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Abstract: Compact photonic devices are highly desired in photonic integrated circuits. In this work,
we use an efficient inverse design method to design a 50/50 beam splitter in lithium niobate integrated
platforms. We employ the Gradient Probability Algorithm (GPA), which is built upon traditional
gradient algorithms. The GPA utilizes the adjoint method for the comprehensive calculation of
the electric field across the entire design area in a single iteration, thereby deriving the gradient of
the design area. This enhancement significantly accelerates the algorithm’s execution speed. The
simulation results show that an ultracompact beam splitter with a footprint of 13 µm × 4.5 µm can be
achieved in lithium niobate integrated platforms, where the insertion loss falls below 0.5 dB within
the 1500 nm to 1700 nm range, thus reaching its lowest point of 0.15 dB at 1550 nm.

Keywords: inverse design; gradient probability algorithm; beam splitter; lithium niobate

1. Introduction

With the rapid development of advanced communication technologies such as 5G,
the Internet of Things (IOT), quantum communication, satellite internet, and smart city
infrastructure, the demand for efficient data transmission, low latency, high security,
and broad coverage has become increasingly urgent. These technologies require com-
munication systems to have exceptional transmission efficiency, stability, and reliability
to support the rapid transfer and processing of vast amounts of data [1]. Lithium niobate
materials provide crucial support in this regard, with their superior electro-optic properties,
high optical transparency, and strong piezoelectric effect, thus making them an ideal choice
for high-performance optical devices. To address the need for efficient LN photonic devices,
there is a pressing demand for high-quality lithium niobate thin film materials. The break-
through in this direction came in 1998 when Levy et al. pioneered the fabrication of LN thin
films using the “ion slicing” method [2]. In recent years, advancements in technology have
led to the development of single-crystal LN on insulator (LNOI) through ion implantation
and bonding techniques, thereby providing a promising platform for integrated optics.
Next, high-performance devices such as 50/50 LN beam splitters will further enhance the
capabilities of communication systems, thus providing stronger support for the future
development of communication technologies. This splitter can equally divide incoming
optical signals into two parts, with each carrying half of the original power, thus making it
indispensable in building optical networks, signal processing, and various sensing systems.
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The 50/50 beam splitter not only improves the performance of existing communication
systems but also supports the construction of more complex and efficient optical communi-
cation networks in the future. As technology continues to advance, the 50/50 beam splitter
will play an increasingly important role in high-speed data transmission, optical signal
processing, and integrated optical circuits, thus driving modern optical communication
technology towards greater efficiency and intelligence.

Presently, the advancement of 50/50 beam splitters on the LNOI platform is in progress.
Qiyuan Yi et al. designed an ultrawide band 50/50 splitter using lithium niobate thin films,
thus achieving an 800 nm bandwidth. The device exhibits insertion losses of 0.2 dB, 0.16 dB,
and 0.53 dB at wavelengths of 1310 nm, 1550 nm, and 2000 nm, respectively [3]. Meanwhile,
D. Li et al. developed a high-performance asymmetric multimode interferometer (MMI)
splitter on an X-cut LNOI platform. This MMI splitter can achieve splitting ratios from
50:50 to 95:5. The device size measures at 5.8 µm × (26.5 ∼ 35.6 µm), with insertion losses
ranging from 0.1 dB to 0.9 dB [4].

Furthermore, compact photonic devices play a pivotal role in achieving high inte-
gration and low power consumption for photonic applications [5–10]. Specifically, their
significance lies in their ability to accommodate a greater number of functional components
within a small footprint, thereby enhancing the integration and functionality of photonic
integrated circuits. The small size results in shorter signal transmission paths, thus lead-
ing to reduced energy dissipation and faster response speeds. These characteristics are
particularly advantageous for high-speed optical communication and data processing.

However, LN photonic devices face challenges in dense integration, since their rela-
tively low refractive index cannot make strong light confinement and light control within
small footprints [11].

The emergence of optical inverse design has improved this situation; optical inverse de-
sign, as a methodology for crafting photonic devices and leveraging calculation techniques
and optimization algorithms, enables precise tailoring over the structure and parameters of
photonic devices, which facilitates the design of ultracompact devices [12]. Furthermore,
inverse design offers greater flexibility in adjusting the structure with various creative
degree of freedoms. In the realm of inverse design, there are many prevalent optimiza-
tion algorithms, including the direct binary search (DBS), genetic algorithm (GA), particle
swarm optimization (PSO), and gradient probability algorithm. The direct binary search
algorithm is a robust yet straightforward approach with broad applicability, thus often
meeting various design requirements effectively [13]. Its thorough exploration of the entire
parameter space, however, renders it sensitive to the number of parameters in the design
space. When more parameters are involved, this algorithm will become much more time-
consuming. The genetic algorithm and particle swarm optimization are heuristic methods
simulating populations where prominent individuals are retained. Despite their efficacy,
these algorithms entail substantial computational demands [14], especially in scenarios
with intricate design parameters, thus potentially diminishing efficiency.

The gradient probability algorithm, leveraging the adjoint method, conducts forward
and inverse simulations of the design area to derive the forward and inverse electric fields,
thus subsequently calculating gradient information. Remarkably, this method obtains
gradient information for the entire design area through only two simulations, thus making
it independent of the parameter complexity in the design area. In comparison to both
violent and heuristic algorithms, the gradient probability algorithm not only ensures
optimal solutions but also boasts faster computational speeds [15].

To achieve a more compact device design, J. Xu et al. utilized the DBS algorithm to
design a dual-mode 50/50 beam splitter, thus achieving an insertion loss of 0.83 dB over a
wavelength range from 1588 nm to 2033 nm [16]. Although the DBS algorithm provided
high bandwidth and low loss, it required significant time, with the entire optimization
process taking 72 h. To save on time costs, K. Wang et al. employed the digital adjoint
method to design a single-mode 3 dB power splitter with a footprint of 2.6 µm × 2.6 µm
on a 220 nm thick top silicon layer of the silicon-on-insulator (SOI) platform. Within a
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40 nm bandwidth range (1530–1570 nm), the insertion loss varied between 0.33 dB and
0.3 dB [17]. By using the adjoint method, a significant amount of simulation time was
saved, with the optimization process taking 1.2 h. To further reduce loss while optimizing
time efficiency, we used the GPA algorithm to design a 50/50 beam splitter on the LN
integrated platform [18]. Our algorithm, based on the adjoint method, differs in that it
further processes the gradient information. Finally, we achieved an X-cut LN ultracompact
beam splitter with dimensions of 13 µm × 4.5 µm on the LN integrated platform. The
optimization process took 10.5 h. Across a wavelength range from 1500 nm to 1700 nm,
the insertion loss remained below 0.5 dB and reached 0.15 dB at 1550 nm.

2. Gradient Probability Algorithm

Figure 1 shows the schematic of the beam splitter structure. The design in based
on a thin-film LN integrated platform. Its etching depth is h = 200 nm. We took a
rectangular region for the inverse design with a length of M = 13 µm and a width of
N = 4.5 µm. The input and output waveguides have a width of w = 0.8 µm, and the
spacing of the two output waveguides is c = 1.6 µm. The design area is partitioned
into i × j = 65 × 22 square pixels, with each possessing identical geometric dimensions.
The individual pixel length is b = 200 nm, with the central circular region representing
the etched hole. Considering the fabrication practice, the sidewalls of the waveguide,
as well as the holes, have an angle of θ = 80◦. In geometric structures with sharp edges
or corners, electric or magnetic fields tend to concentrate at these points, thus creating
singular fields [19]. To effectively mitigate the impact of these singular fields, dielectric
caps [20] can be used to smooth the field distribution. Alternatively, employing smooth
transition curves and rounded edges can help avoid sharp edges and corners. Additionally,
gradient material techniques can be utilized to gradually change the dielectric constant
or conductivity at material interfaces, thus smoothing the field distribution. In this work,
due to manufacturing and design considerations, numerical techniques were employed
to reduce the impact of singular fields. High-precision mesh refinement and appropriate
boundary conditions were used to minimize numerical instability. The boundary conditions
were set to a Perfectly Matched Layer (PML), and fixed-size locally refined meshes were
applied within the design area to enhance the accuracy of the numerical simulations. At
the sharp edges of the geometric structure, the mesh size was set to 20 nm to capture
the rapid variations in the electromagnetic field. Compared to larger meshes in other
regions, this local mesh refinement significantly smooths the field distribution, reduces
field concentration, and effectively mitigates the numerical instability caused by singular
fields, thereby improving the stability and accuracy of the simulation results.

Figure 1. Schematic of beam splitter structure.
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Within inverse design methodologies, devices are typically segmented into pixels, thus
aiding computer processing. In prevalent algorithms, pixels generally exhibit two states:
0 and 1. Here, 0 signifies no etching, while 1 signifies the etched state. In this study,
the gradient probability search algorithm employs more than two states for pixels. Specif-
ically, we utilized three pixel states—type-I, type-II, and type-III—denoting a different
etching radius, as illustrated in Figure 1. Type I, II, and III correspond to hole diameter of
D1 = 200 nm, D2 = 150 nm, and D3 = 0 nm. Given that the purpose of the 50/50 beam
splitter is to evenly divide the input beam into two beams of equal intensity, we employed
a symmetrical etching method to accomplish this objective. This method entails etching
the upper design area and simultaneously replicating the same etching process at the
corresponding location in the lower design area, thus ensuring symmetry between the
upper and lower design areas. After the above processing, both output terminals will
have the same output, and only half of the parameters need to be simulated, which is
i × j = 65 × 11 = 715 pixels. Q(i, j) is utilized to denote the pixel parameters of row i and
column j, where i = 1, 2, 3, . . . , 65 and j = 1, 2, 3, . . . , 11. Figure 2a demonstrates the pixel
values after initialization.

Due to the implementation of symmetrical design, the transmission efficiency of one
of the outputs was utilized as the figure of merit (FOM), which is given by

FOM = Tout. (1)

The adjoint method proves instrumental in calculating gradients. The gradient of
the FOM concerning the spatial dielectric constant e(x, y, z) within the design area can be
expressed as

dFOM
dεr

= R = real
(

Einput- f ore ∗ Eouput-back

)
, (2)

where εr represents the spatial dielectric constant of the pixel, Einput- f ore denotes the for-
ward electric field of the light source, and Eoutput-back corresponds to the accompanying
electric field. Each pixel is uniformly subdivided into a 10 × 10 grid, and the electric field
information of each pixel is acquired through monitoring. The electric field information is
sampled at the grid intersections. Consequently, the electric field point information matrix
for each pixel is 11 × 11, and the collective electric field point information matrix amounts
to 651 × 111.

After employing the adjoint method for gradient calculation, the overall gradient
value R for the design area is derived. Subsequently, R is uniformly partitioned into a
65 × 11 matrix, followed by aggregation to compute the average value. Figure 2b illustrates
the gradient values corresponding to each pixel after initialization. This process yields the
gradient r(i, j) corresponding to each pixel, thus elucidating the overall refractive index
change trend of the pixel. Following the adjoint method, an initial step involves conducting
a forward simulation to acquire the forward electric field. Subsequently, only the inverse
light source is activated to initiate the inverse simulation, thereby leading to the acquisition
of the adjoint electric field [21]. In accordance with Equation (2), the real part obtained
by multiplying the forward electric field and the inverse electric field yields the gradient
information for the entire design area. Consequently, the gradient of the FOM concerning
each pixel can be expressed as

dp(i, j) =
dFom

dQ(i, j)
= Average

(
Ep(i, j)

)
. (3)

where Ep(i, j) is the product of the forward and backward electric fields of each pixel.
Subsequently, the gradient value of each pixel is mapped into the probability space. The
absolute value of the gradient for each pixel is then input into the hyperbolic tangent
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function G = tanh(x) as the abscissa, thus resulting in the normalized gradient probability
G, which is expressed as

G = α × [exp(x)− exp(−x)]
[exp(x) + exp(−x)]

, (4)

x =

∣∣∣∣∇ dFom
dQ(i, j)

∣∣∣∣. (5)

a represents the learning rate. We control the number of pixels to be selected later by
changing the value of a. The value of a is determined by repeated adjustments The
normalized gradient probability for the entire design area is partitioned for each pixel,
thus resulting in the corresponding gradient probability for each pixel denoted as g(i, j).
Figure 2c illustrates the normalized gradient probability corresponding to each pixel.

Following the algorithmic procedures described above, we achieve the computation
of the normalized gradient probability. Subsequently, the gradient probability associated
with each pixel is calculated. By incorporating this probability alongside the original
gradient value of the pixel, we proceed to adjust the parameter value Q(i, j) based on the
modification rule stipulated, which is given by

Q(i, j) =

 i f d f
dQ(i,j) > 0 , Q(i, j) = DK+1

i f d f
dQ(i,j) < 0 , Q(i, j) = DK−1.

(6)

The specific steps are outlined as follows: (1) Generate a random number L, where
L ranges between 0 and 1. (2) Compare g(i, j) with L, and select pixels Q(i, j), where
g(i, j) > L. (3) Modify these selected pixels based on the gradient value of Q(i, j). If the
gradient value of Q(i, j) is positive, increase the parameter: Dk = Dk+1, where K ≤ 3.
Conversely, if the gradient value of Q(i, j) is negative, decrease the parameter: Dk = Dk−1,
where K ≥ 1. Here, a represents the learning rate, which is set to a = 10. The number of
selected pixels is controlled by a to be 10% of the total, thereby mitigating the risk of falling
into local optima. Figure 2d displays the selected pixels earmarked for modification, which
are accompanied by the respective gradient values. Following the prescribed modification
rules outlined above, Figure 2e presents the pixel values after modification.

Figure 2. Schematic diagram of the algorithm flow.

The initial iteration process of the algorithm is outlined as follows:
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Step 1: Initialize the divided pixels with random integers ranging from one to three,
thus forming a 65 × 11 initialization matrix, which is expressed as Q(i, j) = Dk, i ∈ (1, 65),
j ∈ (1, 11), Dk ∼ random(1, 3), k = 1, 2, 3.

Step 2: Calculate the FOM.
Step 3: Utilizing the adjoint method, calculate the electric field information for the

entire design area, and compute the gradient information for the entire design area using
Equation (3). Subsequently, calculate the gradient value r(i, j) for each pixel. Figure 3a,b
illustrate the gradient information R for the entire design area and the gradient value r(i, j)
for each pixel, respectively.

Step 4: Derive the normalized gradient probability g(i, j) for each pixel based on
Equations (4) and (5). Compare the gradient probability of each pixel with a random
number L, and select pixels where g(i, j) > L for modification. Figure 3c depicts the
normalized gradient probability g(i, j).

Step 5: Identify the pixels to be modified, and adjust their values according to the
positive and negative initial gradient values r(i, j) of these pixels. The modified pixel value
distribution state can be obtained as per the modification rule outlined in Equation (6).
With this, the initial iteration concludes, and the updated pixel distribution values are
utilized to proceed to the subsequent iteration.

The sampling methodology embedded in our algorithm manifests itself with dis-
cernible advantages, thus underscoring its efficacy. Capitalizing on gradient information
throughout the entire spatial domain, our algorithm outperforms traditional methodologies,
thereby yielding more potent enhancements in device performance. In stark contrast to
the deterministic outcomes generated by conventional gradient algorithms under specified
initial states and parameters, our algorithm adopts a probabilistic sampling strategy that
injects an element of unpredictability. While this momentary uncertainty might entail
a transitory dip in the FOM value, it plays a pivotal role in facilitating the algorithm’s
evasion of local optima. This distinctive feature significantly augments stability, espe-
cially when confronted with diverse initial conditions. Next, we will verify this view
through simulation.

Figure 3. (a) Gradient information R of the whole design area. (b) Gradient value per pixel r(i, j).
(c) Normalized gradient probability g(i, j).

This section has employed an iterative approach to elucidate the operational principles
and optimization intricacies of the gradient probability algorithm. The next section will
unveil the ultimate optimization outcomes, thus conducting a comprehensive analysis of the
algorithm’s performance through a comparison with traditional reverse design algorithms.
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The above algorithm has been implemented together with the Lumerical 3D-FDTD
solution [22]. Throughout each iteration, the optimization interacts with the FDTD solution
to retrieve the electromagnetic field in space and subsequently obtain gradient information.
Following each iteration, the FDTD updates the device structure [23].

3. Simulation and Results

The algorithm stability plays a pivotal role in ensuring the generation of dependable
and uniform outcomes across varying iteration counts or conditions. A stable algorithm
exhibits resilience to alterations in input data, initial conditions, or parameters, thereby
ensuring consistent outputs in diverse scenarios. This stability not only bolsters the repro-
ducibility of research but also enables the algorithm to maintain steadfast performance in
different experiments or application contexts. This enhances the reliability and applicability
of the algorithm in scientific research and engineering applications. To assess the algo-
rithm stability, we conducted three optimizations, each utilizing distinct initial structures,
with the iteration count set to 100 for each optimization.

This approach ensures consistent algorithmic performance across a specific range of
datasets [24]. In accordance with the aforementioned algorithmic execution steps, Figure 4
shows the ultimate device structure, light field distribution, and performance subsequent
to three rounds of optimization [25]. It illustrates the variation in FOM values throughout
the optimization process [26].

Figure 4. (a) Optimized structure. (b) Device optical field distribution diagram. (c) FOM variation
diagram after three rounds of optimization.

In the FOM evolution plot presented in Figure 4c, the variations in FOM values across
three distinct optimization processes are depicted by the black, red, and blue lines. The
plot unveils a noteworthy pattern where, during the initial optimization stages, the FOM
experienced substantial growth, thus culminating in its peak after surpassing 50 iterations.
Following this, the rate of the FOM increase diminished, and at around 70 iterations,
the FOM achieved its highest values for the three optimization iterations: 0.4798, 0.4831,
and 0.4783, with corresponding iteration counts of 68, 70, and 69, respectively. Subsequent
to reaching these peak values, the FOM levels stabilized. The results from three optimiza-
tion iterations underscore the algorithm’s consistent performance under diverse initial
conditions, thus affirming its robust stability [27].
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Figure 5 shows the changes in the insertion loss for three optimizations at different
wavelengths. It is observed that within the wavelength range from 1260 nm to 1380 nm,
the insertion loss exceeded 1 dB, while in the range from 1390 nm to 1490 nm, it surpassed
0.5 dB. Between 1500 nm and 1700 nm, the insertion loss remained below 0.5 dB, thus
reaching its minimum value at 1550 nm. In the context of the three distinct initial structural
optimizations, the corresponding minimum values of the insertion loss were 0.179 dB,
0.15 dB, and 0.192 dB.

Figure 5. The insertion loss during three optimizations at different wavelengths.

Algorithms need to be considered not only for their accuracy but also for their opera-
tional efficiency. An efficient algorithm can save a lot of time for the designer. To verify the
algorithm’s speed, we compared it with the traditional DBS algorithm, which uses the same
design area and initial conditions as the probabilistic gradient method and takes the output
power as the optimization objective. This algorithm has only two parameter states: type-I
for an etching diameter of 200 nm and type-II for no etching. The optimized structure of
the DBS algorithm is shown in Figure 6:

Figure 6. The results after optimization using the DBS algorithm: (a) Final structure. (b) Optical field
distribution. (c) FOM evolution plot.
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In Figure 6c, it is evident that the FOM gradually increased with the growing num-
ber of iterations, thus reaching its peak at the 1414th iteration with a recorded value of
FOM = 0.4842. Subsequently, the FOM stabilized.

Figure 7 illustrates the insertion loss at various wavelengths. Notably, within the
wavelength range of 1260 nm to 1380 nm, the insertion loss exceeded 0.5 dB. In the intervals
from 1390 nm to 1520 nm and from 1620 nm to 1700 nm, the insertion loss surpassed 0.2 dB.
Between 1530 nm and 1610 nm, the insertion loss remained below 0.2 dB, thus reaching its
minimum value of 0.13 dB at 1550 nm.

Figure 7. The variation in insertion loss at different wavelengths after optimization using the
DBS algorithm.

Upon comparing Table 1, it is evident that the final FOM values of the grobability
gradient algorithm and the DBS algorithm are very close. However, the probability gra-
dient algorithm exhibited significantly faster speed, which is primarily attributed to its
sampling method within the design area. By leveraging gradient information to guide the
sampling process, this algorithm effectively reduces computational complexity. In contrast,
the DBS algorithm gradually approached the optimal solution by continuously adjusting
parameters, thus necessitating more simulation time and resulting in a slower algorithm
speed [28]. Consequently, the probability gradient algorithm demonstrates higher efficiency
and performance in practical applications than DBS. Through such optimization algorithms,
quicker optimization results can be obtained, thereby allowing for more efficient decision
making in the design process [29].

Table 1. Comparison of optimization algorithms for 50/50 beam splitter.

Method Number of Iterations Simulation Time Insertion Loss

DBS 1430 48 h 0.13 dB
GPA

(First optimization) 100 10.7 h 0.18 dB
GPA

(Second optimization) 100 10.5 h 0.15 dB
GPA

(Third optimization) 100 10.6 h 0.19 dB

4. Discussion

Comparing our photonic device with those previously reported is of paramount
importance. This comparative analysis allows us to effectively evaluate the performance
and advantages of our novel intelligent algorithm design. By juxtaposing our device
against existing ones, we can objectively assess performance metrics such as efficiency
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and stability. Specifically, to demonstrate the efficacy of our device engineered through
the gradient probability algorithm, we compared it with the reported lithium niobate
50/50 beam splitter, as shown in Table 2.

Table 2. Comparison table with reported lithium niobate 50/50 beam splitters.

Design Methods Insertion Loss Device Length Reference

MMI 0.02 dB 223 µm [30]
Y-branch 0.3 dB 118 µm [31]

Adiabatic tapers 0.2, 0.16, 0.53 dB 60 µm [3]
GPA 0.15 dB 13 µm this work

As shown in Table 2, the device utilizing the MMI structure exhibited an insertion
loss of 0.02 dB, but it also has a relatively large size, with a length of 223 µm. In contrast,
the device using the Y-branch structure has a designed length of 118 µm and yielded an
insertion loss of 0.3 dB. The beam splitter designed with adiabatic tapers demonstrated
losses of 0.2 dB, 0.16 dB, and 0.53 dB at wavelengths of 1310 nm, 1550 nm, and 2000 nm,
respectively, with a device length of 60 µm. In comparison, our design shows significant
improvements, thus featuring a much smaller size with a length of just 13 µm and a
lower insertion loss, as detailed in Table 2. These results highlight the efficiency and
compactness of our approach, thereby making it highly suitable for advanced photonic
integrated circuits.

5. Conclusions

This study employed a gradient-based probability gradient algorithm to design an
ultracompact thin-film lithium niobate 50/50 beam splitter, with a small footprint of
13 µm × 4.5 µm. We demonstrated the compactness of the GPA inverse-designed 50/50 beam
splitter by comparing it with previously reported LN 50/50 beam splitters. The stability
of the design was validated through varying iteration times. Across three experiments,
the FOM values exhibited a consistent trend of progressively increasing and stabilizing
after reaching the maximum value, thereby indicating algorithm convergence. In the range
from 1500 nm to 1700 nm, the insertion loss was below 0.5 dB, thus reaching its minimum
value of 0.15 dB at 1550 nm. Furthermore, we conducted a comparison with traditional
DBS algorithms using identical design parameters. The results indicate similar final ef-
fects between the two methods, with the gradient probability algorithm demonstrating
faster performance.
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