Broadband High-Precision Faraday Rotation Spectroscopy with Uniaxial Single Crystal CeF3 Modulator
Abstract
:1. Introduction
Material | V | F | G | Comments | References | |
---|---|---|---|---|---|---|
CeF3 | - | 743.6 | - | 239 | [17] | |
- | 163.2 | - | 239.23 | along c-axis | [18] | |
- | 155.2 | - | 245.42 | along a-axis | [18] | |
- | −789 (4) | 3.41 (2) | 234 (1) | [19] | ||
- | 260.8 | - | 375.1 | [21] | ||
- | 697 | - | 245 | [21] | ||
- | 228(4) | along c-axis | Present work 1 | |||
TGG 2 | - | 668.8 | - | 258 | [17] | |
- | 820.3 | −6.2 | 239.3 | [22] | ||
YIG 3 | @ 1550 nm | - | - | - | Does not transmit <1 µm | [23] |
PrF3 | - | 1357.7 | - | 184 | [17] | |
Dy2O3 | @ 633 nm | - | - | - | [24] | |
@ 1064 nm | - | - | - | [24]. See [19] for complicated model | ||
EuF2 | - | 231.5 | - | 436 | [25] | |
LiTbF4 | - | 1190.6 | - | 198 | [26] | |
LiDyF4 | - | 1530.9 | - | 156 | [26] | |
LiHoF4 | - | 3815.0 | - | 87 | [26] | |
LiErF4 | - | 1700.0 | - | 93 | [26] | |
LiYbF4 | - | 58.0 | - | 163 | [26] |
2. Experimental Setup
2.1. Mechanical Setup
2.2. Optical Setup
2.3. Optical Properties of the CeF3 Modulator
3. Polarimeter Performance
3.1. Polarimeter Noise
3.2. Optimizing Crystal Alignment
3.3. Noise Dependence on Modulation Current, Laser Power, and Wavelength
4. Faraday Rotation Spectroscopy in Atomic Pb
4.1. Obtaining the Faraday Spectra
4.2. The Faraday Line Shape
4.3. Crystal Distortion of the Faraday Line Shape
5. Discussion
5.1. Accounting for Ellipticity in the Line Shape Analysis
5.2. Limitations of the Magneto-Optical Model
5.3. Other Uses of CeF3-Based Faraday Rotation Spectroscopy
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FRS | Faraday Rotation Spectroscopy |
UV | Ultraviolet |
(N)IR | (Near) infrared |
PNC | Parity Non-Conserving/Parity Non-Conservation |
TGG | Terbium Gallium Garnet |
YIG | Yttrium Iron Garnet |
ECDL | External cavity diode laser |
AC | Alternating current |
DC | Direct current |
TA | Transition amplitude |
E1 | Electric dipole |
E2 | Electric quadrupole |
M1 | Magnetic dipole |
Appendix A. Jones Calculus Description of Polarimeter Setup
Appendix A.1. θ-Dependence of Crystal Transmission between (nearly) Crossed Polarizers
Appendix B. Faraday Rotation Spectra without Modulation
References
- Brumfield, B.; Wysocki, G. Faraday rotation spectroscopy based on permanent magnets for sensitive detection of oxygen at atmospheric conditions. Opt. Express 2012, 20, 29727. [Google Scholar] [CrossRef] [PubMed]
- Brecha, R.J.; Pedrotti, L.M.; Krause, D. Magnetic rotation spectroscopy of molecular oxygen with a diode laser. J. Opt. Soc. Am. B 1997, 14, 1927–1930. [Google Scholar] [CrossRef]
- Brecha, R.J. Noninvasive magnetometry based on magnetic rotation spectroscopy of oxygen. Appl. Opt. 1998, 37, 4834–4839. [Google Scholar] [CrossRef]
- So, S.G.; Jeng, E.; Wysocki, G. VCSEL-based Faraday rotation spectroscopy with a modulated and static magnetic field for trace molecular oxygen detection. Appl. Phys. B 2011, 102, 279–291. [Google Scholar] [CrossRef]
- Blake, T.A.; Chackerian, C., Jr.; Podolske, J.R. Prognosis for a mid-infrared magnetic rotation spectrometer for the in situ detection of atmospheric free radicals. Appl. Opt. 1996, 35, 973–985. [Google Scholar] [CrossRef]
- Kerckhoff, J.A.; Bruzewicz, C.D.; Uhl, R.; Majumder, P.K. A frequency stabilization method for diode laser utilizing low-field Faraday polarimetry. Rev. Sci. Instrum. 2005, 35, 093108. [Google Scholar] [CrossRef]
- Macpherson, M.J.D.; Zetie, K.P.; Warrington, R.B.; Stacey, D.N.; Hoare, J.P. Precise measurement of parity nonconserving optical rotation at 876 nm in atomic bismuth. Phys. Rev. Lett. 1991, 67, 2784–2787. [Google Scholar] [CrossRef] [PubMed]
- Vetter, P.A.; Meekhof, D.M.; Majumder, P.K.; Lamoreaux, S.K.; Fortson, E.N. Precise test of electroweak theory from a new measurement of parity nonconservation in atomic thallium. Phys. Rev. Lett. 1995, 74, 2658–2661. [Google Scholar] [CrossRef]
- Majumder, P.K.; Tsai, L.L. Measurement of the electric quadrupole amplitude within the 1283-nm 6P1/2-6P3/2 transition in atomic thallium. Phys. Rev. A 1999, 60, 262–272. [Google Scholar] [CrossRef]
- Maser, D.L.; Hoenig, E.; Wang, B.Y.; Rupasinghe, P.M.; Porsev, S.G.; Safronova, M.S.; Majumder, P.K. High-precision measurement and ab initio calculation of the (6s26p2)3P0→3P2 electric-quadrupole transition amplitude in 208Pb. Phys. Rev. A 2019, 100, 052506. [Google Scholar] [CrossRef]
- Phipp, S.J.; Edwards, N.H.; Baird, P.E.G.; Nakayuma, S. A measurement of parity non-conserving optical rotation in atomic lead. J. Phys. B At. Mol. Opt. Phys. 1996, 29, 1861. [Google Scholar] [CrossRef]
- Meekhof, D.M.; Vetter, P.A.; Majumder, P.K.; Lamoreaux, S.K.; Fortson, E.N. High-precision measurement of parity nonconserving optical rotation in atomic lead. Phys. Rev. Let. 1993, 71, 3442. [Google Scholar] [CrossRef] [PubMed]
- Wood, C.S.; Bennett, S.C.; Cho, D.; Masterson, B.P.; Roberts, J.L.; Tanner, C.E.; Wieman, C.E. Measurement of parity nonconservation and anapole moment in cesium. Science 1997, 275, 1759. [Google Scholar] [CrossRef] [PubMed]
- Porsev, S.G.; Beloy, K.; Dervianko, A. Precision determination of electroweak coupling from atomic parity violation and implications for particle physics. Phys. Rev. Lett. 2009, 102, 1759. [Google Scholar] [CrossRef] [PubMed]
- Dzuba, V.A.; Berengut, J.C.; Flambaum, V.V.; Roberts, B. Revisiting parity nonconservation in cesium. Phys. Rev. Lett. 2012, 109, 203003. [Google Scholar] [CrossRef] [PubMed]
- Porsev, S.G.; Kozlov, M.G.; Safronova, M.S.; Tupitsyn, I.I. Development of the configuration-interaction + all=irder method and application to the parity nonconserving amplitude and other properties of Pb. Phys. Rev. A 2016, 93, 012501. [Google Scholar] [CrossRef]
- Molina, P.; Vasyliev, V.; Villora, E.G.; Shimamura, K. CeF3 and PrF3 as UV-visible Faraday rotators. Opt. Express 2011, 19, 11786. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, K.; Asahi, T. Determination of the Faraday rotation perpendicular to the optical axis of a uniaxial CeF3 crystal using the Generalized High Accuracy Universal Polarimeter. Sci. Rep. 2019, 9, 18453. [Google Scholar] [CrossRef] [PubMed]
- Vojna, D.; Slezak, O.; Yasuhara, R.; Furuse, H.; Lucianetti, A.; Mocek, T. Faraday rotation of Dy2O3, CeF3 and Y3Fe5O12 at the mid-infrared wavelengths. Materials 2020, 13, 5324. [Google Scholar] [CrossRef]
- Xygkis, M.; Linaraki, A.N.; Toutoudaki, E.N.; Katsoprinakis, G.E.; Rakitzis, T.P. Absorption coefficients and scattering losses of TGG, TGP, KTF, FS, and CeF3 magneto-optical crystals in the visible via cavity ring-down spectroscopy. Appl. Opt. 2023, 62, 7730–7735. [Google Scholar] [CrossRef]
- Vojna, D.; Yasuhara, R.; Slezak, O.; Muzik, J.; Lucianetti, A.; Mocek, T. Verdet constant dispersion of CeF3 in the visible and near-infrared spectral range. Opt. Eng. 2017, 56, 067105. [Google Scholar] [CrossRef]
- Slezak, O.; Yasuhara, R.; Lucianetti, A.; Mocek, T. Temperature-wavelength dependence of terbium gallium garnet ceramics Verdet constant. Opt. Mater. Express 2016, 6, 3683–3691. [Google Scholar] [CrossRef]
- Ikesue, A.; Aung, Y.L. Development of optical grade polycrystalline YIG ceramics for Faraday rotator. J. Am. Ceram. Soc. 2019, 101, 5120–5126. [Google Scholar] [CrossRef]
- Slezak, O.; Yasuhara, R.; Vojna, D.; Furuse, H.; Lucianetti, A.; Mocek, T. Temperature-wavelength dependence of Verdet constant of Dy2O3 ceramics. Opt. Mater. Express 2019, 9, 2971–2981. [Google Scholar] [CrossRef]
- Mironov, E.; Palashov, O.; Karimov, D. EuF2-based crystals as media for high-power mid-infrared Faraday isolators. Sci. Mater. 2019, 162, 54–57. [Google Scholar] [CrossRef]
- Vasyliev, V.; Villora, E.G.; Nakamura, M.; Sugahara, Y.; Shimamura, K. IV-visible rotators based on rare-earth single crystals: LiREF4 (RE=Tb, Dy, Ho, Er and Yb). Opt. Express 2012, 20, 14460–14470. [Google Scholar] [CrossRef] [PubMed]
- Karimov, D.N.; Lisovenko, D.S.; Ivanova, A.G.; Grebenev, V.V.; Popov, P.A.; Sizova, N.L. Bridgman growth and physical properties anisotropy of CeF3 crystals. Crystals 2021, 11, 793. [Google Scholar] [CrossRef]
- Mironov, E.A.; Starobor, A.V.; Snetkov, I.L.; Palashov, O.V.; Furuse, H.; Tokita, A.; Yasuhara, R. Thermo-optical and magneto-optical characteristics of CeF3 crystal. Opt. Mater. 2017, 69, 196–201. [Google Scholar] [CrossRef]
- de Marcos, L.V.R.; Larruquert, J.I.; Mendéz, J.A.; Aznárez, J.A. Self-consistent optical constants of MgF2, LaF2, and CeF3 films. Opt. Mater. Express 2017, 7, 989–1006. [Google Scholar] [CrossRef]
- Vojna, D.; Slezak, O.; Lucianetti, A.; Mocek, T. Verdet constant of magneto-active materials developed for high-power Faraday devices. Appl. Sci. 2019, 9, 3160. [Google Scholar] [CrossRef]
- Bouazza, S.; Gough, D.S.; Hannaford, P.; Lowe, R.M.; Wilson, M. Isotope shifts and hyperfine structure in near-ultraviolet transitions of Pb I by Doppler-free saturation spectroscopy. Phys. Rev. A 2000, 63, 012516. [Google Scholar] [CrossRef]
- Persson, J.R. Hyperfine structure and hyperfine anomaly in Pb. J. Phys. Commun. 2018, 2, 055028. [Google Scholar] [CrossRef]
- Thompson, R.C.; Anselment, M.; Bekk, K.; Göring, S.; Hanser, A.; Meisel, G.; Rebel, H.; Schatz, G.; Brown, B.A. High-resolution measurements of isotope shifts and hyperfine structure in stable and radioactive lead isotopes. J. Phys. G Nucl. Phys. 1983, 9, 443. [Google Scholar] [CrossRef]
- Reeves, J.M.; Fortson, E.N. Isotope shifts at 1.28 µm in Pb. Phys. Rev. A 1991, 44, R1439(R). [Google Scholar] [CrossRef]
- Budker, D.; Gawlik, W.; Kimball, D.F.; Rochester, S.M.; Yaschuk, V.V.; Weis, A. Resonant nonlinear magneto-optical effects in atoms. Rev. Mod. Phys. 2002, 74, 1153. [Google Scholar] [CrossRef]
- Jellison, G.E.; Rouleau, C.M. Determination of optical birefringence by using off-axis transmission ellipsometry. Appl. Opt. 2005, 44, 3153–3159. [Google Scholar] [CrossRef]
- Schurcliff, W.A. Polarized Light: Production and Use; Harvard University Press: Cambridge, MA, USA, 1962; pp. 122–123. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lacy, J.H.; Patenotte, G.E.; Kinney, A.C.; Majumder, P.K. Broadband High-Precision Faraday Rotation Spectroscopy with Uniaxial Single Crystal CeF3 Modulator. Photonics 2024, 11, 304. https://doi.org/10.3390/photonics11040304
Lacy JH, Patenotte GE, Kinney AC, Majumder PK. Broadband High-Precision Faraday Rotation Spectroscopy with Uniaxial Single Crystal CeF3 Modulator. Photonics. 2024; 11(4):304. https://doi.org/10.3390/photonics11040304
Chicago/Turabian StyleLacy, John H., Gabriel E. Patenotte, Abby C. Kinney, and Protik K. Majumder. 2024. "Broadband High-Precision Faraday Rotation Spectroscopy with Uniaxial Single Crystal CeF3 Modulator" Photonics 11, no. 4: 304. https://doi.org/10.3390/photonics11040304
APA StyleLacy, J. H., Patenotte, G. E., Kinney, A. C., & Majumder, P. K. (2024). Broadband High-Precision Faraday Rotation Spectroscopy with Uniaxial Single Crystal CeF3 Modulator. Photonics, 11(4), 304. https://doi.org/10.3390/photonics11040304