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Abstract: Vortex beams are unique in that they have annular spatial profiles and carry orbital angular
momentum. This has led to their use in applications including laser processing, microparticle
manipulation and signal transmission. Off-axis vortex beams, which may be considered a subset
of vortex beams, display a broader spectrum of physical characteristics in comparison with their
conventional (integer-order) counterparts. In this work, we derive the equations which describe the
intensity distribution of off-axis vortex beams and use these to theoretically model their spatial profile.
These models are supported by experimental generation of both integer and off-axis vortex beams,
and the presence of orbital angular momentum is investigated through the use of the cylindrical lens
transformation method.

Keywords: laser technology; optical vortex; off-axis double vortex beam; spiral phase plate

1. Introduction

As established by Allen et al. [1], one of the defining characteristics of vortex beams
is that they have a phase singularity and carry orbital angular momentum (OAM). Here,
vortex beams have a characteristic phase term, exp(ilθ), wherein l represents the order of
orbital angular momentum, or equivalently the topological charge, and θ represents the
azimuthal angle in cylindrical coordinates. The unique characteristics of OAM and how it
can be imparted to physical media have led to significant interest in vortex beams and, more
generally, their methods of generation and application. In recent years, numerous methods
have been used for the generation of vortex beams using devices, such as spiral phase plates
(SPP) [2], Q-plates [3], fiber lasers [4–6], spatial light modulators (SLM) [7], and digital
micromirror devices (DMD) [8]. These have been used to generate vortex beams, including
integer-order vortex beams [9,10], fractional-order vortex beams [11,12], elliptical vortex
beams [13,14], and so-called “perfect vortex beams” [15,16]. Concurrently, a considerable
body of research has focused on the extension of the spectral range covered by vortex
beams [17–24]. Researchers have also extensively studied the physical properties of vortex
beams and applied them in fields including particle manipulation [25], optical communica-
tion [26,27], quantum communication [28,29], high-resolution microscopy [30,31], terahertz
polarization detection [32,33], material processing [34,35], and optical measurements [36].

There exist sub-sets of vortex beams, such as fractional vortex beams; these are vortex
beams which have non-integer OAM and can be generated through the use of a non-
integer spiral phase step [37,38]. Off-axis vortex beams are another sub-set of vortex beams
which have spatial forms which have a radial opening and can be described as a coherent
superposition of Laguerre–Gaussian (LG) laser modes [39]. In comparison to traditional
optical vortex beams, non-integer and off-axis vortex beams with states of non-integer
OAM can be applied to unique and exotic light–matter interactions, such as sorting and
directional control of living cells [40], due to the property of the annular structure of the
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off-axis double vortex beam being broken. It is therefore possible to make more delicate
manipulations on these particles. Also, these beams can be used to significantly increase
the data capacity of optical communication systems and enable spatial entanglement with
infinite-dimensional subspaces in quantum optics [41]. Techniques used for the generation
of such vortex beams include using external phase control components, such as SLMs [42].

When generating vortex beams, it is generally desirable to produce beams wherein the
phase singularity is positioned perfectly within the center of the beam. However, it is often
observed that vortex beams which are experimentally generated using SPPs, fork gratings
and SLMs have alignment errors (which manifest due to positioning and fabrication errors),
causing the phase singularity to deviate from the axis of the beam, yielding off-axis vortex
beams. Compared with traditional, symmetric vortex beams, off-axis/asymmetric vortex
beams contain a higher level of complexity. This characteristic means these beams can be
exploited for applications, such as communications wherein the beams can carry greater
information density and applications in manipulation where higher degrees of freedom
can be achieved [43–45]. In comparison to off-axis, single vortex beams (which have one
phase singularity), off-axis double vortex beams (which have two phase singularities) have
even greater complexity. There has been relatively little research on off-axis double vortex
beams, and a complete description of their optical fields is still lacking.

Typically, the generation of exotic or complex beam shapes proceeds from the deriva-
tion of equations, the determination of appropriate holographic grating profiles and then
the loading of these profiles onto an SLM for the generation of the desired beam shape [45].
The accuracy and characteristics of the generated beam shape hence depend critically
on the correctness of the applied equations and the quality and accuracy of the SLM. In
contrast to this approach, in this work, we utilize the superposition of two SPPs (optical
elements which can be fabricated with a high degree of accuracy) to generate off-axis vortex
beams. Using this approach, we can better ensure the accuracy and correctness of both
the generated beam and the equations describing these beams. We are able to observe the
whole change process of the beam by changing the off-axis displacement between two
SPPs and verifying the beam morphology and orbital angular momentum well by intensity
distribution and the cylindrical lens convergence method. Then, we compare it with the
simulation diagram made by equations to examine the correctness of the equations.

This paper commences with the equation describing integer-order vortex beams and
this is used to derive the amplitude distribution equation for off-axis double vortex beams.
The correctness of these derivations is then verified experimentally where we generate a
range of integer-order and off-axis vortex beams. When the off-axis position of the optical
singularity is 0, the equation degenerates into an equation describing integer-order vortex
beams, and when the sum of l1 and l2 equals 0, it degenerates into the equation describing a
Gaussian beam. We also investigate the presence of OAM through the use of the cylindrical
lens transformation method; it is verified that when off-axis displacements destroy the
toroidal structure of vortex beams, which can also carry partial orbital angular momentum
(non-integer) and be stably transmitted, these beams may be of great use in high-density
communication and higher-order microoperation applications.

2. Theoretical Derivation of Off-Axis Double Vortex Beams

We derive the equation describing the amplitude of an off-axis double vortex beam
from the equation describing an integer-order vortex beam. From this, we theoretically
model the spatial intensity distribution of the beams and the transformed beam patterns (on
propagation through a cylindrical lens). These intensity distributions are then compared
with experimentally obtained results.

The equation describing the amplitude of an integer-order vortex beam can be derived
from Helmholtz simulations [46,47]. A unique property of integer-order vortex beams
is that they have a symmetric spatial intensity profile and they stably propagate in free
space [48]. The angular momentum of these beams is dictated by exp(ilθ), with l signifying
the order of OAM, which must be an integer [49]. Off-axis beams, in contrast, have



Photonics 2024, 11, 123 3 of 9

an asymmetric distribution, can have non-zero angular momentum and exhibit stable
propagation in free space.

The electric field amplitude of integer-order vortex beams can be described as fol-
lows [50]:

EVB = (

√
2r

ωz
)

|l|
· exp(− r2

√
2ωz

)× exp(i · l · θ) (1)

where the amplitude of (
√

2r/ωz)
|l|

is responsible for the beam intensity and phase exp(ilθ)
accounts for the OAM. Through the aforementioned two light field influencing factors,
further modifications are made to the formula (by embedding another factor, corresponding
to the role of SPP2 in the experiment). We produce an off-axis double vortex beam by
introducing the “reference factor” and the “embedded factor”, corresponding to SPP1
and SPP2, respectively. The reference factor (SPP1) was fixed and the embedded factor
was adjusted by moving the SPP2, where l1 and l2, respectively, correspond to the OAM
orders of the “ embedded factor ” and the “ reference factor “. After these treatments,
the description equation for off-axis double vortex beams can be obtained. A slight off-
axis displacement of the beam can be accommodated with the following modification to
the equation:

EOAVB = (

√
2·
√
(x−∆x)2+(y−∆y)2

ωz
)

|l1|

· (
√

2r
ωz

)
|l2| · exp(− r2

√
2ωz

)

× exp(i · l1 · atan( y−∆y
x−∆x ))× exp(i · l2 · atan( y

x ))

(2)

where ∆x and ∆y represent the displacements of the embedded factor in the X and Y
directions, respectively, relative to the reference factor. It should be noted that when
l1 × l2 < 0, the intensity distribution is no longer accurate. For example, when l1 = 1,
l2 = −1 and the off-axis displacement is 0, the intensity distribution will be a ring distribu-
tion, which is the same as the 2nd-order optical vortex ground intensity distribution but
does not carry orbital angular momentum. (This is obviously incorrect.) Therefore, we
introduce the following supplementary equation:

EOAVB = (

√
2·
√
(x−∆x)2+(y−∆y)2

ωz
)

l1

· (
√

2r
ωz

)
l2 · exp(− r2

√
2ωz

)

× exp(i · l1 · atan( y−∆y
x−∆x ))× exp(i · l2 · atan( y

x ))× exp(i · k · z)
(3)

When both ∆x and ∆y are equal to 0, the equation degenerates to the following:

EOAVB = (

√
2r

ωz
)

l1+l2
· exp(− r2

√
2ωz

)× exp[i · (l1 + l2) · θ] (4)

This equation is almost identical to the equation describing integer-order vortex beams.
The intensity distribution of the beam can be obtained from

IOAVB = EOAVB · E∗
OAVB (5)

Equations (2), (3) and (5) were used in our theoretical calculations/models.

3. Experimental Results

In this work, we used the superposition of two SPPs to experimentally generate off-axis
vortex beams. Such an approach is valid as the first SPP, SPP2, imparts an orbital angular
momentum, l1, to the laser field, and SPP1 imparts an orbital angular momentum l2. As
such, we utilize a number of SPPs, each fabricated to provide values l1= −1 and l1 = 1 and
l2 = 0, 1, 2, 3, 4. By adjusting the position of SPP2 (both in X and Y directions), the position
of the embedding factor can be adjusted to produce off-axis displacements (corresponding
to ∆x and ∆y in the equation). These SPPs azimuthally divided into 16 segments. The
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experimental setup is shown in Figure 1. The laser source was a conventional Q-switched
Nd:YAG laser (LS-2036, pulse duration of 25 ns, PRF of 50 Hz) producing an output with a
Gaussian spatial profile at a wavelength of 1064 nm. The spatial form of the vortex beams
was characterized using a conventional CCD camera. SPP1 was used to first generate a
conventional vortex beam. By adjusting the off-axis (in X and Y directions) position of
SPP2 relative to SPP1, we were able to generate off-axis double vortex beams. The intensity
distribution of the beams depended on the relative off-axis displacement between the two
SPPs. When the off-axis displacement was small but finite, the spatial distribution of the
vortex beam became asymmetric (and characteristic of an off-axis vortex beam). As this
off-axis displacement became greater (exceeding that of the radius of the beam), the effect
of SPP2 diminished. For each generated beam, its OAM content was determined using the
cylindrical lens transformation method. Also, each beam shape was modelled using the
equations derived in the previous section, and the simulations were compared with the
experimental results.
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Figure 1. Schematic showing (a) the setup used to generate off-axis double vortex beams; (b) the
setup using a cylindrical lens to determine the OAM content of the generated beams; and (c) the
setup using a conventional CCD camera to observe the beam intensity distribution. Shown inset are
schematic images of the two superimposed spiral phase plates (SPPs) used in this work.

3.1. Spatial Profile of Off-Axis Double Vortex Beams

Figure 2 shows a collection of spatial distributions of both theoretically (left most set)
and experimentally (right most set) derived, off-axis vortex beams with different order
and off-axis displacements. It can be seen that both the experimental results and modelled
results are in agreement with one another, thus providing strong evidence for the accuracy
of the theoretical equations and modelling. In each of the image sets, the columns from left
to right represent an increase in the off-axis displacement (starting from zero displacement,
i.e., on-axis) of SPP2 in the positive X and Y directions (to the top right, as outlined in the
inset of Figure 1, and positive ∆x and ∆y values in the theoretical equations).
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Figure 2. Sets of images showing the intensity distribution of theoretically modelled (left set) and
experimentally generated (right set) off-axis double vortex beams (with different combinations of
OAM) for a range of off-axis displacements. In each set of images, the columns from left to right
represent increasing off-axis displacement (in the positive x and y directions). The OAM orders of
the reference beams are 0–4, and the embedded beams have OAM orders of +1 and −1. The white
arrows annotated in the figure indicate the direction of off-axis displacement, d represents the value
of displacement in the off-axis direction and ω denotes the beam radius of integer vortex beams with
different orders.

From the results, it can be observed that when l1 = −1 and l2 = +1, and there is no
off-axis displacement, the intensity distribution resembles a Gaussian mode. As the off-axis
displacement increases (in the upper–right direction), the intensity distribution becomes
asymmetric with the appearance of a singularity and the formation of a radial notch in
the direction opposite to the off-axis displacement. As the off-axis displacement increases,
the position of the singularity becomes increasingly centralized until the overall beam
resembles a 1st-order vortex beam.

When l1 = 1 and l2 = 0, with increasing off-axis displacement, the once centralized
singularity now appears to propagate to the upper–right of the beam profile and gradually
disappears, leaving a Gaussian beam. When l1 = 1 and l2 = 1, and there is no off-axis
displacement, the beam is annular with an OAM order of l1 + l2 (i.e., 2 in this case). Similar
to the l1 = 1 and l2 = 0 case, when off-axis displacement occurs, the annular shape of the
beam is destroyed; however, in contrast, we observe a clear separation of two singularities.
As the off-axis displacement increases, one of the singularities progresses out of the beam
profile, leaving a vortex beam with an annular profile and OAM order of one. A similar
characteristic is observed in the other data sets presented in Figure 2 and will not be further
described in detail.

The topological charge of conventional vortex beams, represented by the constant
integer value ‘l’, is exclusively determined by the beam’s azimuthal index l. However, the
orthogonal angular momentum (OAM) carried by these beams can change with off-axis
displacement. Here, the topological charge remains constant while the average OAM
experiences modulation as a result of the off-axis displacement. To overcome this limitation,
we utilized the cylindrical lens transformation method which transforms the vortex beam
into a multi-lobed beam with the lobes being indicative of the average OAM of the beam.
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3.2. Cylindrical Lens Focusing Patterns of Off-Axis Double Vortex Beams

The cylindrical lens can be used to transform the vortex beam in order to determine
its OAM order. Here, the transformed beam has multiple lobes which are indicative of the
input beam’s OAM order [51]. Generally, when a beam with orbital angular momentum
(OAM) is focused, the number of lobes that appear is equal to the input beam’s OAM order
l plus one; this method allows for a simple and quick determination of the OAM order of
the input beam. Theoretically, this can be understood by taking the Fourier transform and
considering the phase of the cylindrical lens, which can be described as follows:

phic = 2π ∗
f −

√
| f |2 + |y|2

λ
(6)

where f is the focal length of the cylindrical lens and λ is the wavelength of the inci-
dent beam.

Figure 3 shows sets of spatial profiles of the transformed vortex beams under propaga-
tion through a cylindrical lens of focal length = 300 mm. Similar to the sets of data presented
in Figure 2, the left most set was obtained through theoretical modelling, while the right
most set was obtained experimentally. In each set, the columns of images from left to right
represent an increasing displacement in the positive X and Y directions. In each case, the
modelled and experimental data sets correlate well with one another and the change in
lobe patterns formed by focusing the vortex beam using the cylindrical lens are similar. In
general, a vortex beam of order l forms (l + 1) lobes after being focused by a cylindrical
lens. For off-axis double vortex beams, the generation of off-axis displacement causes
the annular structure of the optical vortex to be broken and no longer maintain integrity,
resulting in the intensity distribution formed by focusing through the cylindrical lens also
no longer maintaining its centrosymmetry, and thus the upper end lobe intensity gradually
weakens and finally merges into the lower-level lobe. When the off-axis displacement is
small, only the outermost lobe is affected, and as the off-axis displacement increases, the
intensity of the outermost lobe gradually decreases until it is eventually absorbed by the
inner lobes. The cylindrical lens transformation method was effective at examining the
OAM characteristics of higher-order vortex beams.
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4. Conclusions

In this study, we derived the equations describing off-axis double vortex beams and
used these to theoretically simulate the spatial profiles of these beams. Experiments were
also performed wherein these off-axis double vortex beams were generated through the
transformation of a Gaussian laser beam using two spiral phase plates. By changing the off-
axis alignment of these two spiral phase plates, we were able to manipulate both the spatial
form and OAM of the generated off-axis vortex beams. The OAM content of these beams
was determined using cylindrical lens transformation techniques. We anticipate that the
methods detailed in this work can be further applied to the modelling and generation of off-
axis triple (and higher) vortex beams; beams which may have great utility in cutting-edge,
high-density communications and high-order micro-manipulation applications.
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