The Influence of Concentrations of Sensitizers and Activators on Luminescence Kinetics Parameters of Up-Conversion Nanocomplexes NaYF4:Yb3+/Tm3+
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis and Characterization of the Samples
2.2. Luminescent Spectroscopy of Colloids β-NaYF4:Yb3+/Tm3+ in DMSO
3. Results and Discussion
3.1. Investigation of the Kinetics of β-NaYF4:Yb3+/Tm3+ Luminescence
3.2. Rise Time of β-NaYF4:Yb3+/Tm3+ Luminescence
3.3. Decay Time of β-NaYF4:Yb3+/Tm3+ Luminescence
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Auzel, F. Upconversion and Anti-Stokes Processes with f and d Ions in Solids. Chem. Rev. 2003, 104, 139–174. [Google Scholar] [CrossRef]
- Bloembergen, N. Solid State Infrared Quantum Counters. Phys. Rev. Lett. 1959, 2, 84–85. [Google Scholar] [CrossRef]
- Ovsyankin, V.V.; Feofilov, P.P. Mechanism of Summation of Electronic Excitations in Activated Crystals. JETP Lett. 1966, 3, 322. [Google Scholar]
- Salley, G.M.; Valiente, R.; Guedel, H.U. Luminescence Upconversion Mechanisms in Yb3+–Tb3+ Systems. J. Lumin. 2001, 94–95, 305–309. [Google Scholar] [CrossRef]
- You, M.; Zhong, J.; Hong, Y.; Duan, Z.; Lin, M.; Xu, F. Inkjet Printing of Upconversion Nanoparticles for Anti-Counterfeit Applications. Nanoscale 2015, 7, 4423–4431. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Deng, R.; Xie, X.; Liu, X. Enhancing Luminescence in Lanthanide-Doped Upconversion Nanoparticles. Angew. Chem. Int. Ed. 2014, 53, 11702–11715. [Google Scholar] [CrossRef] [PubMed]
- Escudero, A.; Becerro, A.I.; Carrillo-Carrión, C.; Núñez, N.O.; Zyuzin, M.V.; Laguna, M.; González-Mancebo, D.; Ocaña, M.; Parak, W.J. Rare Earth Based Nanostructured Materials: Synthesis, Functionalization, Properties and Bioimaging and Biosensing Applications. Nanophotonics 2017, 6, 881–921. [Google Scholar] [CrossRef]
- Liang, G.; Wang, H.; Shi, H.; Wang, H.; Zhu, M.; Jing, A.; Li, J.; Li, G. Recent Progress in the Development of Upconversion Nanomaterials in Bioimaging and Disease Treatment. J. Nanobiotechnol. 2020, 18, 154. [Google Scholar] [CrossRef]
- Reddy, K.L.; Rai, M.; Prabhakar, N.; Arppe, R.; Rai, S.B.; Singh, S.K.; Rosenholm, J.M.; Krishnan, V. Controlled Synthesis, Bioimaging and Toxicity Assessments in Strong Red Emitting Mn2+ Doped NaYF4:Yb3+/Ho3+ Nanophosphors. RSC Adv. 2016, 6, 53698–53704. [Google Scholar] [CrossRef]
- Doronkina, A.A.; Kochubey, V.I.; Maksutova, A.V.; Pravdin, A.B.; Mylnikov, A.M.; Navolokin, N.A.; Yanina, I.Y. NaYF4: Yb, Er Upconversion Nanoparticles for Imaging: Effect on Red Blood Cells. Photonics 2023, 10, 1386. [Google Scholar] [CrossRef]
- Iglesias-Mejuto, A.; Lamy-Mendes, A.; Pina, J.; Costa, B.F.O.; García-González, C.A.; Durães, L. Synthesis of Highly Luminescent Silica-Coated Upconversion Nanoparticles from Lanthanide Oxides or Nitrates Using Co-Precipitation and Sol–Gel Methods. Gels 2024, 10, 13. [Google Scholar] [CrossRef]
- Shapoval, O.; Vetvicka, D.; Patsula, V.; Engstová, H.; Kocková, O.; Konefał, M.; Kabešová, M.; Horák, D. Temoporfin-Conjugated Upconversion Nanoparticles for NIR-Induced Photodynamic Therapy: Studies with Pancreatic Adenocarcinoma Cells In Vitro and In Vivo. Pharmaceutics 2023, 15, 2694. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wei, W.; Song, J.; Hu, J.; Wang, Z.; Lin, P. Upconversion-Powered Photoelectrochemical Bioanalysis for DNA Sensing. Sensors 2024, 24, 773. [Google Scholar] [CrossRef]
- Jaque, D.; Vetrone, F. Luminescence Nanothermometry. Nanoscale 2012, 4, 4301. [Google Scholar] [CrossRef] [PubMed]
- Sarmanova, O.E.; Burikov, S.A.; Laptinskiy, K.A.; Kotova, O.D.; Filippova, E.A.; Dolenko, T.A. In Vitro Temperature Sensing with Up-Conversion NaYF4:Yb3+/Tm3+-Based Nanocomposites: Peculiarities and Pitfalls. Spectrochim. Acta A 2020, 241, 118627. [Google Scholar] [CrossRef]
- Runowski, M.; Woźny, P.; Lis, S.; Lavín, V.; Martín, I.R. Optical Vacuum Sensor Based on Lanthanide Upconversion—Luminescence Thermometry as a Tool for Ultralow Pressure Sensing. Adv. Mater. Technol. 2020, 5, 1901091. [Google Scholar] [CrossRef]
- Singh, R.; Madirov, E.; Busko, D.; Hossain, I.M.; Konyushkin, V.A.; Nakladov, A.N.; Kuznetsov, S.V.; Farooq, A.; Gharibzadeh, S.; Paetzold, U.W.; et al. Harvesting Sub-Bandgap Photons via Upconversion for Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2021, 13, 54874–54883. [Google Scholar] [CrossRef]
- Karimov, D.N.; Demina, P.A.; Koshelev, A.V.; Rocheva, V.V.; Sokovikov, A.V.; Generalova, A.N.; Zubov, V.P.; Khaydukov, E.V.; Koval’chuk, M.V.; Panchenko, V.Y. Upconversion Nanoparticles: Synthesis, Photoluminescence Properties, and Applications. Nanotechnol. Russ. 2020, 15, 655–678. [Google Scholar] [CrossRef]
- Dobretsova, E.A.; Xia, X.; Pant, A.; Lim, M.B.; De Siena, M.C.; Boldyrev, K.N.; Molchanova, A.D.; Novikova, N.N.; Klimin, S.A.; Popova, M.N.; et al. Hydrothermal Synthesis of Yb3+: LuLiF4 Microcrystals and Laser Refrigeration of Yb3+: LuLiF4/Silicon-Nitride Composite Nanostructures. Laser Photonics Rev. 2021, 15, 2100019. [Google Scholar] [CrossRef]
- Scheps, R. Upconversion Laser Processes. Prog. Quantum. Electron. 1996, 20, 271–358. [Google Scholar] [CrossRef]
- Chen, G.; Ohulchanskyy, T.Y.; Kumar, R.; Ågren, H.; Prasad, P.N. Ultrasmall Monodisperse NaYF4:Yb3+/Tm3+ Nanocrystals with Enhanced Near-Infrared to Near-Infrared Upconversion Photoluminescence. ACS Nano 2010, 4, 3163–3168. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, Y.; Tian, L.; Yu, Y.; Kong, X.; Zhao, J.; Zhang, H. Controlled Synthesis and Morphology Dependent Upconversion Luminescence of NaYF4:Yb, Er Nanocrystals. Nanotechnology 2007, 18, 275609. [Google Scholar] [CrossRef]
- Krämer, K.W.; Biner, D.; Frei, G.; Güdel, H.U.; Hehlen, M.P.; Lüthi, S.R. Hexagonal Sodium Yttrium Fluoride Based Green and Blue Emitting Upconversion Phosphors. Chem. Mater. 2004, 16, 1244–1251. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, Q.; Feng, W.; Sun, Y.; Li, F. Upconversion Luminescent Materials: Advances and Applications. Chem. Rev. 2014, 115, 395–465. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Sun, Y.; Li, Y.; Sun, S.; Huo, J.; Zhao, X. A Facile Synthesis of NaYF4:Yb3+/Er3+ Nanoparticles with Tunable Multicolor Upconversion Luminescence Properties for Cell Imaging. RSC Adv. 2014, 4, 43653–43660. [Google Scholar] [CrossRef]
- Kormshchikov, I.D.; Voronov, V.V.; Burikov, S.A.; Dolenko, T.A.; Kuznetsov, S.V. Study of Stability of Luminescence Intensity of B-NaGdF4:Yb:Er Nanoparticle Colloids in Aqueous Solution. Nanosyst. Phys. Chem. Math. 2021, 12, 218–223. [Google Scholar] [CrossRef]
- Bazhukova, I.N.; Pustovarov, V.A.; Myshkina, A.V.; Ulitko, M.V. Luminescent Nanomaterials Doped with Rare Earth Ions and Prospects for Their Biomedical Applications (A Review). Opt. Spectrosc. 2020, 128, 2050–2068. [Google Scholar] [CrossRef]
- Kuznetsov, S.; Ermakova, Y.; Voronov, V.; Fedorov, P.; Busko, D.; Howard, I.A.; Richards, B.S.; Turshatov, A. Up-Conversion Quantum Yields of SrF2:Yb3+,Er3+ Sub-Micron Particles Prepared by Precipitation from Aqueous Solution. J. Mater. Chem. C 2018, 6, 598–604. [Google Scholar] [CrossRef]
- Pollnau, M.; Gamelin, D.R.; Lüthi, S.R.; Güdel, H.U.; Hehlen, M.P. Power Dependence of Upconversion Luminescence in Lanthanide and Transition-Metal-Ion Systems. Phys. Rev. B 2000, 61, 3337–3346. [Google Scholar] [CrossRef]
- Burikov, S.A.; Filippova, E.A.; Fedyanina, A.A.; Kuznetsov, S.V.; Proydakova, V.Y.; Voronov, V.V.; Dolenko, T.A. Influence of the Intensity of Exciting Radiation on the Luminescent Properties of Nanopowders NaYF4: Yb/Tm. Opt. Spectrosc. 2022, 130, 655. [Google Scholar] [CrossRef]
- Zhang, B.; Guo, X.; Zhang, Z.; Fu, Z.; Zheng, H. Luminescence Thermometry with Rare Earth Doped Nanoparticles: Status and Challenges. J. Lumin. 2022, 250, 119110. [Google Scholar] [CrossRef]
- Cong, T.; Ding, Y.; Xin, S.; Hong, X.; Zhang, H.; Liu, Y. Solvent-Induced Luminescence Variation of Upconversion Nanoparticles. Langmuir 2016, 32, 13200–13206. [Google Scholar] [CrossRef]
- Rozhnova, Y.A.; Kuznetsov, S.V.; Luginina, A.A.; Voronov, V.V.; Ryabova, A.V.; Pominova, D.V.; Ermakov, R.P.; Usachev, V.A.; Kononenko, N.E.; Baranchikov, A.E.; et al. New Sr1−x−zRx(NH4)zF2+x−z (R = Yb, Er) Solid Solution as Precursor for High Efficiency up-Conversion Luminophor and Optical Ceramics on the Base of Strontium Fluoride. Mater. Chem. Phys. 2016, 172, 150–157. [Google Scholar] [CrossRef]
- Kuznetsov, S.V.; Burikov, S.A.; Fedyanina, A.A.; Filippova, E.A.; Proydakova, V.Y.; Voronov, V.V.; Tabachkova, N.Y.; Fedorov, P.P.; Dolenko, T.A. Impact of Sensitizer Yb and Activator Tm on Luminescence Intensity of Beta-NaYF4:Yb/Tm Nanoluminophores. Nanosyst. Phys. Chem. Math. 2022, 13, 331–341. [Google Scholar] [CrossRef]
- Pisarenko, V.F. Rare-earth scandoborates as new laser materials. Soros. Obrazovat. Zh. (in Rus.) 1996, 11, 111–116. [Google Scholar]
- Pilch, A.; Wawrzyńczyk, D.; Kurnatowska, M.; Czaban, B.; Samoć, M.; Strek, W.; Bednarkiewicz, A. The Concentration Dependent Up-Conversion Luminescence of Ho3+ and Yb3+ Co-Doped β-NaYF4. J. Lumin. 2017, 182, 114–122. [Google Scholar] [CrossRef]
- Wei, W.; Zhang, Y.; Chen, R.; Goggi, J.; Ren, N.; Huang, L.; Bhakoo, K.K.; Sun, H.; Tan, T.T.Y. Cross Relaxation Induced Pure Red Upconversion in Activator- and Sensitizer-Rich Lanthanide Nanoparticles. Chem. Mater. 2014, 26, 5183–5186. [Google Scholar] [CrossRef]
- Kong, J.; Shang, X.; Zheng, W.; Chen, X.; Tu, D.; Wang, M.; Song, J.; Qu, J. Revisiting the Luminescence Decay Kinetics of Energy Transfer Upconversion. J. Phys. Chem. Lett. 2020, 11, 3672–3680. [Google Scholar] [CrossRef] [PubMed]
- Gamelin, D.R.; Gudel, H.U. Upconversion Processes in Transition Metal and Rare Earth Metal Systems. In Transition Metal and Rare Earth Compounds, Hartmut Yersin; Springer: Berlin/Heidelberg, Germany, 2000; pp. 1–56. [Google Scholar] [CrossRef]
- Liu, H.; Jayakumar, M.K.G.; Huang, K.; Wang, Z.; Zheng, X.; Ågren, H.; Zhang, Y. Phase Angle Encoded Upconversion Luminescent Nanocrystals for Multiplexing Applications. Nanoscale 2017, 9, 1676–1686. [Google Scholar] [CrossRef] [PubMed]
- Naccache, R.; Vetrone, F.; Speghini, A.; Bettinelli, M.; Capobianco, J.A. Cross-Relaxation and Upconversion Processes in Pr3+ Singly Doped and Pr3+/Yb3+ Codoped Nanocrystalline Gd3Ga5O12: The Sensitizer/Activator Relationship. J. Phys. Chem. C 2008, 112, 7750–7756. [Google Scholar] [CrossRef]
- Dexter, D.L. A Theory of Sensitized Luminescence in Solids. J. Chem. Phys. 1953, 21, 836–850. [Google Scholar] [CrossRef]
- Nadort, A.; Zhao, J.; Goldys, E.M. Lanthanide Upconversion Luminescence at the Nanoscale: Fundamentals and Optical Properties. Nanoscale 2016, 8, 13099–13130. [Google Scholar] [CrossRef]
- Villanueva-Delgado, P.; Krämer, K.W.; Valiente, R. Simulating Energy Transfer and Upconversion in β-NaYF4: Yb3+, Tm3+. J. Phys. Chem. C 2015, 119, 23648–23657. [Google Scholar] [CrossRef]
- Hong-Wei, S.; Hai-Ping, X.; Bao-Juan, S.; Shao-Zhe, L.; Zhong-Xin, L.; Li-Xin, Y. Upconversion Luminescence Dynamics in Er3+/Yb3+ Codoped Nanocrystalline Yttria. Chin. Phys. Lett. 2006, 23, 474–477. [Google Scholar] [CrossRef]
- Chen, X.Y.; Zhuang, H.Z.; Liu, G.K.; Li, S.; Niedbala, R.S. Confinement on Energy Transfer between Luminescent Centers in Nanocrystals. J. Appl. Phys. 2003, 94, 5559–5565. [Google Scholar] [CrossRef]
- Martín-Rodríguez, R.; Rabouw, F.T.; Trevisani, M.; Bettinelli, M.; Meijerink, A. Upconversion Dynamics in Er3+-Doped Gd2O2S: Influence of Excitation Power, Er3+ Concentration, and Defects. Adv. Opt. Mater. 2015, 3, 558–567. [Google Scholar] [CrossRef]
- Misiak, M.; Prorok, K.; Cichy, B.; Bednarkiewicz, A.; Stręk, W. Thulium Concentration Quenching in the Up-Converting α-Tm3+/Yb3+ NaYF4 Colloidal Nanocrystals. Opt. Mater. 2013, 35, 1124–1128. [Google Scholar] [CrossRef]
- Pominova, D.; Proydakova, V.; Romanishkin, I.; Ryabova, A.; Kuznetsov, S.; Uvarov, O.; Fedorov, P.; Loschenov, V. Temperature Sensing in the Short-Wave Infrared Spectral Region Using Core-Shell NaGdF4:Yb3+, Ho3+, Er3+@NaYF4 Nanothermometers. Nanomaterials 2020, 10, 1992. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Chen, G.; Hao, S.; Yang, C. Sub-6 Nm Monodisperse Hexagonal Core/Shell NaGdF4 Nanocrystals with Enhanced Upconversion Photoluminescence. Nanoscale 2017, 9, 91–98. [Google Scholar] [CrossRef]
- Wade, S.A.; Collins, S.F.; Baxter, G.W. Fluorescence Intensity Ratio Technique for Optical Fiber Point Temperature Sensing. J. Appl. Phys. 2003, 94, 4743–4756. [Google Scholar] [CrossRef]
- Alyatkin, S.; Asharchuk, I.; Khaydukov, K.; Nechaev, A.; Lebedev, O.; Vainer, Y.; Semchishen, V.; Khaydukov, E. The Influence of Energy Migration on Luminescence Kinetics Parameters in Upconversion Nanoparticles. Nanotechnology 2016, 28, 035401. [Google Scholar] [CrossRef] [PubMed]
- Buisson, R.; Vial, J.C. Transfer inside Pairs of Pr3+ in LaF3 Studied by Up-Conversion Fluorescence. J. Phys. Lett. 1981, 42, 115–118. [Google Scholar] [CrossRef]
- Mikheev, A.V.; Kazakov, B.N. Rise Kinetics of Up-Conversion Luminescence under Pulsed Excitation. Probabilistic Model and Experiment. J. Lumin. 2019, 205, 167–178. [Google Scholar] [CrossRef]
- Mikheev, A.V.; Kazakov, B.N. Rise Kinetics of Up-Conversion Luminescence of the LiY0.8Yb0.2F4:Tm3+ (0.2 at %) Crystal with Pulsed Excitation. Phys. Solid. State 2019, 61, 860–866. [Google Scholar] [CrossRef]
- Lei, L.; Chen, D.; Zhu, W.; Xu, J.; Wang, Y. Impact of high ytterbium(III) concentration in the shell on upconversion luminescence of core-shell nanocrystals. Chem. Asian J. 2014, 9, 2765–2770. [Google Scholar] [CrossRef]
Number of the sample | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
Concentration Yb, mol.% | 10 | 14 | 18 | 22 | 18 | 18 | 18 | 18 |
Concentration Tm, mol.% | 4 | 4 | 4 | 4 | 1 | 2 | 4 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burikov, S.; Filippova, E.; Proydakova, V.; Kuznetsov, S.; Voronov, V.; Tabachkova, N.; Dolenko, T. The Influence of Concentrations of Sensitizers and Activators on Luminescence Kinetics Parameters of Up-Conversion Nanocomplexes NaYF4:Yb3+/Tm3+. Photonics 2024, 11, 228. https://doi.org/10.3390/photonics11030228
Burikov S, Filippova E, Proydakova V, Kuznetsov S, Voronov V, Tabachkova N, Dolenko T. The Influence of Concentrations of Sensitizers and Activators on Luminescence Kinetics Parameters of Up-Conversion Nanocomplexes NaYF4:Yb3+/Tm3+. Photonics. 2024; 11(3):228. https://doi.org/10.3390/photonics11030228
Chicago/Turabian StyleBurikov, Sergey, Ekaterina Filippova, Vera Proydakova, Sergey Kuznetsov, Valery Voronov, Natalia Tabachkova, and Tatiana Dolenko. 2024. "The Influence of Concentrations of Sensitizers and Activators on Luminescence Kinetics Parameters of Up-Conversion Nanocomplexes NaYF4:Yb3+/Tm3+" Photonics 11, no. 3: 228. https://doi.org/10.3390/photonics11030228
APA StyleBurikov, S., Filippova, E., Proydakova, V., Kuznetsov, S., Voronov, V., Tabachkova, N., & Dolenko, T. (2024). The Influence of Concentrations of Sensitizers and Activators on Luminescence Kinetics Parameters of Up-Conversion Nanocomplexes NaYF4:Yb3+/Tm3+. Photonics, 11(3), 228. https://doi.org/10.3390/photonics11030228