Determining Topological Charge of Bessel-Gaussian Beams Using Modified Mach-Zehnder Interferometer
Abstract
:1. Introduction
2. Theoretical Analysis of BG Beams
Principle of Generation of BG Beams
3. Interference of BG Beams with Reference Beams
3.1. Bessel Beam Interference with Gaussian Beam
- A.
- In-line interference
- B.
- Off-axis interference
3.2. Interference of BG Beams with Spherical Beams
- A.
- In-line interference of the Bessel beam with a spherical beam
4. BG Beam Interference with Its Copy
4.1. In-Line Interference of the Bessel Beam with Its Conjugate
4.2. Off-Axis Interference of the Bessel Beam with Its Conjugate
4.3. Self-Referencedinterference of BG Beams with TheirLaterally Displaced and Misaligned Amplitude-Split Copies
- A.
- Lateral displacement and tilt in the same direction
- B.
- Lateral displacement and tilt in the orthogonal direction
5. Verifying Propagation Propertiesand the TC of Phase-Truncated BG Beams
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bouchal, Z. Resistance of nondiffracting vortex beams to amplitude and phase perturbations. Opt. Commun. 2002, 210, 155–164. [Google Scholar] [CrossRef]
- Tao, S.H.; Yuan, X. Self-reconstruction property of fractional Bessel beams. J. Opt. Soc. Am. A 2004, 21, 1192–1197. [Google Scholar] [CrossRef]
- Fischer, P.; Little, H.; Smith, R.L.; Lopez-Mariscal, C.; Brown, C.T.A.; Sibbett, W.; Dholakia, K. Wavelength dependent propagation and reconstruction of white light Bessel beams. J. Opt. A 2006, 8, 477–482. [Google Scholar] [CrossRef]
- Chu, X. Analytical study on the self-healing property of Bessel beam. Eur. Phys. J. D 2012, 66, 259. [Google Scholar] [CrossRef]
- Bouchal, Z.; Wagner, J.; Chlup, M. Self-reconstruction of a distorted nondiffracting beam. Opt. Commun. 1998, 151, 207–211. [Google Scholar] [CrossRef]
- Yu, A.; Wu, G. Self-healing properties of optical pin beams. J. Opt. Soc. Am. A 2023, 40, 2078–2083. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, W.; Wang, L.; Li, W.; Gong, L.; Cheng, W.; Chen, H.; Gruska, J. Propagation and self-healing properties of Bessel-Gaussian beam carrying orbital angular momentum in an underwater environment. Sci. Rep. 2019, 9, 2025. [Google Scholar] [CrossRef]
- Yuan, Y.; Lei, T.; Li, Z.; Li, Y.; Gao, S.; Xie, Z.; Yuan, X. Beam wander relieved orbital angular momentum communication in turbulent atmospheric using Bessel beams. Sci. Rep. 2017, 7, 42276. [Google Scholar] [CrossRef]
- Otte, E.; Nape, I.; Guzman, C.R.; Valles, A.; Denz, C.; Forbes, A. Recovery of nonseparability in self-healing vector Bessel beams. Phy. Rev. A 2018, 98, 053818. [Google Scholar] [CrossRef]
- Aiello, A.; Agarwal, G.S.; Paur, M.; Stoklasa, B.; Hradil, Z.; Rehacek, J.; Hoz, P.D.L.; Leuchs, G.; Soto, L.L.S. Unraveling beam self-healing. Opt. Express 2017, 25, 19147–19157. [Google Scholar] [CrossRef]
- Khonina, S.N.; Kazanskiy, N.L.; Karpeev, S.V.; Butt, M.A. Bessel beam: Significance and applications-A progressive review. Micromachines 2020, 11, 997. [Google Scholar] [CrossRef] [PubMed]
- Duocastella, M.; Arnold, C.B. Bessel and annular beams for material processing. Laser Photon. Rev. 2012, 6, 607–621. [Google Scholar] [CrossRef]
- Stoian, R.; Bhuyan, M.K.; Zhang, G.; Cheng, G.; Meyer, R.; Courvoisier, F. Ultrafast Bessel beams: Advanced tools for laser material processing. Adv. Opt. Technol. 2018, 7, 165. [Google Scholar] [CrossRef]
- Li, S.; Wang, J. Adaptive free-space optical communications through turbulence using self-healing Bessel beams. Sci. Rep. 2017, 7, 43233. [Google Scholar] [CrossRef]
- Nape, A.; Otte, E.; Valles, A.; Guzman, C.R.; Cardano, F.; Denz, C.; Forbes, A. Self-healing high-dimensional quantum key distribution using hybrid spin-orbit Bessel states. Opt. Express 2018, 26, 26946–26960. [Google Scholar] [CrossRef]
- Lu, Z.; Guo, Z.; Fan, M.; Guo, M.; Li, C.; Yao, Y.; Zhang, H.; Lin, W.; Liu, H.; Liu, B. Tunable bessel beam shaping for robust atmospheric optical communication. J. Light. Technol. 2022, 40, 5097–5106. [Google Scholar] [CrossRef]
- Chavez, V.G.; Mcgloin, D.; Melville, H.; Sibbett, W.; Dholakia, K. Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam. Nature 2002, 419, 145–147. [Google Scholar] [CrossRef]
- Planchon, T.A.; Gao, L.; Milkie, D.E.; Davidson, M.W.; Galbraith, J.A.; Betzig, E. Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination. Nat. Methods 2011, 8, 417–423. [Google Scholar] [CrossRef] [PubMed]
- Arlt, J.; Dholakia, K. Generation of high-order Bessel beams by use of an axicon. Opt. Commun. 2000, 177, 297–301. [Google Scholar] [CrossRef]
- Butt, M.A.; Savelyev, D. Bessel beams produced by axicon and spatial light modulator: A brief analysis. In Proceedings of the 2021 International Conference on Information Technology and Nanotechnology (ITNT), Samara, Russia, 20–24 September 2021. [Google Scholar]
- Vasara, A.; Turunen, J.; Friberg, A.T. Realizing of general nondiffracting beams with computer-generated hologram. J. Opt. Soc. Am. A 1989, 6, 1748–1754. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Z.; Cheng, Z.; Lv, Q.; Wang, X. Tunable axicons generated by spatial light modulator with high-level phase computer-generated holograms. Appl. Sci. 2020, 10, 5127. [Google Scholar] [CrossRef]
- Tudor, R.; Bulzan, G.A.; Kusko, M.; Kusko, C.; Avramescu, V.; Vasilache, D.; Gavrila, R. Multilevel spiral axicon for high-order Bessel-Gauss beams generation. Nanomaterials 2023, 13, 579. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Zhou, K.; Fang, G.; Liu, Z.; Liu, S. Generation of spiraling high-order Bessel beams. Appl. Phys. B 2011, 104, 215–221. [Google Scholar] [CrossRef]
- Qi, M.Q.; Tang, W.X.; Cui, T.J. A broadband Bessel beam launcher using metamaterial lens. Sci. Rep. 2015, 5, 11732. [Google Scholar]
- Cox, A.J.; Dibble, D.C. Nondiffracting beam from a spatially filtered Fabry–Perot resonator. JOSA A 1992, 9, 282–286. [Google Scholar] [CrossRef]
- Horvath, Z.L.; Erdélyi, M.; Szabo, G.; Bor, Z.; Tittel, F.K.; Cavallaro, J.R. Generation of nearly nondiffracting Bessel beams with a Fabry-Perot interferometer. JOSA A 1997, 14, 3009–3013. [Google Scholar] [CrossRef]
- Reddy, V.; Bertoncini, A.; Liberale, C. 3D-printed fiber-based zeroth-and high-order Bessel beam generator. Optica 2022, 9, 645–651. [Google Scholar] [CrossRef]
- Rao, A.S. Origin, Experimental Realization, Illustrations, and Applications of Bessel beams: A Tutorial Review. arXiv 2024, arXiv:2401.04307. [Google Scholar]
- Baliyan, M.; Shikder, A.; Nishchal, N.K. Generation of structured light beams by dual phase modulation with a single spatial light modulator. Phys. Scr. 2023, 98, 105528. [Google Scholar] [CrossRef]
- Baliyan, M.; Nishchal, N.K. Generating scalar and vector modes of Bessel beams utilizing holographic axicon phase with spatial light modulator. J. Opt. 2023, 25, 095702. [Google Scholar] [CrossRef]
- Durnin, J. Exact solutions for nondiffracting beams. I. Scalar Theory J. Opt. Soc. Am. A 1987, 4, 651–654. [Google Scholar] [CrossRef]
- Durnin, J. Diffraction-free beams. Phys. Rev. Lett. 1987, 58, 1499–1501. [Google Scholar] [CrossRef]
- Berry, M.V. Optical vortices evolving from helicoidal integer and fractional phase steps. J. Opt. A Pure Appl. Opt. 2004, 6, 259–268. [Google Scholar] [CrossRef]
- Kotlyar, V.V.; Kovalev, A.A.; Volyar, A.V. Topological charge of a linear combination of optical vortices: Topological competition. Opt. Express 2020, 28, 8266–8281. [Google Scholar] [CrossRef]
- Shen, Y.; Wang, X.; Xie, Z.; Min, C.; Fu, X.; Liu, Q.; Gong, M.; Yuan, X. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci. Appl. 2019, 8, 90. [Google Scholar] [CrossRef]
- Ferreira, Q.S.; Jesus-Silva, A.J.; Fonseca, E.J.; Hickmann, J.M. Fraunhofer diffraction of light with orbital angular momentum by a slit. Opt. Lett. 2011, 36, 3106–3108. [Google Scholar] [CrossRef]
- Sztul, H.I.; Alfano, R.R. Double-slit interference with Laguerre-Gaussian beams. Opt. Lett. 2006, 31, 999–1001. [Google Scholar] [CrossRef] [PubMed]
- Hickmann, M.; Fonseca, E.J.S.; Soares, W.C.; Chávez-Cerda, S. Unveiling a truncated optical lattice associated with a triangular aperture using light’s orbital angular momentum. Phys. Rev. Lett. 2010, 105, 053904. [Google Scholar] [CrossRef]
- Alperin, S.N.; Niederriter, R.D.; Gopinath, J.T.; Siemens, M.E. Quantitative measurement of the orbital angular momentum of light with a single, stationary lens. Opt. Lett. 2016, 41, 5019–5022. [Google Scholar] [CrossRef]
- Vaity, P.; Banerji, J.; Singh, R.P. Measuring the topological charge of an optical vortex by using a tilted convex lens. Phys. Lett. A 2013, 377, 1154–1156. [Google Scholar] [CrossRef]
- Bazhenov, V.Y.; Vasnetsov, M.V.; Soskin, M.S. Laser beam with screw dislocations in their wavefronts. Pis’ma Zh. Eksp. Teor. Fiz. 1990, 52, 1037–1039, Erratum in JETP Lett. 1990, 52, 429–431. [Google Scholar]
- Pan, S.; Pei, C.; Liu, S.; Wei, J.; Wu, D.; Liu, Z.; Yin, Y.; Xia, Y.; Yin, J. Measuring orbital angular momentums of light based on petal interference patterns. OSA Contin. 2018, 1, 451–461. [Google Scholar] [CrossRef]
- Senthilkumaran, P.; Masajada, J.; Sato, S. Interferometry with vortices. Int. J. Opt. 2011, 2012, 517591. [Google Scholar] [CrossRef]
- Lan, B.; Liu, C.; Rui, D.; Chen, M.; Shen, F.; Xian, H. The topological charge measurement of the vortex beam based on dislocation self-reference interferometry. Phys. Scr. 2019, 94, 055502. [Google Scholar] [CrossRef]
- Fedorov; Gavril’eva, K.; Gorelaya, A.; Sevryugin, A.; Tursunov, I.; Venediktov, D.; Venediktov, V. Reference beam lacking measurement of topological charge of incoming vortex beam. Proc. SPIE 2019, 11030, 1103002. [Google Scholar]
- Ghai, P.; Vyas, S.; Senthilkumaran, P.; Sirohi, R.S. Detection of phase singularity using a lateral shear interferometer. Opt. Lasers Eng. 2008, 46, 419–423. [Google Scholar] [CrossRef]
- Ghai, P.; Senthilkumaran, P.; Sirohi, R.S. Shearograms of an optical phase singularity. Opt. Commun. 2008, 281, 1315–1322. [Google Scholar] [CrossRef]
- Kumar, P.; Nishchal, N.K. Self-referenced interference of laterally displaced vortex beams for topological charge determination. Opt. Commun. 2020, 459, 125000. [Google Scholar] [CrossRef]
- Cui, S.; Xu, B.; Luo, S.; Xu, H.; Cai, Z.; Luo, Z.; Pu, J.; Chávez-Cerda, S. Determining topological charge based on an improved Fizeau interferometer. Opt. Express 2019, 27, 12774–12779. [Google Scholar] [CrossRef]
- Li, X.; Tai, Y.; Zhang, L.; Nie, Z.; Chen, Q. High-order topological charges measurement of LG vortex beams with a modified Mach-Zehnder interferometer. Optik 2015, 126, 4378–4381. [Google Scholar]
- Guo, J.; Guo, B.; Fan, R.; Zhang, W.; Wang, Y.; Zhang, L.; Zhang, P. Measuring topological charges of Laguerre–Gaussian vortex beams using two improved Mach-Zehnder interferometers. Opt. Eng. 2016, 55, 035104. [Google Scholar] [CrossRef]
- Kumar, P.; Nishchal, N.K. Modified Mach–Zehnder interferometer for determining the high-order topological charge of Laguerre-Gaussian vortex beams. J. Opt. Soc. Am. A 2020, 36, 1447–1455. [Google Scholar] [CrossRef] [PubMed]
- Volyar, A.; Abramochkin, E.; Egorov, Y.; Bretsko, M.; Akimova, Y. Fine structure of perturbed Laguerre-Gaussian beams: Hermite-Gaussian mode spectra and topological charge. Appl. Opt. 2020, 59, 7680–7687. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baliyan, M.; Nishchal, N.K. Determining Topological Charge of Bessel-Gaussian Beams Using Modified Mach-Zehnder Interferometer. Photonics 2024, 11, 263. https://doi.org/10.3390/photonics11030263
Baliyan M, Nishchal NK. Determining Topological Charge of Bessel-Gaussian Beams Using Modified Mach-Zehnder Interferometer. Photonics. 2024; 11(3):263. https://doi.org/10.3390/photonics11030263
Chicago/Turabian StyleBaliyan, Mansi, and Naveen K. Nishchal. 2024. "Determining Topological Charge of Bessel-Gaussian Beams Using Modified Mach-Zehnder Interferometer" Photonics 11, no. 3: 263. https://doi.org/10.3390/photonics11030263
APA StyleBaliyan, M., & Nishchal, N. K. (2024). Determining Topological Charge of Bessel-Gaussian Beams Using Modified Mach-Zehnder Interferometer. Photonics, 11(3), 263. https://doi.org/10.3390/photonics11030263