Statistical Properties of a Twisted Gaussian Schell-Model Beam Carrying the Cross Phase in a Turbulent Atmosphere
Abstract
:1. Introduction
2. Propagation Equation of a Twisted Gaussian Schell-Model Beam Carrying the Cross Phase in a Turbulent Atmosphere
3. Theoretical Analysis of the Statistical Properties of a TGSM Beam Carrying the Cross Phase in a Turbulent Atmosphere
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kato, Y.; Mima, K.; Miyanaga, N.; Arinaga, S.; Kitagawa, Y.; Nakatsuka, M.; Yamanaka, C. Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression. Phys. Rev. Lett. 1984, 53, 1057–1060. [Google Scholar] [CrossRef]
- Ricklin, J.C.; Davidson, F.M. Atmospheric optical communication with a gaussian schell beam. J. Opt. Soc. Am. A-Opt. Image Sci. Vis. 2003, 20, 856–866. [Google Scholar] [CrossRef]
- Ricklin, J.C.; Davidson, F.M. Atmospheric turbulence effects on a partially coherent gaussian beam: Implications for free-space laser communication. J. Opt. Soc. Am. A 2002, 19, 1794–1802. [Google Scholar] [CrossRef]
- Ferri, F.; Magatti, D.; Gatti, A.; Bache, M.; Brambilla, E.; Lugiato, L.A. High-resolution ghost image and ghost diffraction experiments with thermal light. Phys. Rev. Lett. 2005, 94, 183602. [Google Scholar] [CrossRef]
- van Dijk, T.; Fischer, D.G.; Visser, T.D.; Wolf, E. Effects of spatial coherence on the angular distribution of radiant intensity generated by scattering on a sphere. Phys. Rev. Lett. 2010, 104, 173902. [Google Scholar] [CrossRef]
- Oh, J.; Cho, Y.; Scarcelli, G.; Kim, Y. Sub-rayleigh imaging via speckle illumination. Opt. Lett. 2013, 38, 682–684. [Google Scholar] [CrossRef]
- Beams, R.; Cancado, L.G.; Oh, S.H.; Jorio, A.; Novotny, L. Spatial coherence in near-field raman scattering. Phys. Rev. Lett. 2014, 113, 186101. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, Z.; Cheng, B.; Wang, Q.; Wu, B.; Shen, X.; Zheng, L.; Xu, Y.; Lin, Q. Atom cooling by partially spatially coherent lasers. Phys. Rev. A 2013, 88, 023416. [Google Scholar] [CrossRef]
- Lajunen, H.; Saastamoinen, T. Propagation characteristics of partially coherent beams with spatially varying correlations. Opt. Lett. 2011, 36, 4104–4106. [Google Scholar] [CrossRef] [PubMed]
- Sahin, S.; Korotkova, O. Light sources generating far fields with tunable flat profiles. Opt. Lett. 2012, 37, 2970–2972. [Google Scholar] [CrossRef] [PubMed]
- Mei, Z.; Korotkova, O. Random sources generating ring-shaped beams. Opt. Lett. 2013, 38, 91–93. [Google Scholar] [CrossRef]
- Ma, L.; Ponomarenko, S.A. Free-space propagation of optical coherence lattices and periodicity reciprocity. Opt. Express 2015, 23, 1848–1856. [Google Scholar] [CrossRef]
- Peng, D.; Huang, Z.; Liu, Y.; Chen, Y.; Wang, F.; Ponomarenko, S.A.; Cai, Y. Optical coherence encryption with structured random light. PhotoniX 2021, 2, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Mei, Z.; Korotkova, O. Cosine-gaussian schell-model sources. Opt. Lett. 2013, 38, 2578–2580. [Google Scholar] [CrossRef] [PubMed]
- Simon, R.; Mukunda, N. Twisted gaussian schell-model beams. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 1993, 10, 95–109. [Google Scholar] [CrossRef]
- Borghi, R.; Gori, F.; Guattari, G.; Massimo, S. Twisted Schell-model beams with axial symmetry. Opt. Lett. 2015, 40, 4504–4507. [Google Scholar] [CrossRef] [PubMed]
- Tong, Z.; Korotkova, O. Beyond the classical rayleigh limit with twisted light. Opt. Lett. 2012, 37, 2595–2597. [Google Scholar] [CrossRef]
- Wang, F.; Cai, Y.; Eyyuboglu, H.T.; Baykal, Y. Twist phase-induced reduction in scintillation of a partially coherent beam in turbulent atmosphere. Opt. Lett. 2012, 37, 184–186. [Google Scholar] [CrossRef]
- Gori, F.; Santarsiero, M. Twisted Gaussian Schell-model beams as series of partially coherent modified Bessel–Gauss beams. Opt. Lett. 2015, 40, 1587–1590. [Google Scholar] [CrossRef] [PubMed]
- Gori, F.; Santarsiero, M. Devising genuine twisted cross-spectral densities. Opt. Lett. 2018, 43, 595–598. [Google Scholar] [CrossRef]
- Mei, Z.; Korotkova, O. Twisted EM beams with structured correlations. Opt. Lett. 2018, 43, 3905–3908. [Google Scholar] [CrossRef] [PubMed]
- Wan, L.; Zhao, D. Twisted gaussian schell-model array beams. Opt. Lett. 2018, 15, 3554–3557. [Google Scholar] [CrossRef]
- Borghi, R. Twisting partially coherent light. Opt. Lett. 2018, 43, 1627–1630. [Google Scholar] [CrossRef]
- Hutter, L.; Lima, G.; Walborn, S.P. Boosting entanglement generation in down-conversion with incoherent illumination. Phys. Rev. Lett. 2020, 125, 193602. [Google Scholar] [CrossRef] [PubMed]
- Serna, J.; Movilla, J.M. Orbital angular momentum of partially coherent beams. Opt. Lett. 2001, 26, 405–407. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Peng, X.; Zhang, H.; Liu, L.; Chen, Y.; Wang, F.; Cai, Y. Experimental synthesis of partially coherent beam with controllable twist phase and measuring its orbital angular momentum. Nanophotonics 2022, 11, 689–696. [Google Scholar] [CrossRef]
- Friberg, A.T.; Tervonen, E.; Turunen, J. Interpretation and experimental demonstration of twisted Gaussian Schell-model beams. J. Opt. Soc. Am. A 1994, 11, 1818–1826. [Google Scholar] [CrossRef]
- Mao, Y.; Mei, Z.; Wang, Y.; Zhou, G.; Qiu, P. Radially polarized twisted multi-gaussian schell-model beams and their statistical properties. Opt. Commun. 2020, 477, 126321. [Google Scholar] [CrossRef]
- Zhang, B.; Huang, H.; Xie, C.; Zhu, S.; Li, Z. Twisted rectangular laguerre–gaussian correlated sources in anisotropic turbulent atmosphere. Opt. Commun. 2020, 459, 125004. [Google Scholar] [CrossRef]
- Liang, G.; Wang, Q. Controllable conversion between Hermite gaussian and Laguerre gaussian modes due to cross phase. Opt. Express 2019, 27, 10684–10691. [Google Scholar] [CrossRef]
- Wan, L.; Zhao, D. Controllable rotating gaussian schell-model beams. Opt. Lett. 2019, 44, 735–738. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Wang, C.; Liu, T.; Wang, Z.; Yin, C.; Qiu, S.; Li, Z.; Wu, H. Polygonal shaping and multi-singularity manipulation of optical vortices via high-order cross-phase. Opt. Express 2020, 28, 26257–26266. [Google Scholar] [CrossRef]
- Shen, D.; Zhao, D. Measuring the topological charge of optical vortices with a twisting phase. Opt. Lett. 2019, 44, 2334–2337. [Google Scholar] [CrossRef]
- Pan, R.; Liu, X.; Tang, J.; Ye, H.; Liu, Z.; Ma, P.; Wen, W.; Hoenders, B.J.; Cai, Y.; Liang, C. Enhancing the self-reconstruction ability of the degree of coherence of a light beam via manipulating the cross-phase structure. Appl. Phys. Lett. 2021, 119, 111105. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, D.; Zhou, Z.; Yuan, X. Research on partially coherent flat-topped vortex hollow beam propagation in turbulent atmosphere. Appl. Optics 2017, 56, 2922–2926. [Google Scholar] [CrossRef]
- Xiao, X.; Voelz, D.G. Beam wander analysis for focused partially coherent beams propagating in turbulence. Opt. Eng. 2012, 51, 026001. [Google Scholar] [CrossRef]
- Wang, H.; Zhan, Z.; Hu, F.; Meng, Y.; Liu, Z.; Fu, X.; Liu, Q. Intelligent optoelectronic processor for orbital angular momentum spectrum measurement. PhotoniX 2023, 4, 9. [Google Scholar] [CrossRef]
- Klug, A.; Peters, C.; Forbes, A. Robust structured light in atmospheric turbulence. Adv. Photonics 2023, 5, 016006. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, L.; Gao, Y.; Cai, Y.; Yuan, Y. Scintillation mitigation via the cross phase of the gaussian schell-model beam in a turbulent atmosphere. Opt. Express 2023, 31, 30615–30626. [Google Scholar] [CrossRef]
- Kim, S.M.; Gbur, G. Angular momentum conservation in partially coherent wave fields. Phys. Rev. A 2012, 86, 043814. [Google Scholar] [CrossRef]
- Wang, C.; Liu, L.; Liu, L.; Yu, J.; Wang, F.; Cai, Y.; Peng, X. Second-order statistics of a hermite-gaussian correlated schell-model beam carrying twisted phase propagation in turbulent atmosphere. Opt. Express 2023, 31, 13255–13268. [Google Scholar] [CrossRef] [PubMed]
- Dan, Y.; Zhang, B. Second moments of partially coherent beams in atmospheric turbulence. Opt. Lett. 2009, 34, 563–565. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, W.; Liu, L.; Liu, X.; Cai, Y.; Peng, X. Statistical Properties of a Twisted Gaussian Schell-Model Beam Carrying the Cross Phase in a Turbulent Atmosphere. Photonics 2024, 11, 124. https://doi.org/10.3390/photonics11020124
Hou W, Liu L, Liu X, Cai Y, Peng X. Statistical Properties of a Twisted Gaussian Schell-Model Beam Carrying the Cross Phase in a Turbulent Atmosphere. Photonics. 2024; 11(2):124. https://doi.org/10.3390/photonics11020124
Chicago/Turabian StyleHou, Wenshuo, Leixin Liu, Xianlong Liu, Yangjian Cai, and Xiaofeng Peng. 2024. "Statistical Properties of a Twisted Gaussian Schell-Model Beam Carrying the Cross Phase in a Turbulent Atmosphere" Photonics 11, no. 2: 124. https://doi.org/10.3390/photonics11020124
APA StyleHou, W., Liu, L., Liu, X., Cai, Y., & Peng, X. (2024). Statistical Properties of a Twisted Gaussian Schell-Model Beam Carrying the Cross Phase in a Turbulent Atmosphere. Photonics, 11(2), 124. https://doi.org/10.3390/photonics11020124