Design and Analysis of Optomechanical Micro-Gyroscope for Angular-Vibration Detection
Abstract
:1. Introduction
2. Operation Principle
2.1. Dual-Frame Optomechanical Gyroscope Architecture Design
2.2. Theoretical Description of Optomechanical Coupling
2.3. Optomechanical Sensing of Displacement and Angular Vibration
3. Driving and Sensing Performance Analysis
3.1. Design and Analysis of Driving a Mechanical Sensitive Structure
3.2. Simulation of Photonic Crystal Cavity Characteristics of Optomechanical Gyroscope
3.3. Performance Analysis of Micro-Gyroscope Based on Optomechanical System
4. Comparative Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Addabbo, T.; Fort, A.; Biondi, R.; Cioncolini, S.; Mugnaini, M.; Rocchi, S.; Vignoli, V. Measurement of angular vibrations in rotating shafts: Effects of the measurement setup nonidealities. IEEE Trans. Instrum. Meas. 2013, 62, 532–543. [Google Scholar] [CrossRef]
- Yang, M.; Liu, Z.; Wang, Y.; Cai, C.; Yang, J. Monocular vision-based multi-parameter dynamic calibration method used for the low-frequency linear and angular vibration sensors. IEEE Trans. Ind. Electron. 2022, 70, 5365–5374. [Google Scholar] [CrossRef]
- Li, A.; Jing, Z.; Liu, Q.; Liu, Y.; Cheung, Y.; Zhang, Y.; Zhou, D.P.; Peng, W. IFOG Based on Rhombic Optical Path Difference Bias Configuration for High-Frequency Angular Vibration Measurement. IEEE Sens. J. 2022, 22, 16892–16897. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, R.; Li, C.; Dean, R.N. Concepts, Roadmaps and Challenges of Ovenized MEMS Gyroscopes: A Review. IEEE Sens. J. 2021, 21, 92–119. [Google Scholar] [CrossRef]
- Larkin, K.; Ghommem, M.; Serrano, M.; Abdelkefi, A. A review on vibrating beam-based micro/nano-gyroscopes. Microsyst. Technol. 2021, 27, 4157–4181. [Google Scholar] [CrossRef]
- Ren, X.; Zhou, X.; Yu, S.; Wu, X.; Xiao, D. Frequency-Modulated MEMS Gyroscopes: A review. IEEE Sens. J. 2021, 21, 26426–26446. [Google Scholar] [CrossRef]
- Li, Z.; Gao, S.; Jin, L.; Liu, H.; Niu, S. Micromachined vibrating ring gyroscope architecture with high-linearity, low quadrature error and improved mode ordering. Sensors 2020, 20, 4327. [Google Scholar] [CrossRef]
- Liu, X.S.; Yang, Z.C.; Chi, X.Z.; Cui, J.; Ding, H.T.; Guo, Z.Y.; Lv, B.; Lin, L.T.; Zhao, Q.C.; Yan, G.Z. A doubly decoupled lateral axis micromachined gyroscope. Sensors Actuators, A Phys. 2009, 154, 218–223. [Google Scholar] [CrossRef]
- Xie, J.; Shen, Q.; Hao, Y.; Chang, H.; Yuan, W. Design, fabrication and characterization of a low-noise Z-axis micromachined gyroscope. Microsyst. Technol. 2015, 21, 625–630. [Google Scholar] [CrossRef]
- Trusov, A.A.; Prikhodko, I.P.; Zotov, S.A.; Shkel, A.M. Low-dissipation silicon tuning fork gyroscopes for rate and whole angle measurements. IEEE Sens. J. 2011, 11, 2763–2770. [Google Scholar] [CrossRef]
- Zhang, T.; Zhou, B.; Yin, P.; Chen, Z.; Zhang, R. Optimal design of a center support quadruple mass gyroscope (CSQMG). Sensors 2016, 16, 613. [Google Scholar] [CrossRef] [PubMed]
- Sheikhaleh, A.; Jafari, K.; Abedi, K. Design and Analysis of a Novel MOEMS Gyroscope Using an Electrostatic Comb-Drive Actuator and an Optical Sensing System. IEEE Sens. J. 2019, 19, 144–150. [Google Scholar] [CrossRef]
- Trigona, C.; Ando, B.; Baglio, S. Fabrication and Characterization of an MOEMS Gyroscope Based on Photonic Bandgap Materials. IEEE Trans. Instrum. Meas. 2016, 65, 2840–2850. [Google Scholar] [CrossRef]
- Xia, D.; Zhang, B.; Wu, H.; Wu, T. Optimization and fabrication of an moems gyroscope based on a wgm resonator. Sensors 2020, 20, 7264. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Zhao, S.; Geng, J.; Xue, B.; Zhang, Y. Sensitivity enhancement of micro-optical gyro with photonic crystal. Chin. Phys. B 2021, 30, 044208. [Google Scholar] [CrossRef]
- Zhang, H.; Peng, M.; Xu, X.W.; Jing, H. Anti- -symmetric Kerr gyroscope. Chin. Phys. B 2022, 31, 14215. [Google Scholar] [CrossRef]
- Kippenberg, T.J.; Vahala, K.J. Cavity optomechanics: Back-action at the mesoscale. Science 2008, 321, 1172–1176. [Google Scholar] [CrossRef]
- Aspelmeyer, M.; Kippenberg, T.J.; Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 2014, 86, 1391–1452. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef]
- Forstner, S.; Knittel, J.; Sheridan, E.; Swaim, J.D.; Rubinsztein-Dunlop, H.; Bowen, W.P. Sensitivity and performance of cavity optomechanical field sensors. Photonic Sens. 2012, 2, 259–270. [Google Scholar] [CrossRef]
- Gavartin, E.; Verlot, P.; Kippenberg, T.J. A hybrid on-chip optomechanical transducer for ultrasensitive force measurements. Nat. Nanotechnol. 2012, 7, 509–514. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Flor Flores, J.G.; Li, Y.; Wang, W.; Wang, D.; Goldberg, N.; Zheng, J.; Yu, M.; Lu, M.; Kutzer, M.; et al. A Chip-Scale Oscillation-Mode Optomechanical Inertial Sensor Near the Thermodynamical Limits. Laser Photonics Rev. 2020, 14, 1800329. [Google Scholar] [CrossRef]
- Davuluri, S.; Li, K.; Li, Y. Gyroscope with two-dimensional optomechanical mirror. New J. Phys. 2017, 19, 113004. [Google Scholar] [CrossRef]
- Li, K.; Davuluri, S.; Li, Y. Improving optomechanical gyroscopes by coherent quantum noise cancellation processing. Sci. China Phys. Mech. Astron. 2018, 61. [Google Scholar] [CrossRef]
- Li, G.; Lu, X.-M.; Wang, X.; Xin, J.; Li, X. Optomechanical gyroscope simultaneously estimating the position of the rotation axis. J. Opt. Soc. Am. B 2022, 39, 98. [Google Scholar] [CrossRef]
- Madugani, R.; Yang, Y.; Ward, J.M.; Le, V.H.; Nic Chormaic, S. Optomechanical transduction and characterization of a silica microsphere pendulum via evanescent light. Appl. Phys. Lett. 2015, 106, 3–7. [Google Scholar] [CrossRef]
- Haus, H.A. Waves and Fields in Optoelectronics. Prentice-Hall Englewood Cliffs 1984, 32, 748. [Google Scholar]
- Rasoloniaina, A.; Huet, V.; Thual, M.; Balac, S.; Féron, P.; Dumeige, Y. Analysis of third-order nonlinearity effects in very high-Q WGM resonator cavity ringdown spectroscopy. J. Opt. Soc. Am. B 2015, 32, 370. [Google Scholar] [CrossRef]
- Acar, C.; Shkel, A. MEMS Vibratory Gyroscopes Structural Approaches to Improve Robustness; Springer: New York, NY, USA, 2009; Volume 27. [Google Scholar]
- Krause, A.G.; Winger, M.; Blasius, T.D.; Lin, Q.; Painter, O. A high-resolution microchip optomechanical accelerometer. Nat. Photonics 2012, 6, 768–772. [Google Scholar] [CrossRef]
- Oskooi, A.F.; Roundy, D.; Ibanescu, M.; Bermel, P.; Joannopoulos, J.D.; Johnson, S.G. Meep: A flexible free-software package for electromagnetic simulations by the FDTD method. Comput. Phys. Commun. 2010, 181, 687–702. [Google Scholar] [CrossRef]
- Djurić, Z. Mechanisms of noise sources in microelectromechanical systems. Microelectron. Reliab. 2000, 40, 919–932. [Google Scholar] [CrossRef]
- Blasius, T.D. Optomechanical Inertial Sensors and Feedback Cooling. 2016, 2016. Ph.D. Thesis, California Institute of Technology, Pasadena, CA, USA, 2016. [Google Scholar] [CrossRef]
- Baraillon, J.; Taurel, B.; Labeye, P.; Duraffourg, L. Linear analytical approach to dispersive, external dissipative, and intrinsic dissipative couplings in optomechanical systems. Phys. Rev. A 2020, 102, 33509. [Google Scholar] [CrossRef]
- Thompson, J.D.; Zwickl, B.M.; Jayich, A.M.; Marquardt, F.; Girvin, S.M.; Harris, J.G.E. Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature 2008, 452, 72–75. [Google Scholar] [CrossRef] [PubMed]
- Clerk, A.A. Optomechanics and Quantum Measurement. Quantum Optomech. Nanomech. 2020, 183–236. [Google Scholar] [CrossRef]
- Kim, M.; Cho, B.; Lee, H.; Yoon, T.; Lee, B. Implementation of Hemispherical Resonator Gyroscope with 3 × 3 Optical Interferometers for Analysis of Resonator Asymmetry. Sensors 2022, 22, 1971. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Yang, H.; Liu, F.; Su, Y.; Li, C. High sensitivity rate-integrating hemispherical resonator gyroscope with dead area compensation for damping asymmetry. Sci. Rep. 2021, 11, 2195. [Google Scholar] [CrossRef] [PubMed]
- Pistorio, F.; Saleem, M.M.; Somà, A. A dual-mass resonant mems gyroscope design with electrostatic tuning for frequency mismatch compensation. Appl. Sci. 2021, 11, 1129. [Google Scholar] [CrossRef]
- Zwerger, W. Cavity-assisted backaction cooling of mechanical resonators. New J. Phys. 2008, 10, 095007. [Google Scholar] [CrossRef]
- Acar, C.; Schofield, A.R.; Trusov, A.A.; Costlow, L.E.; Shkel, A.M. Environmentally robust MEMS vibratory gyroscopes for automotive applications. IEEE Sens. J. 2009, 9, 1895–1906. [Google Scholar] [CrossRef]
- Bukhari, S.A.R.; Saleem, M.M.; Khan, U.S.; Hamza, A.; Iqbal, J.; Shakoor, R.I. microfabrication process-driven design, FEM analysis and system modeling of 3-DoF drive mode and 2-DoF sense mode thermally stable non-resonant MEMS gyroscope. Micromachines 2020, 11, 862. [Google Scholar] [CrossRef]
- Din, H.; Iqbal, F.; Lee, B. Design approach for reducing cross-axis sensitivity in a single-drive multi-axis mems gyroscope. Micromachines 2021, 12, 902. [Google Scholar] [CrossRef]
Symbol | Quantity | Value |
---|---|---|
lGyro × wGyro | Gyro dimension | 280 µm × 220 µm |
h | Thickness of gyroscope | 0.25 µm |
lcomb | Comb-tooth capacitor length | 1 µm |
wcomb | Comb-tooth capacitor width | 7 µm |
lbd | Driving beam length | 45 µm |
wbd | Driving beam width | 0.65 µm |
lbs | Sensing U-beam length | 1 µm |
wbs | Sensing U-beam width | 39.667 µm |
lbjs | Sensing U-beam join length | 4 µm |
wbjs | Sensing U-beam join width | 1 µm |
d | Gap between comb teeth | 500 nm |
n | Number of comb teeth | 40 |
ldm | Drive mass length | 160 µm |
wdm | Drive mass width | 160 µm |
wsm | Sense mass width | 119 µm |
lsm | Sense mass length | 100 µm |
Q | Mechanical Q-factor | 10,000 |
Quantity | Value |
---|---|
Length of crystal | 7 μm |
Width of crystal | 3.3 μm |
Period of topology | 470 nm |
Air gap | 100 nm |
Distance between hole and air gap | 438 nm |
Distance between hole and center of structure | 235 nm |
Thickness of crystal | 250 nm |
Radius of hole | 134 nm |
Displacement of hole | 5/10/15 nm |
Gyroscope Type | Structure | Proof Mass | Resonator Size | Driving Method | Sensitivity | ARW (°/h1/2) |
---|---|---|---|---|---|---|
(Multi-DoF) MEMS gyroscope [42] | ≈1.103 μg | 4.2 × 4.2 mm × mm | Electrostatic comb electrodes | 198.9 V/(°/s), | - | |
Dual-mass resonant MEMS gyroscope [39] | ≈10.7 μg | 1557 × 1816 μm × μm | Electrostatic comb electrodes | 4.6433 × 10−4 μm/(°/s) | - | |
Single-drive multi-axis MEMS gyroscope [43] | ≈0.279 mg | 300 × 300 Μm × μm | Electrostatic comb electrodes | Cross-axis sensitivities for x and y-axis 0.482% and 0.120%, | - | |
MOEMS [12] | 15 μg | 405 μm2 | Electrostatic comb electrodes | 0.051 nm/(°/s) | - | |
Gyroscope with two-dimensional optomechanical mirror [23] | 1.83 mg | Dimensional mirror with a diameter 1 mm and a thickness of 0.5 mm | Optomechanical | 10−11 rad/s/Hz1/2 | ||
Optomechanical gyroscope [24] | 4.77 mg | Dimensional mirror with a diameter 1.5 mm and a thickness of 0.5 mm | Optomechanical | 10−5 rad/s/Hz1/2 | ||
Optomechanical gyroscope [25] | 2.62 mg | Dimensional mirror with a diameter 1.2 mm and a thickness of 0.5 mm | Optomechanical | 10−9 rad/s/Hz1/2 | - | |
MOEMS | 14 ng | 280 × 220 µm | Electrostatic comb electrodes | 22.8 mV/(°/s) | 7.1 × 10−5 (°/h1/2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, J.N.A.; Huang, W.; Yan, X.; Zhang, S.; Chen, D.; Wen, G.; Huang, Y. Design and Analysis of Optomechanical Micro-Gyroscope for Angular-Vibration Detection. Photonics 2024, 11, 186. https://doi.org/10.3390/photonics11020186
Hassan JNA, Huang W, Yan X, Zhang S, Chen D, Wen G, Huang Y. Design and Analysis of Optomechanical Micro-Gyroscope for Angular-Vibration Detection. Photonics. 2024; 11(2):186. https://doi.org/10.3390/photonics11020186
Chicago/Turabian StyleHassan, Jamal N. A., Wenyi Huang, Xing Yan, Senyu Zhang, Dingwei Chen, Guangjun Wen, and Yongjun Huang. 2024. "Design and Analysis of Optomechanical Micro-Gyroscope for Angular-Vibration Detection" Photonics 11, no. 2: 186. https://doi.org/10.3390/photonics11020186
APA StyleHassan, J. N. A., Huang, W., Yan, X., Zhang, S., Chen, D., Wen, G., & Huang, Y. (2024). Design and Analysis of Optomechanical Micro-Gyroscope for Angular-Vibration Detection. Photonics, 11(2), 186. https://doi.org/10.3390/photonics11020186