge in the HCF was easily excited and maintained, but laser generation was not
observed. When helium was added into the gas mixture, the lasing was detected only at a
sufficiently low krypton content, namely, at 2.5 and 1% (Figure 4). Although the microwave
discharge was maintained at higher mole fractions of krypton, laser generation was not
observed. In the opposite case, when the Kr mole fraction was below 1%, the discharge
itself was not maintained, even if the maximum electric field value of E0 = 5.3 kV/cm was
applied across the HCF (Figure 4).
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Total pressure of the He-Kr gas mixture was 105 torr.

The He:Kr mixture with Kr mole fraction of 2.5% was chosen for further experiments.
The mixture at a total pressure of 105 torr was filled into the HCF, which was kept inside a
properly aligned laser cavity. Then, the microwave discharge was ignited and maintained,
and the optical radiation at the cavity output mirror was investigated. Importantly, the
optical signal was strongly dependent on the angular positions of the cavity mirrors, in
a similar way to what was previously observed for a He:Xe GDFL [7]. In the case of
the complete misalignment of the cavity, the optical signal dropped by several order of
magnitude, thus directly indicating the laser nature of the recorded signal. Also, the
stability of the He:Kr GDFL appeared to be similar to that of the He:Xe GDFL [14].

Figure 5 illustrates typical waveforms registered by the photoresistor at the output of
the He-Kr GDFL for two values of the microwave pump pulse duration: 20 µs (Figure 5a)
and 80 µs (Figure 5b). In contrast to the He-Xe GDFL [6,7], in which the pump power
practically did not affect the shape and power of the output pulses, the pulses generated by
the He-Kr laser show a pronounced dependance on the pump power. As can be seen in
Figure 5, the amplitude of the laser pulses is growing with a decrease in the amplitude of a
microwave electric field E0 that is applied across the hollow-core fiber. At high pumping
levels (E0 > 5.5 kV/cm), laser generation was completely absent. However, when the pump
was decreased to E0 ≈ 5.4 kV/cm, the first indications of lasing appear after the trailing
edge of the pump pulse, i.e., during the recombination of the discharge plasma (Figure 5a,
curve 5). At the same time, the plasma glow that was registered from the side surface of the
fiber (Figure 5a, curve 1) stops simultaneously with the end of the pump pulse (Figure 5a,
curve 2). It should be noted that similar generation peaks, occurring after switching off the
exciting pulse, were previously observed in bulk gas-discharge He-Ne lasers at different
wavelengths [15]. In the case of He-Ne plasma, this phenomenon can be explained by the
resonant transfer of energy from excited He atoms to Ne atoms. However, for the He-Kr
gas mixture, such resonant transfer is not the case. Perhaps, to explain this phenomenon
in He-Kr, one can use the mechanism of collisional mixing between the 4d-sublevels of
excited Kr atoms [16] or the generation mechanisms of plasma lasers [17].
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Figure 5. Typical waveforms measured by a photoresistor at the output of He-Kr GDFL for different
values of a microwave electric field E0 that is applied across the hollow-core fiber. The E0 amplitudes
are shown in the figure legend. The microwave pump pulse (curves 2) and the waveform of plasma
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Decreasing the microwave excitation to E0 < 5.3 kV/cm gives rise to laser generation
during the pump pulse (Figure 5). Note that the laser generation develops with a delay
of about 5 µs relative to the leading edge of the pump pulse. The output power of the
He-Kr GDFL increases monotonously until the microwave electric field reaches a value of
E0 ≈ 3.6 kV/cm, at which point, the discharge itself becomes unstable and quenches. A
similar dependence is known for bulk gas-discharge lasers (see, e.g., [18]), in which the
output power initially grows with the pump, but then reaches a maximal value and starts
falling with further pump increase. In our case, however, due to the limited range of E0
variation available in our setup, we probably observe only the falling branch of the Pout(E0)
dependence.

The peak power generated by He-Kr GDFL was investigated as a function of the
total gas pressure (Figure 6). When the pressure was above ~130 torr, laser generation
did not occur, although the discharge was maintained stably. With the pressure gradually
decreasing below 130 torr, the generation power first increases and passes through a
maximum, which is observed at different pressures for different values of the microwave
field E0. Then, the output power is slightly reduced before the discharge itself is no longer
maintained at pressures below ~70 torr.

The variations in the shape of the laser pulses observed in Figure 5 may indicate that
we are dealing with generation at several wavelengths and with competition between
these generation channels. By passing the GDFL radiation through band-pass optical
filters, we found that the laser spectrum contains some lines in the wavelength ranges of
1750–2250 nm and 2500–3000 nm. Then, the emission spectra of He-Kr GDFL were studied
in more detail by using an optical spectrum analyzer (AQ6375B, Yokogawa, Tokyo, Japan)
with a spectral range of 1200–2400 nm (Figure 7a,b) and a grating-based monochromator
(MS2004, SOLAR TII, Minsk, Belarus) with spectral range of 1600–3700 nm (Figure 7c). The
spectrum analyzer and the monochromator had resolutions of 0.1 and 2 nm, respectively,
which is good enough to identify the lasing lines of gas lasers [19].
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Figure 7. Typical output spectra generated by He-Kr GDFL based on He-Kr mixture at a total pressure
of 105 torr and Kr mole fraction of 2.5%. The spectra were measured (a,b) by optical spectrum
analyzer AQ6375B (Yokogawa) in 1200–2400 nm range and (c) by grating-based monochromator
MS2004 (SOLAR TII) in 1600–3700 nm range.

The spectra obtained show that, in our experimental conditions, the He-Kr GDFL
generates simultaneously at two wavelengths, which are 2190 and 2523 nm (Figure 7). The
observed linewidth for both lasing lines did not exceed the spectral resolution of the devices
used for the measurement. Based on the spectra obtained and the spectral sensitivity of the
photoresistor used, the total output peak power of the He-Kr GDFL was found to be around
1 mW. One should keep in mind that this power is obtained from a tiny volume of active
medium, which was as small as 4 mm3. The output power of the laser can be increased by
using a much longer length of the active fiber that is pumped by the microwave electric
field. Also, the GDFL performance could be improved by optimizing the active medium
composition and the laser cavity structure.

The shapes of the laser pulses at wavelengths of 2190 and 2523 nm differ from each
other (Figure 8). Generation at 2523 nm occurs with a longer delay relative to the leading
edge of the microwave pump pulse and increases more slowly in time compared with
generation at 2190 nm. While the power generated at 2190 nm reaches a maximum and
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then decreases (Figure 8a,b, curves 1), we did not observe such a power decrease at the
wavelength of 2523 nm (Figure 8a,b, curves 2). The difference in the shapes of the laser
pulses observed at different wavelengths is probably due to differences in the parameters of
the upper laser levels, which determine the rates of their population and relaxation during
microwave discharge.
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2190 nm (curves 1) and the line at 2523 nm (curves 2). The data were obtained in the He-Kr mixture
with a 2.5% mole fraction of Kr and at total pressure of (a) 105 torr and (b) 81 torr.

The laser lines generated by the He-Kr GDFL correspond to transitions in a neutral
krypton atom (Kr I). Those transitions are well known from the data on bulk (non-fiber)
gas-discharge lasers obtained earlier (see, for example, ref. [19]). The laser line at 2190 nm
occurs on the 4d[3/2]02 → 5p[3/2]2 transition, while the 4d[1/2]01 → 5p[3/2]2 transition
gives rise to generation at 2523 nm. These transitions have different upper energy levels,
but a common lower level, which can lead to the competition of lasing processes when
both transitions are involved simultaneously (see the diagram in Figure 9). Please note that
the common lower level 5p[3/2]2 mentioned above is also the upper level for the transition
5p[3/2]2 → 5s[3/2]02 at a wavelength of 760.2 nm, luminescence at which we can observe
in the discharge spectrum measured from the side surface of the fiber. Thus, the 760.2 nm
luminescence line of Kr atoms can serve as an indicator for the population of the lower
laser level.
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Figure 9. The scheme of krypton energy levels involved in the He-Kr laser generation. A transition
responsible for luminescence at 760 nm is also shown, since it serves as an indicator of population of
lower laser level for both laser transitions observed in this work.

To obtain some insight into the influence of He on the population of Kr energy levels,
we monitored the discharge luminescence spectra from the side surface of the HCF for
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different concentrations of He. The luminescence spectra measured for strong microwave
excitation (E0 < 5.3 kV/cm) are shown in Figure 10. One can see that when helium is
introduced as a buffer gas into the core of the HCF, the luminescence spectrum is enriched
by emission lines of neutral helium atoms (He I), in particular at 502, 588, 668, and 707 nm
(Figure 10, lines 1–4). The intensity of the He I lines increases with the helium concentration.
At the same time, the intensity of the Kr I luminescence at 760 nm (Figure 10, line 5) is
decreasing relative to other luminescence lines of Kr I, most evidently to the line at 810 nm
(Figure 10, line 6) that is not connected with lasing transitions observed in the He-Kr GDFL.
Thus, we conclude that the addition of helium to krypton has a significant effect on the
population of the lower laser level 5p[3/2]2. Helium as a buffer gas reduces the population
of the lower laser level and provides better conditions for laser generation.
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Figure 10. Plasma luminescence spectra measured from the side surface of the fiber for dif-
ferent concentrations of He in the He-Kr mixture. The amplitude of the microwave excita-
tion was E0 = 5.3 kV/cm. The following gas mixtures were studied: (a) pure Kr at pressure of
30 torr, (b) He:Kr = 20:1 at total pressure of 105 torr, (c) He:Kr = 40:1 at total pressure of 105 torr,
(d) He:Kr = 100:1 at total pressure of 105 torr. The wavelengths of lines (1–10) and their relation to He
or Kr are explained in Figure 11.
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E0 applied across the hollow-core fiber. The measurements were performed with a He-Kr mixture at
a total pressure of 105 torr and Kr mole fraction of 2.5%.

The influence of a lasing process on Kr I luminescence lines can be estimated by the
data presented in Figure 11, where the intensities of the He I and Kr I luminescence lines
are shown as a function of the microwave pump field E0 applied across the hollow-core
fiber. When the microwave field E0 changes from 3.6 to 5.3 kV/cm, the lasing goes from its
maximum to a complete termination. Figure 11 shows that the variation in the pump field
affects the luminescence intensity of the main He I lines in the visible and near-IR ranges.
When the pump changes in the considered range, the intensity of the He I lines increases
proportionally (E0)2–2.5, while the intensity of the Kr I lines, on the contrary, decreases, but
much more slowly (Figure 11). At the same time, the ratio of the amplitudes for the 760 nm
(Kr I) and 810 nm (Kr I) lines shows almost no changes. This fact suggests that the presence
of laser generation in the discharge plasma does not significantly affect the population of
the lower laser level 5p[3/2]2. As for the upper laser levels (4d[3/2]02 and 4d[1/2]01), the
luminescence spectra provide no information due to the lack of convenient luminescence
lines in the visible range starting from these levels [20].

4. Conclusions

A He-Kr gas-discharge fiber laser is demonstrated for the first time. The laser generates
in a quasi-continuous wave regime simultaneously at the wavelengths of 2190 and 2523 nm,
which corresponds to transitions in the neutral Kr atoms. The maximum output power of
the He-Kr GDFL was about 1 mW and was obtained from an active volume as small as
4 mm3 (a 30 cm long hollow core with a diameter of 130 µm). The operation conditions,
such as the pressure of the gas mixture, the Kr molar fraction, and the microwave pump
field, were determined.

The results obtained illustrate that the concept of gas-discharge fiber lasers can be
applied in various gas media. GDFLs provide excellent opportunities to greatly enrich the
wavelength range of the operation of fiber lasers, since a variety of active gas mixtures
could enable access to an enormous number of wavelengths spanning from the ultraviolet
to mid-infrared range. At the same time, the electric discharge could provide a unified
pumping scheme that does not rely on other lasers and does not require precise matching
to narrow absorption lines of the gases used. We believe that in the future, the GDFLs
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could be used not only as a scientific instrument, but also could find various applications
in spectroscopy, environmental monitoring and medical diagnostics.
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