Evolution of Airy Beams in Turbulence Plasma Sheath
Abstract
:1. Introduction
2. Statistical Analysis of the Turbulent Flow Field around a Hypersonic Vehicle
2.1. Airy Beams
2.2. Modeling of Plasma Sheath
2.3. Statistical Analysis of Flow Field Data
2.4. Simulation of Multiple Random Phase Screens in the Turbulent Plasma Sheath
2.4.1. The Fresnel Diffraction Integral and the S-FFT, T-FFT, and D-FFT Algorithms
2.4.2. Multi-Random Phase Screens Theory
3. Transmission of Airy Beams in the Turbulent Plasma Sheath
3.1. Analysis of Time-Varying Parameters in the Turbulent Plasma Sheath Flow Field
3.2. Analysis of Factors Affecting the Transmission Quality of the Airy Beams in the Turbulent Plasma Sheath
4. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rozenman, G.G.; Bondar, D.I.; Schleich, W.P.; Shemer, L.; Arie, A. Observation of Bohm trajectories and quantum potentials of classical waves. Phys. Scr. 2023, 98, 044004. [Google Scholar] [CrossRef]
- Silva-Ortigoza, G.; Ortiz-Flores, J. Properties of the Airy beam by means of the quantum potential approach. Phys. Scr. 2023, 98, 085106. [Google Scholar] [CrossRef]
- Berry, M.V.; Balazs, N.L. Nonspreading wave packets. Am. J. Phys. 1979, 47, 264–267. [Google Scholar] [CrossRef]
- Chen, R.P.; Chew, K.H.; Zhao, T.Y.; Li, P.G.; Li, C.R. Evolution of an Airy beam in a saturated medium. Laser Phys. 2014, 24, 115402. [Google Scholar] [CrossRef]
- Chen, R.P.; Chew, K.H. Far-field properties of a vortex Airy beam. Laser Part. Beams 2012, 31, 9–15. [Google Scholar] [CrossRef]
- Dai, H.T.; Sun, X.W.; Luo, D.; Liu, J. Airy beams generated by a binary phase element made of polymer-dispersed liquid crystals. Opt. Express 2009, 17, 19365–19370. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, P.; Lou, C.; Huang, S.; Xu, J.; Chen, Z. Optimal control of the ballistic motion of Airy beams. Opt. Lett. 2010, 35, 2260–2262. [Google Scholar] [CrossRef]
- Pavel, P.; Miroslav, K.; Jerome, V.M.; Georgios, A.S.; Demetrios, N.C. Curved Plasma Channel Generation Using Ultraintense Airy Beams. Science 2009, 324, 229–232. [Google Scholar]
- Suarez, R.A.B.; Neves, A.A.R.; Gesualdi, M.R.R. Optical trapping with non-diffracting Airy beams array using a holographic optical tweezers. Opt. Laser Technol. 2021, 135, 106678. [Google Scholar] [CrossRef]
- Rozenman, G.G.; Zimmermann, M.; Efremov, M.A.; Schleich, W.P.; Shemer, L.; Arie, A. Amplitude and Phase of Wave Packets in a Linear Potential. Phys. Rev. Lett. 2019, 122, 124302. [Google Scholar] [CrossRef]
- Tao, R.M.; Si, L.; Ma, Y.X.; Zhou, P.; Liu, Z.J. Average spreading of finite energy Airy beams in non-Kolmogorov turbulence. Op. Lasers Eng. 2013, 51, 488–492. [Google Scholar] [CrossRef]
- Wen, W.; Wang, Z.; Qiao, C. Beam propagation quality factor of Airy laser beam in oceanic turbulence. Optik 2022, 252, 168428. [Google Scholar] [CrossRef]
- Lin, H.; Wang, J. Study of Self-healing Behavior for Airy Beams in Atmospheric Turbulence. J. Phys. Conf. Ser. 2022, 2226, 012003. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.; Fu, J.; Ye, G. Performance analysis of vortex symmetric Airy beam as optical communication link through turbulence channel. J. Phys. Conf. Ser. 2023, 2548, 012010. [Google Scholar] [CrossRef]
- Wang, J.; Wang, X.; Zhao, S. Influence of oceanic turbulence on propagation of autofocusing Airy beam with power exponential phase vortex. arXiv 2020, arXiv:2005.07192. [Google Scholar]
- He, G.L.; Zhan, Y.F.; Zhang, J.Z.; Ge, N. Characterization of the Dynamic Effects of the Reentry Plasma Sheath on Electromagnetic Wave Propagation. IEEE Trans. Plasma Sci. 2016, 44, 232–238. [Google Scholar] [CrossRef]
- Lin, T.C.; Sproul, L.K. Influence of reentry turbulent plasma fluctuation on EM wave propagation. Comput. Fluids 2006, 35, 703–711. [Google Scholar] [CrossRef]
- Rybak, J.P.; Churchill, R.J. Progress in Reentry Communications. IEEE Trans. Aerosp. Electron. Syst. 1971, 7, 879–894. [Google Scholar] [CrossRef]
- Lv, C.J.; Cui, Z.W.; Han, Y.P. Light propagation characteristics of turbulent plasma sheath surrounding the hypersonic aerocraft. Chin. Phys. B 2019, 28, 074203. [Google Scholar] [CrossRef]
- Yao, B.; Li, X.P.; Shi, L.; Liu, Y.M.; Zhu, C.Y. A Multiscale Model of Reentry Plasma Sheath and Its Nonstationary Effects on Electromagnetic Wave Propagation. IEEE Trans. Plasma Sci. 2017, 45, 2227–2234. [Google Scholar] [CrossRef]
- Zhang, J.Z.; He, G.L.; Peng, B.; Lu, J.H.; Ning, G. Characterization and performance evaluation of turbulent plasma sheath channel. China Commun. 2016, 6, 88–99. [Google Scholar] [CrossRef]
- Liu, Z.W.; Bao, W.M.; Li, X.P.; Shi, L.; Liu, D.L. Influences of Turbulent Reentry Plasma Sheath on Wave Scattering and Propagation. Plasma Sci. Technol. 2016, 18, 617–626. [Google Scholar] [CrossRef]
- Song, Z.G.; Liu, J.F.; Du, Y.X.; Xi, X.L. The modeling and simulation of plasma sheath effect on GNSS system. App. Phys. A 2015, 121, 1067–1073. [Google Scholar] [CrossRef]
- Starkey, R.P. Hypersonic Vehicle Telemetry Blackout Analysis. J. Spacecr. Rocket. 2015, 52, 426–438. [Google Scholar] [CrossRef]
- Savino, R.; D’Elia, M.E.; Carandente, V. Plasma Effect on Radiofrequency Communications for Lifting Reentry Vehicles. J. Spacecr. Rocket. 2015, 52, 417–425. [Google Scholar] [CrossRef]
- Chen, W.; Guo, L.X.; Li, J.T.; Dan, L. Propagation characteristics of terahertz waves in temporally and spatially inhomogeneous plasma sheath. Acta Phys. Sin. 2017, 66, 084102. [Google Scholar] [CrossRef]
- Tian, Y.; Han, Y.P.; Ling, Y.J.; Ai, X. Propagation of terahertz electromagnetic wave in plasma with inhomogeneous collision frequency. Phys. Plasmas 2014, 21, 023301. [Google Scholar] [CrossRef]
- Zang, Q.; Bai, X.X.; Yang, Y.J.; Ma, P.; Huang, J.; Ma, J.; Yu, S.Y.; Yang, Q.B.; Shi, H.Y.; Sun, X.D.; et al. Phase characteristic and information transmission of laser signals through plasma in shock tube. Phys. Plasmas 2019, 26, 022107. [Google Scholar] [CrossRef]
- Lü, C.J.; Han, Y.P. Analysis of propagation characteristics of Gaussian beams in turbulent plasma sheaths. Acta Phys. Sin. 2019, 68, 094201. [Google Scholar] [CrossRef]
- Qing, Z. Propagating Characteristics of Laser Beam through Plasma Sheath; Harbin Institute of Technology: Harbin, China, 2020. [Google Scholar]
- Cui, Q.R.; Li, M.; Yu, Z.Y. Influence of topological charges on random wandering of optical vortex propagating through turbulent atmosphere. Opt. Commun. 2014, 329, 10–14. [Google Scholar] [CrossRef]
- Cai, D.M.; Ti, P.P.; Jia, P.; Wang, D.; Liu, J.X. Fast simulation of atmospheric turbulence phase screen based on non-uniform sampling. Acta Phys. Sin. 2015, 64, 224217. [Google Scholar] [CrossRef]
- Jin, R.Y.; Shuai, W.; Ga, P.Y. Numerical simulation of laser propagation in ocean turbulence with the nonuniform fast Fourier transform algorithm. Opt. Eng. 2020, 59, 106109. [Google Scholar] [CrossRef]
- Jiang, R.X.; Wang, K.X.; Tang, X.K.; Wang, X. Investigation of Oceanic Turbulence Random Phase Screen Generation Methods for UWOC. Photonics 2023, 10, 832. [Google Scholar] [CrossRef]
- Qiu, Q.Y. Transmission of Structured Beams in Atmospheric Turbulence; Xidian University: Xi’an, China, 2019. [Google Scholar]
- Park, C. Assessment of two-temperature kinetic model for ionizing air. J. Thermophys. Heat Transf. 1989, 3, 233–244. [Google Scholar] [CrossRef]
- Balasubramanian, R.; Anandhanarayanan, K.; Krishnamurthy, R.; Chakraborty, D. Numerical Simulation of Non-Equilibrium Plasma Discharge for High Speed Flow Control. J. Inst. Eng. Ser. C 2016, 98, 285–293. [Google Scholar] [CrossRef]
- Wilcox, D.C. Turbulence Modeling for CFD, 3rd ed.; Boundary-Layer Theory; DCW Industries: Birmingham, AL, USA, 2006. [Google Scholar]
- Schlichting, H.; Gersten, K. Boundary-Layer Theory; Springer Nature: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Li, L.Q.; Huang, W.; Yan, L.; Zhao, Z.T.; Liao, L. Mixing enhancement and penetration improvement induced by pulsed gaseous jet and a vortex generator in supersonic flows. Int. J. Hydrogen Energy 2017, 42, 19318–19330. [Google Scholar] [CrossRef]
- Kim, K.H.; Kim, C.; Rho, O.H. Methods for the Accurate Computations of Hypersonic Flows. J. Comput. Phys. 2001, 174, 38–80. [Google Scholar] [CrossRef]
- Yoon, S.; Jameson, A. Lower-upper Symmetric-Gauss-Seidel method for the Euler and Navier-Stokes equations. AIAA J. 1988, 26, 1025–1026. [Google Scholar] [CrossRef]
- Tromeur, E.; Garnier, E.; Sagaut, P. Analysis of the Sutton Model for Aero-Optical Properties of Compressible Boundary Layers. J. Fluids Eng. 2006, 128, 239–246. [Google Scholar] [CrossRef]
- Li, J.T.; Yang, S.F.; Guo, L.X.; Cheng, M.J.; Gong, T. Power Spectrum of Refractive-Index Fluctuation in Hypersonic Plasma Turbulence. IEEE Trans. Plasma Sci. 2017, 45, 2431–2437. [Google Scholar] [CrossRef]
- Alpher, R.A.; White, D.R. Optical Refractivity of High-Temperature Gases. II. Effects Resulting from Ionization of Monatomic Gases. Phys. Fluids 1959, 2, 162–169. [Google Scholar] [CrossRef]
- Alpher, R.A.; White, D.R. Optical Refractivity of High-Temperature Gases. I. Effects Resulting from Dissociation of Diatomic Gases. Phys. Fluids 1959, 2, 153–161. [Google Scholar] [CrossRef]
- Qian, X.F. Information Optics Digital Laboratory; Science Press: Beijing, China, 2015; pp. 27–45. [Google Scholar]
- Li, J.T.; Yang, S.F.; Guo, L.X. Propagation characteristics of Gaussian beams in plasma sheath turbulence. IET Microw. Antennas Propag. 2017, 11, 280–286. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, X.; Han, Y.; Wang, J.; Xu, S. Evolution of Airy Beams in Turbulence Plasma Sheath. Photonics 2024, 11, 102. https://doi.org/10.3390/photonics11020102
Gao X, Han Y, Wang J, Xu S. Evolution of Airy Beams in Turbulence Plasma Sheath. Photonics. 2024; 11(2):102. https://doi.org/10.3390/photonics11020102
Chicago/Turabian StyleGao, Xuan, Yiping Han, Jiajie Wang, and Shuping Xu. 2024. "Evolution of Airy Beams in Turbulence Plasma Sheath" Photonics 11, no. 2: 102. https://doi.org/10.3390/photonics11020102
APA StyleGao, X., Han, Y., Wang, J., & Xu, S. (2024). Evolution of Airy Beams in Turbulence Plasma Sheath. Photonics, 11(2), 102. https://doi.org/10.3390/photonics11020102