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Abstract: A narrow frequency bandwidth of epsilon-near-zero metamaterials limits the use of many
optical, microwave, and electronic devices. In this paper, we propose a recipe to broaden the
operational bandwidth by employing a structure of properly tailored square frames nested within
each other. To illustrate this effect, we derive the effective permittivity for the considered frame
geometry. Then, we show that combining constituent materials with loss and materials with gain
enables us to achieve the effective permittivity over a frequency band as small as desired. This
technique may prove valuable for various applications including invisibility cloaks, camouflage,
shielding, and sensorics.
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1. Introduction

Many existing devices face limitations in operational bandwidth, and several promis-
ing effects remain restricted by stringent material requirements [1]. Among those devices,
broadband metalenses [2], holograms [3], and absorbers [4–6] deserve to be mentioned. The
above limitation is particularly true also for epsilon near-zero (ENZ) metamaterials (MMs),
a relatively new class of macroscopically homogeneous periodic structures with low and
ultralow permittivity that exhibit remarkable optical, electrical, and thermal properties.
In particular, tunable photonic MMs and devices can be regarded a current trend in the
research and applications of ENZ MMs [7–12].

The first known attempt to address bandwidth limitations was made in [13]. The
key idea was that in a multiphase periodic system of parallel layers, where the effective
permittivity is the weighted harmonic mean of individual layer permittivities (with the
electric field normal to the layers), the nullification of individual permittivities across
a frequency band enables the ENZ condition over the entire band. This concept was
later adapted for various microgeometries, including quasi-1D configurations [14,15] and
multilayered stacks [16]. In these studies, each layer was treated as a composite with
permittivity defined by the weighted arithmetic mean of its constituents.

Another approach reported in [17] described a broadband near-zero index and ENZ
MM for microwave applications. This design utilized two double-layer arrays of subwave-
length scatterers on either side of a dielectric sheet, separated by an air cavity.

In [18,19], the Hashin–Shtrikman geometry was applied, in which the composite
material consists of coated spheres (or coated cylinders in 2D) [20]. However, from a
practical standpoint, this method is questionable because filling the entire volume would
require spheres of varying sizes, including infinitesimally small ones.
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In [9], a plasmonic MM composed of a series of nanometrically controlled cop-
per/copper oxide nanorods with ultra-broad and reversible ENZ tunability in the visible
range was introduced in [9].

An all-dielectric 3D anisotropic near-zero index MM was proposed in [21]. This design
is based on a silicon photonic crystal exhibiting dual semi-Dirac cones in the mid-IR range.

There has also been interest in isotropic 3D nanocomposites with a broadband ENZ
response. These include suspensions of binary metal alloy nanospheres [22], core–shell
nanospheres [23], and randomly oriented metal nanospheroids [24]. However, in these
cases, achieving near-zero effective permittivity often requires operating in the resonant
regime, potentially leading to high losses. Thus, while the real part of the effective permit-
tivity can approach zero over a frequency range, the imaginary part remains substantial
and cannot be ignored.

Interestingly, isotropic 2D nanostructures have not yet been considered in the context
of broadband ENZ MMs. This study addresses that gap by introducing a new class of
isotropic multiphase MMs composed of embedded square frames, enabling near-zero
permittivity across a frequency band in the quasistatic regime. This structure can be viewed
as a natural extension of the 1D configurations previously studied. However, our approach
differs conceptually: in the 1D case, effective permittivity or conductivity can theoretically
be nullified across the entire band, while in the 2D case it can only be nullified at a single
frequency but minimized across the band as desired. This concept lays the groundwork for
practical 3D broadband ENZ MMs, which hold significant application potential.

2. Basic Concept, Problem Formulation, Assumptions, and Restrictions

In this work, we consider a periodic multiphase system of shelled squares serving
as unit cells (or metaatoms). Being tightly packed, the unit cells form an MM. Each
square contains n − 1 shells (frames) with thicknesses ti and permittivities ϵ1, ϵ2, ..., ϵn−1
or conductivities σ1, σ2, ..., σn−1, respectively. The innermost square has a permittivity ϵn
or conductivity σn. Thus, the first phase can be treated as a host, while all other phases
as inclusions.

For simplicity, we assume a unit cell size of 1 × 1. The volume fractions of the frames
are f1 = 4t1(1 − t1), f2 = 4t2(1 − 2t1 − t2), ..., fi = 4ti(1 − 2t1 − 2t2 − ... − ti), and the
innermost square volume fraction is fn = 1 − ∑n−1

i=1 fi.
Illustrative examples of the unit cells for n = 2 and n = 3 are shown in Figure 1a,c,

respectively. The direction of the electric field is indicated by an arrow.

Figure 1. The unit cell of the designed MM for n = 2 (a) and n = 3 (c). The dashed lines show the
horizontal and vertical arrangements of the layers for n = 2 and n = 3, respectively. (b,d) represent
the corresponding equivalent circuit diagrams.
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Our study relies on the following assumptions:

• All phases are assumed to be nonmagnetic.
• Interfacial resistance is neglected.
• We use the quasi-static approximation and ignore potential non-local effects.

These assumptions can generally be relaxed if needed; they do not fundamentally
alter the core concept. So, the effects of nonlocality on the enhancement of broadband
nonlinearity for 1D MMs have been addressed in [25]. However, in many cases, nonlocal
effects cannot be neglected. In particular, at microwave and lower frequencies, artificial
magnetism can occur in various composite structures, including inherently non-magnetic
square rings and wire media. In turn, it can give rise to strong non-locality, even for very
long wavelengths. At the same time, nonlocal effects are rather sensitive to the presence of
losses and cannot be detected if the loss is large enough [26].

The concept of ENZ MMs may assume that either the real part or the modulus of
permittivity are close to zero. We focus mainly on the latter case, which provides low or near-
zero values of the refractive index. Such MMs are of special practical interest, particularly
for the broadband enhancement of optical nonlinearity [25], invisibility cloaking [27], and
the enhancement of directivity of beamforming devices [28].

To outline our approach, let us first consider Figure 1a. If ϵ1(or σ1) is zero at ω = ω1,
the effective permittivity ϵ̃ (or conductivity σ̃) of the MM also becomes zero, regardless of
ϵ2(or σ2). This is because the outer shell blocks the displacement or electric current flow
through the MM entirely. Now, consider a nearby frequency ω2 where ϵ1(or σ1) ̸= 0 and
ϵ2(or σ2) = 0. Generally, the effective permittivity or conductivity will be nonzero at this
frequency. However, as the thickness t → 0, ϵ̃(σ̃) → ϵ2(σ2). Therefore, to achieve ϵ̃ or σ̃
close to zero at two proximate frequencies, it suffices to have ϵ2(ω2) ≈ 0 or σ2(ω2) ≈ 0.

As can be readily observed, the approach described above can be extended to recursively
nested frames for any n > 2. Formally, this enables us to achieve ϵ̃(ω1) = 0, ϵ̃(ω2) ≈ 0,. . . ,
ϵ̃(ωn) ≈ 0 for frequencies ω1, . . . , ωn within the frequency band [ω1, ωn]. However, in
practice, zeros in the permittivity of real materials are typically associated with energy losses,
that complicates the problem. An approach to overcoming this difficulty is to incorporate
gain materials to compensate for the losses.

3. Effective Parameters of Embedded Frames

Formally, the effective permittivity ϵ̃, electric and thermal conductivity σ̃ can be
derived in a similar way. However, an essential feature of effective permittivity is that the
spectrum of ϵ̃(ϵ2/ϵ1) (n = 2) contains branch cuts that must lie on the negative real axis of
ϵ2/ϵ1 [29]. In order to be definite, in this section we consider the problem in terms of the
electric conductivity.

The effective conductivity σ̃ can be represented simply as the total conductance of the
unit cell. At n = 2 (see Figure 1a), it can be evaluated using various techniques [30–37]. Of
greatest interest to us is the method proposed in [35]. In essence, this method of treatment
reduces the problem to one dimension.

Using the symmetry of the problem, it is convenient to consider only one quadrant of
the unit cell. Then, each quadrant can be broken down into two layers, either horizontal
or vertical. The horizontal layers are shown in Figure 1a by the dashed lines. Having
horizontal layers, we have two conductances in parallel (see Figure 1b), and the total
conductance is Σ∥ = Σ1 + Σ2. In turn, Σ1 is simply

Σ1 = 2t1σ1, (1)

while Σ2 is two conductances in series,

Σ2 =

(
2t1

1 − 2t1

1
σ1

+
1
σ2

)−1
. (2)
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As a result, one has
Σ∥ = 2t1σ1 +

σ1σ2

σ1 + σ2
2t1

1−2t1

. (3)

At t1 ≪ 1, f1 can be evaluated as f1 ≈ 4t1, and then

Σ∥ ≈
1
2

f1σ1 +
σ1σ2

σ1 +
1
2 f1σ2

. (4)

As is easy to check, our Equation (3) is analogous to Equation (4) from Ref. [35], which
is written in terms of resistivity.

Dealing with vertical layers, we have two conductances in series (not shown in

Figure 1), and the total conductance is Σ⊥ =
(

Σ−1
1 + Σ−1

2

)−1
, where

Σ1 =
σ1

2t1
(5)

and
Σ2 =

2t1σ1

1 − 2t1
+ σ2. (6)

The total conductance can then be written as

Σ⊥ =

(
2t1

σ1
+

1

σ1
2t1

1−2t1
+ σ2

)−1

. (7)

Our Equation (7) is in agreement with Equation(3) from Ref. [35].
As was shown, at f1 ≪ 1, both Equations (3) and (7) are good approximations for the

effective conductivity, σ̃ ≈ Σ∥ ≈ Σ⊥. At the same time, the geometric mean

σ̃ ≈
√

Σ∥Σ⊥ (8)

provides an even better approximation for the effective conductivity, which is rather
accurate for any f1 except for that close to unity [35]. In general, as f1 is not too small, the
approximation Σ∥ ≈ Σ⊥ is no longer valid. Anyway, the relative error of Equation (8) with
reference to finite element modeling does not exceed 5% over the entire range of f1, does
not exceed 3% at f1 < 80%, does not exceed 1% at f1 < 2%, and decreases rapidly as f1 → 0,
being almost independent of the σ2/σ1 ratio.

Let us now consider the case of n = 3, i.e., two embedded frames (see Figure 1 c). For
the horizontal arrangement of layers, the total conductance includes three conductances
in parallel, as shown in Figure 1d for the left upper quadrant. Then, Σ∥ = Σ1 + Σ2 + Σ3,
where Σ1 is the same as in Equation (1), while

Σ2 =

(
t1

t2

1
σ1

+
1 − 2t1

2t2

1
σ2

)−1
= t2

(
t1

σ1
+

1 − 2t1

2
1
σ2

)−1
, (9)

and

Σ3 =

(
t1

1 − 2t1 − 2t2

2
σ1

+
t2

1 − 2t1 − 2t2

2
σ2

+
1
σ3

)−1
. (10)

At t1 ≪ 1 and t2 ≪ 1, this yields the following result:

Σ∥ ≈
1
2

f1σ1 +
f2σ1σ2

f2σ2 + 2σ1
+

(2 − f1 − f2)σ1σ2σ3

f1σ2σ3 + f2σ1σ3 + (2 − f1 − f2)σ1σ2
≈ 1

2
( f1σ1 + f2σ2) + σ3. (11)
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In the general case, as the unit cell contains n phases and correspondingly includes
n − 1 frames,

Σ∥ =
n

∑
i=1

Σi. (12)

The partial conductances Σi can easily be calculated. So, Σ1 is always the same as in
Equation (1), while

Σi =

[
t1

ti

1
σ1

+ ...
ti−1

ti

1
σi−1

+
1 − 2t1 − ... − 2ti−1

2ti

1
σi

]−1
(13)

for 1 < i < n and

Σn =

[
2t1

1 − 2t1 − ... − 2tn−1

1
σ1

+ ...
2tn−1

1 − 2t1 − ... − 2tn−1

1
σn−1

+
1
σn

]−1
. (14)

In a similar manner, for the vertical arrangement, at n = 3, Σ1 is the same as in
Equation (5), while

Σ2 =
t1

t2
σ1 +

1 − 2t1

2t2
σ2 =

1
t2

(
t1σ1 +

1 − 2t1

2
σ2

)
, (15)

and
Σ3 =

2t1σ1

1 − 2t1 − 2t2
+

2t2σ2

1 − 2t1 − 2t2
+ σ3. (16)

At t1 ≪ 1 and t2 ≪ 1, this yields

Σ⊥ ≈
(

f1

2σ1
+

f2

2σ2
+

1
σ3

)−1
. (17)

In the general case,

Σ⊥ =

(
n

∑
i=1

Σ−1
i

)−1

(18)

with Σ1 as in Equation (5), while

Σi =
t1

ti
σ1 + ... +

ti−1

ti
σi−1 +

1 − 2t1 − ... − 2ti−1

2ti
σi (19)

for 1 < i < n and

Σn =
2t1σ1

1 − 2t1 − ... − 2tn−1
+ ... +

2tn−1σn−1

1 − 2t1 − ... − 2tn−1
+ σn. (20)

As one can check, the effective conductivity determined in accordance with Equation (8),
where Σ∥ and Σ⊥ are specified by Equations (12) and (18), respectively, satisfies the duality
relation (generalized Keller’s theorem) [38]

σ̃(σ−1
i ) = 1/σ̃(σi). (21)

In fact, after the interchange of σi → 1/σi, one has σ∥ → 1/σ⊥ and σ⊥ → 1/σ∥, which
yields σ̃ → 1/σ̃.

As far as the 1D approximation, Equation (8), works well, especially at t ≪ 1, we show
that it can provide the needed condition of nulling σ̃ through a frequency band. With this
aim, consider first the term Σ∥.

In Equation (12), the term Σ1 is always small because it is zero (if σ1 = 0) or Σ1 ∝ t ≪ 1.
In Equation (13), Σi ≪ 1 only if any of the conductivities σ1, ..., σi is equal to zero. Finally,
in Equation (14), the term Σn is always small, because it is zero (if σn = 0) or Σn ∝ t ≪ 1.
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Consider then the term Σ⊥. In Equation (18), the term Σ1 is, as before, small. In
Equation (19), as ti ≪ 1, the term Σi is always large, except for the case where σi = 0.
Finally, in Equation (20), the term Σn is always small. This provides the condition Σ⊥ ≪ 1
if either σ1 = 0 or σn = 0.

Ultimately, either Σ∥ or Σ⊥ is small through the band [ω1, ..., ωn], where σi(ωi) = 0.
This, in accordance with Equation (8), provides the needed condition σ̃ ≪ 1 within the band.

4. Numerical Analysis and Discussion

At this point, it is valuable to complement the preceding analysis with numerical
simulations. When working with ENZ MMs, it is essential to account for the impact of
losses, as these can significantly influence the nulling of the effective permittivity and often
cannot be disregarded. This gives rise to the complex-valued permittivity, which adds
complexity to our consideration. Nonetheless, with an appropriate design and careful
selection of materials, it becomes possible to achieve effective broadband reduction in ϵ̃.

One of the approaches involves combining plasmonic and dielectric materials, where
ℜϵi < 0 and ℜϵi > 0, respectively. In addition, losses can be controlled through various
compensation mechanisms, such as incorporating gain molecules or quantum dots (see,
e.g., [39–42]).

As an example, we consider a periodic MM with a unit cell in the form of embedded
frames, where high doping with aluminum zinc oxide (AZO) is taken as a host phase. The
permittivity of AZO in the near IR is of the Drude type

ϵ1 = ϵ∞ −
ω2

p

ω2 + iωγ
, (22)

where ϵ∞ = 3.85, ωp = 1.747 eV, and γ = 0.1 eV, that approximately corresponds to a
dopant concentration of 2 wt% [43,44].

As shown in Figure 2, the real part of the permittivity of AZO ℜϵ1 = 0 at ω0 ≃ 0.885 eV
and is negative below this point. Notably, the imaginary part of its permittivity, ℑϵ1,
remains moderately low compared to most other highly doped semiconductors. To be
specific, we set the frequency range of interest from 0.75 to 0.8 eV. This provides a bandwidth
of about 6.5%.

Figure 2. The permittivity of the host phase of the designed MM.

As ℜϵ1 is negative within the targeted frequency band and exhibits normal dispersion
(∂ℜϵ1/∂ω > 0), it is reasonable to assume that at least one of the inclusion phases must
have ℜϵi > 0 and exhibit anomalous dispersion (∂ℜϵi/∂ω < 0) within the same band.
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Furthermore, since ℑϵ1 > 0, compensating for losses can be achieved if at least one of
the inclusion phases satisfies the condition ℑϵi < 0. To address this, we consider the
permittivity of the inclusions to follow a general Lorentzian form

ϵi = ϵ0 −
Ai

ω − ωi + i∆i
, (23)

where ϵ0 is the background permittivity, and Ai, ωi, and ∆i represent the transition strength,
frequency, and linewidth, respectively. At Ai > 0, Equation (23) describes lossy media,
while at Ai < 0, it describes gain media. For simplicity, we treat all inclusions as gain
media and use fixed model parameters in Equation (23), specifically ϵ0 = 1.3, Ai = −0.2,
and ∆i = 0.05 eV. Alongside this, all ti and ωi are treated as fitting parameters optimized
to minimize the objective function | ϵ̃ | within the targeted frequency band.

To proceed, let us first consider the simplest case of n = 2. The modulus of the
effective permittivity of the designed MM, calculated using the model parameters obtained
through the fitting procedure, is shown in Figure 3. With the optimal parameter values,
t1 = 0.127 and ω2 = 0.983 eV, the modulus of the effective permittivity | ϵ̃ | reaches its
minimum value of approximately 0.005 at ω ≈ 0.775 eV. At the low-frequency and high-
frequency edges of the band, | ϵ̃ | has values of approximately 0.105 and 0.125, respectively.
For comparison, the dependencies of ϵ∥(ω) and ϵ⊥(ω) are also shown. In the example
presented, the small value of | ϵ̃ | within the targeted frequency band is achieved mainly
due to the small magnitude of the factor ϵ⊥ entering Equation (8), where it is designated
as Σ⊥. The permittivity of the inclusion phase, ϵ2(ω), has a negative slope in the desired
frequency band, thereby demonstrating an anomalous dispersion, as expected.

Figure 3. The modulus of the effective permittivity and the permittivity of the inclusion phase of the
modeled MM with n = 2.

The modulus of the effective permittivity of the designed MM with n = 3 and n = 4
calculated using model parameters obtained through the fitting procedure is shown in
Figure 4. For the three-phase MM (n = 3), the optimal parameters are t1 = 0.1705,
t2 = 0.0114, ω2 = 0.756 eV, and ω3 = 0.997 eV. For four-phase MM (n = 4), they are
t1 = 0.163, t2 = 0.00045, t3 = 0.00947, ω2 = 0.699 eV, ω3 = 0.754 eV, and ω4 = 0.995 eV.
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Figure 4. The modulus of the effective permittivity of the modeled MM with n = 3 and n = 4.

At n = 3, the function | ϵ̃ | exhibits three local minima within the band. Notably, two of
these minima arise from the local minima of | ϵ∥ |, while the third is due to | ϵ⊥ |. At n = 4,
the function | ϵ̃ | displays four local minima within the band. Three of these are associated
with the minima in | ϵ∥ |, while the remaining one corresponds to the minimum in | ϵ⊥ |.
As the number of phases—and consequently, the number of degrees of freedom—increases,
it becomes possible to achieve | ϵ̃ | closer to zero within the targeted band. In general,
by increasing the number of inclusion phases, it becomes possible to achieve the effective
permittivity over a frequency band as small as desired.

In more general cases, optimization and fitting techniques could be employed to
fine-tune the broadband dielectric and optical properties. Depending on the application, it
can be prioritized to minimize | ϵ̃ |, Re(ϵ̃), or ñ = Re(

√
ϵ̃) across a specific frequency band.

Here, we focus on ENZ MMs. Meanwhile, the above results could be useful in a
broader context, particularly to develop broadband invisibility cloaks, camouflage and
shielding [45–52], as well as for sensor applications [9]. They could be useful for the
design of frequency selective surfaces —-periodic structures capable of functioning as low-
pass, high-pass, band-pass, and band stop filters when interacting with electromagnetic
waves [53]. In the microwave range, as an artificial effective permeability occurs, it is
constructive to consider a near-zero refractive index rather than an ENZ MM. On the
one hand, this complicates the analysis and design of these MMs, but on the other hand,
this opens up new possibilities. So, broadened bandwidth can result not only from small
values (zeros) of the effective permittivity but also from small values (zeros) of the effective
permeability, which occur slightly above its resonant frequencies.

Although we have dealt with 2D microgeometry, dealing with multishelled cubes
would allow us to generalize our approach to the 3D case.

5. Conclusions

We derived closed-form expressions for the effective conductivity and permittivity of
two-dimensional metamaterials with recursively nested frames. After that, we numerically
demonstrated that incorporating materials with gain to counterbalance losses could sig-
nificantly reduce the effective permittivity within a specified frequency band. In general,
by appropriately selecting the material and geometric parameters, it is possible to achieve
arbitrarily low values of effective permittivity across the band.

Future studies could build on this work by extending the approach to three-dimensional
configurations. Once the effective permittivity or conductivity for a given microgeometry is
established, this framework can facilitate the design of novel metamaterials with customizable
broadband optical or electrical properties. We anticipate that similar metamaterials, incorpo-
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rating multishelled building blocks, hold significant promise for applications in broadband
cloaking, camouflage, electromagnetic shielding, as well as advanced sensor technologies.
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