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Abstract: Absolute instrument refers to a media that can make light rays to propagate in a closed
orbit and perform imaging and self-imaging. In the past few decades, traditional investigations into
absolute instrument have been centered on the two-dimensional plane and rotational symmetry
situations, and have paid less attention to three-dimensional counterparts. In this article, we design
two types of three-dimensional non-spherically symmetric absolute instruments based on conformal
inverse transformation, which originated from the three-dimensional Luneburg lens and Lissajous
lens. We carry out ray tracing on the optical performance of these new lenses and analyze the imaging
laws. Our work enlarges the family of absolute instruments from two dimensions to three dimensions
and symmetry to asymmetry, which may allow for imaging applications in optical waves.

Keywords: three-dimensional conformal transformation; absolute instruments; inverse mapping;
non-spherical symmetry

1. Introduction

The flourishing of transformation optics (TO) can be traced back to two pioneering
papers published in Science in 2006. In these papers, Leonhardt and Pendry et al. proposed
theories for constructing invisibility cloaks based on optical conformal mapping and
coordinate transformations, respectively. Over the past two decades, TO has yielded
numerous novel applications, including invisibility cloaks [1,2], field rotators [3,4], and
super-scattering phenomena [5]. Leveraging the form invariant of Maxwell’s equations
under coordinate transformations, TO has extended its utility to astronomical analogies,
enabling the mimicking of celestial phenomena such as black holes [6], wormholes [7,8],
and Einstein rings [9]. Among the diverse applications of TO, optical imaging stands out as
a prominent one. Distinguishing itself from Pendry’s proposal that the negative refractive
index makes for perfect imaging [10] (though it can also be viewed as a form of folding
transformation in TO), imaging investigations within TO predominantly rely on positive
refractive index imaging systems. Although Leondhart’s proposition that Maxwell’s fish-
eye lens could achieve perfect imaging in wave optics stirred some controversy [11–16], it
did not impede the development of imaging research within geometric optics in the context
of TO.

TO has the potential to broaden the applicability of gradient refractive index lenses,
exemplified by Maxwell’s fish-eye lens [17] and the Luneburg lens [18], and theoretically
enrich imaging lenses. Such imaging lenses, capable of producing aberration-free images
of a region in space, are denoted as absolute instruments (AIs) [19]. AIs offer lots of op-
portunities for super-imaging, as achieving super-resolution entails capturing as much
light as possible, including propagating and evanescent waves [10,20]. It is important to
note that the imaging mechanism of AIs here is different from that of antenna arrays [21]
or phase-controlled [22] imaging mechanisms. AIs are characterized by perfect geometric
imaging and do not take the diffraction field into account. In addition to Maxwell’s fish-eye
lens, planar mirrors, and negative refractive index lenses, Miñano has identified Luneburg
lenses and Eaton lenses as types of AIs [23]. The Mikaelian lens (independently proposed
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in 1951) is a conformal-mapping lens derived from Maxwell’s fish-eye lens and qualifies
as an AI [24,25]. Chen et al. introduced the Morse lens based on the Morse potential,
serving as a valuable augmentation to one-dimensional (1D) AIs [26]. Because of the peri-
odic and closed orbit characteristics of light rays in AIs, Tyc et al. performed a frequency
analysis and discovered that the frequency spectra are spaced almost equally [27,28], and
then concluded that the AIs are actually good superintegrability systems [29]. Subse-
quently, the generalized methodology for designing rotationally symmetric AIs has been
proposed [30]. Recent works in the literature have included reports on geodesic lenses as-
sociated with the AIs [31,32]. Geodesic lenses are two-dimensional (2D) curved surfaces in
three-dimensional (3D) space, corresponding to the gradient refractive index media based
on geodesic conformal transformation [33]. Nevertheless, the majority of AI investigations
are confined to scenarios characterized by high symmetry, such as rotationally symmetric
or spherically symmetric configurations. Although asymmetric 2D or 3D AIs have been
documented [23,34], their exploration and applications remain ambiguous.

In this letter, we investigate 3D non-spherically symmetric AIs based on conformal
mapping. Given the limited variety of 3D conformal transformation, we exemplify our
study with inverse transformation and illustrate asymmetric AIs stemming from Luneburg
and Lissajous lenses. Starting from the 2D case, we verify the form invariance of the scalar
Helmholtz equation under inverse transformation in 3D space and derive the analytical
forms of non-spherically symmetric AIs. Furthermore, we conduct an analysis of their
imaging characteristics, utilizing geometric ray tracing based on Hamilton’s equations. Our
findings provide valuable insights for advancing 3D imaging methodologies.

2. Results and Discussion

According to Liouville’s theorem, in 3D space, only the Mobius transformations are
conformal, and they are limited to translations, similarities, rotations, and inversions, which
have very limited applications in TO [35]. It can be noted that there are some applications
based on 3D quasi-conformal mapping, which is not within the scope of our considera-
tion [36,37]. For the inverse conformal transformation, w = 1/z, where w represents the 2D
virtual space coordinate system w : {u, v}(w = u + iv) and z represents the 2D physical
space coordinate system z : {x, y} (z = x + iy). The coordinate correspondence between
the virtual space and the physical space in the 2D case satisfied the Cauchy–Riemann
relations [38]:

u =
x

x2 + y2 , v = − y
x2 + y2 . (1)

We emphasize that here, u, v, x, and y all have dimensions of length; that is, the rela-
tionship expressed in Equation (1) is only quantitative. As there are no Cauchy–Riemann
equations in 3D, we conjecture that the coordinate correspondence between the two spaces
of the inverse conformal transformation in the 3D case is

u = ± x
x2 + y2 + z2 , v = ± y

x2 + y2 + z2 , w = ± z
x2 + y2 + z2 . (2)

The above is the correspondence between the virtual space coordinate system P :
{u, v, w} and the physical space coordinate system Q : {x, y, z}. We define the refractive
index distributions of the virtual space as nP(u, v, w) and the physical space as nQ(x, y, z),
respectively. Analogous to the 2D Cauchy–Riemann conditions in Equation (1), there are
eight combinations of 3D inverse transformations, as presented in Equation (2). These com-
binations can result in the emergence of positive and negative refractive indices nQ(x, y, z)
after inverse mapping. A positive refractive index indicates that the inversion preserves
both the angle and the orientation, while a negative refractive index indicates that the
inversion preserves the angle but reverses the orientation, and they are both isotropic.
Since all the lenses we consider in this paper fill the entire space, the choice of positive
or negative refractive indices does not change the trajectory of the light rays. Therefore,
our subsequent studies will focus on the imaging principles of inverse lenses with the
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positive refractive index. In addition, the transformed isotropic refractive index nQ(x, y, z)
can be also obtained based on the optical path invariance [38], between the physical space
and the virtual space, i.e., np(u, v, w)2(du2 + dv2 + dw2) = nQ(x, y, z)2(dx2 + dy2 + dz2),
by choosing the positive index. The optical path length along a certain route in physical
space are as follows:

sQ =
∫

nQ(x, y, z)
√

dx2 + dy2 + dz2. (3)

And the optical path length in virtual space are

sp =
∫

nP(u, v, w)
√

du2 + dv2 + dw2

=
∫

nP(u, v, w)[(
∂u
∂x

dx +
∂u
∂y

dy +
∂u
∂z

dz)
2
+ (

∂v
∂x

dx +
∂v
∂y

dy +
∂v
∂z

dz)
2

+(
∂w
∂x

dx +
∂w
∂y

dy +
∂w
∂z

dz)
2
]1/2.

(4)

Substituting Equation (2) into Equation (3) and calculating will produce∫
nP(u, v, w)

√
du2 + dv2 + dw2

=
∫

nP(u, v, w)
√

dx2 + dy2 + dz2/(x2 + y2 + z2).
(5)

Keeping the optical path unchanged during mapping gives∫
nQ(x, y, z)

√
dx2 + dy2 + dz2 =

∫
nP(u, v, w)

√
du2 + dv2 + dw2. (6)

Finally, in this way, we obtain a result for the isotropic media parameters’ corresponding
relationship nQ(x, y, z) = np(u, v, w)/(x2 + y2 + z2), which is very similar to the refrac-
tive index induced by the 2D inverse conformal transformation in Equation (1), namely
nq1(x, y) = np1(u, v)/(x2 + y2); we confirm that Equation (2) is the correct form of the 3D
inverse conformal transformation. The lowercase q1 and p1 represent the 2D virtual space
and physical space, respectively.

We can now evidence the scalar form invariance of the Helmholtz equation under
the transformations in Equation (2). The Helmholtz equations are written separately for
physical space Q : {x, y, z} and virtual space P : {u, v, w}:

(∇2 + n2
Qk2)A = 0, (∇′2 + n2

Pk2)A = 0. (7)

In Equation (7), k is the wavevector and A is the electromagnetic wave amplitude (it can
also be the acoustic wave or matter wave amplitude). The Laplace operator for two spaces
can be written as

∇2 =
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 ,∇′2 =
∂2

∂u2 +
∂2

∂v2 +
∂2

∂w2 , (8)

And it is known that

∂

∂xi
=

∂

∂u
∂u
∂xi

+
∂

∂v
∂v
∂xi

+
∂

∂w
∂w
∂xi

(xi = x, y, z). (9)

Ultimately, we combine Equations (2), (8), and (9) to obtain the relationship between the
Laplace operators of the two spaces, as follows:

∇2 =
1

(x2 + y2 + z2)2 (
∂2

∂u2 +
∂2

∂v2 +
∂2

∂w2 ) =
1

(x2 + y2 + z2)2 ∇
′2, (10)

Combining Equation (7) with Equation (10), in order to reflect the form invariance of the
Helmholtz equation, the relationship between the Laplace operators of the two spaces
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can be equated to the relationship between the refractive indices of the two spaces:
nQ(x, y, z) = np(u, v, w)/(x2 + y2 + z2), which gets same result of Equation (2). Therefore,
we demonstrate the form invariance of the Helmholtz equations under the inverse trans-
formation. Here, we also choose the positive one, as the choice of sign does not affect our
results and conclusions.

Next, we apply 3D inverse conformal transformation as well as the 2D inverse confor-
mal transformation to the two AIs, i.e., the Luneburg lens and the Lissajous lens. We first
move the center (0, 0) of the 2D and 3D Luneburg lens to (x0, y0) and (x0, y0, z0). This trans-
lation will not affect the rotational symmetry and spherical symmetry of the Luneburg lens,
but after the inverse transformation, the imaging trajectories will become non-spherically
symmetric but still are AIs. The Lissajous lenses do not need to make any adjustments
before inversion, because they already lack rotational or spherical symmetry. The two types
of gradient refractive index lens and their 2D and 3D refractive index distribution are

n =

√
2 − (x − x0)

2 − (y − y0)
2, (11)

n =

√
2 − (x − x0)

2 − (y − y0)
2 − (z − z0)

2, (12)

n =

√
2 − x2

a2 − y2

b2 , (13)

n =

√
2 − x2

a2 − y2

b2 − z2

c2 . (14)

Equations (11) and (12) are 2D and 3D Luneburg lenses and Equations (13) and (14) are
2D and 3D Lissajous lenses, x0, y0, z0 ∈ [0, 1); a, b, and c are generally non-zero integers.
After performing the corresponding inverse transformation proposed in Equation (2),
respectively, the refractive index of these two types of lenses in physical space are

nz =

√
2 − (

x
r2

z
− x0)

2
− (− y

r2
z
− y0)

2
/

r2
z , (15)

nQ =

√
2 − (

x
r2

Q
− x0)

2
− (

y
r2

Q
− y0)

2
− (

z
r2

Q
− z0)

2
/

r2
Q , (16)

nz =

√
2
r4

z
− x2

a2r8
z
− y2

b2r8
z

, (17)

nQ =

√
2

r4
Q
− x2

a2r8
Q
− y2

b2r8
Q
− z2

c2r8
Q

. (18)

In Equations (15)–(18), r2
z = x2 + y2, r2

Q = x2 + y2 + z2. Here, we implement the ray tracing

calculations based on Hamilton’s equations [38–40], dr
dt = ∂ω

∂k , dk
dt = − ∂ω

∂r , where r is the
position vector, k is the wave vector, and ω donates the angular frequency. Combined with the
dispersion in the isotropic gradient media ω = ck

n (c is the light speed and n is the refractive

index profile), the Hamilton’s equations will finally become dr
dt = − c

n
k
|k| ,

∂k
dt = c|k|

n2 ∇n. We
have attached the corresponding matlab code at the end of the main text. In all the cases that
follow, the point sources are all set at (1, 0) or (1, 0, 0) points. First, we show the schematic
diagrams of ray trajectories in Equation (11) and its counterpart Equation (15) in Figure 1.
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throughout space, the trajectories of light rays starting from point G form ellipses, join the 
imaging point H, and come back to point G. The variations in 0x  and 0y  in Equation 
(11) cause the changes in the position of the imaging point H. In Figure 1a, point H is 
located at (−1, 0), in Figure 1b at (0, 0), and in Figure 1c at (−1, 0.6). After the inverse con-
formal transformation, the region with imaginary refractive index is included within the 
central circle of radius 2 / 2 , as shown in Figure 1d–f, and when light rays approach the 
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Figure 1. Schematic simulation of refractive index distribution and ray tracing for 2D Luneburg
lens and 2D inverse Luneburg lens: (a–c) show the cases of the Luneburg lens with x0 = 0, y0 = 0;
x0 = 0.5, y0 = 0; and x0 = 0, y0 = 0.3; (d–f) show inverse Luneburg lens with x0 = 0, y0 = 0;
x0 = 0.5, y0 = 0; and x0 = 0, y0 = 0.3. Here, x0, y0 have dimensions of length, they are arbitrary units,
and as long as the geometric optics approximation is satisfied, the system can be scaled. The color bar
on the right shows the refractive index at the location of the corresponding color in the subfigures. All
point sources in these six figures are placed at point G (1, 0). The point H labeled in (a–d,f) is another
imaging point in addition to the point source G. After making a reverse extension of the straight-line
segments of the three rays in (e), it is found that the extension lines intersect at the origin.

The different translations with 2D Luneburg lenses are illustrated in Figure 1a–c,
where the regions with positive refractive index are located within a circle of radius

√
2,

while outside the circle, the refractive index is imaginary. In a Luneburg lens distributed
throughout space, the trajectories of light rays starting from point G form ellipses, join the
imaging point H, and come back to point G. The variations in x0 and y0 in Equation (11)
cause the changes in the position of the imaging point H. In Figure 1a, point H is located
at (−1, 0), in Figure 1b at (0, 0), and in Figure 1c at (−1, 0.6). After the inverse conformal
transformation, the region with imaginary refractive index is included within the central
circle of radius

√
2/2, as shown in Figure 1d–f, and when light rays approach the boundary

near this region, they are reflected away. In Figure 1d, the imaging point is at H (−1, 0),
while in the scenario shown in Figure 1e, there is no imaging point, or it can be said that
the imaging point is at infinity. This is because before the inverse transformation, the
imaging point is at the origin, and after the inverse transformation, it goes to infinity. If the
straight-line portions of these light ray trajectories are extended backward, they intersect
at the origin, which could likely cause a visual illusion: the point source actually lies at
point G, but to an observer far away, the point source appears to be at the origin. From
Figure 1e,f, it can be observed that the translation operation in virtual space disrupts the
rotational symmetry of the inverse Luneburg lens refractive index distribution, causing the
regions with higher refractive index to gradually become crescent-shaped and attached to
one side of the circular region with imaginary refractive index.

Let us move on to the 2D Lissajous lens and its inverse mapping lens, as shown in
Figure 2. From the refractive index distribution in Figure 2a–c, it can be observed that
compared to the Luneburg lens, the positive refractive index region of the Lissajous lens
is stretched into an ellipse. The orientation of the major axis of the ellipse depends on
the relative sizes of parameters a and b: if a is larger, it points towards the x-axis, and
if b is larger, it points towards the y-axis. In a Lissajous lens, the trajectory of light rays
forms a Lissajous figure, hence its name. In Figure 2a, there is only one imaging point
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located at point G. In Figure 2b,c, there are two imaging points: one at the source point
G and the other at point H. The number of imaging points in a Lissajous lens depends
on the position of the source point and the ratio of a to b, and, if a Lissajous lens exists
with two imaging points, the symmetrical forms between these two imaging points feature
symmetry about the origin, symmetry about the x-axis, and symmetry about the y-axis.
These patterns can all be analogized by combining the light trajectory of the Lissajous lens
with the synthesis of anisotropic harmonic oscillations in two perpendicular directions,
inspired by the optical–mechanical analogy [23,41]. In Figure 2d–f, the number of imaging
points are 1, 2, and 2, respectively. It can be observed that the central portion of the inverse
Lissajous lens resembles a peanut-shaped region, where the refractive index values are
imaginary, with the boundary of the region having a refractive index of zero. The regions
with higher refractive index are symmetrically distributed around the waist of the peanut.
Compared to the Lissajous lens, the maximum value of refractive index in the inverse
Lissajous lens is significantly increased. Additionally, the inverse conformal transformation
does not disrupt the imaging characteristics of the Lissajous lens, including the number of
imaging points and the symmetry between imaging points when there are multiple ones.
Therefore, when inferring the imaging characteristics of the inverse Lissajous lens, we can
directly use the analogy of harmonic oscillations in the Lissajous lens based on inverse
transformation, and the results will be the same.

Photonics 2024, 11, x FOR PEER REVIEW 7 of 14 
 

 

 
Figure 2. Schematic simulation of refractive index distribution and ray tracing for the 2D Lissajous 
lens and 2D inverse Lissajous lens: (a–c) show the cases of the Lissajous lens with 1, 2a b= = ;

1, 2a b= = ; and 2, 1a b= = ; (d–f) show inverse Lissajous lens with 1, 2a b= = ; 1, 2a b= = ; and 
2, 1a b= = . The color bar on the right side of (c) displays the refractive index at the corresponding 

color positions in (a–c), while the color bar on the right side of (f) displays the refractive index at the 
corresponding color positions in (d–f). All point sources in these six figures are placed at point G 
(1,0). 

After covering the asymmetric lens scenario in 2D, we can analyze the construction 
of 3D non-spherically symmetric AIs. We also studied the 3D Luneburg lens first. From 
Figure 3, with the inverse 3D Luneburg lens, we can see that when the point source is 
placed at G (1, 0, 0), translations in the y and z directions cause only imaging point H to 
move in the corresponding direction. Only when there is a certain degree of eccentricity 
in the x direction, as shown in Figure 3b, do the light trajectories no longer close, and there 
are no imaging points. Further investigation reveals that the extensions of each light ray 
intersect at the origin, leading to optical illusion phenomena similar to those shown in 
Figure 1e. 

 

Figure 2. Schematic simulation of refractive index distribution and ray tracing for the 2D Lissajous lens
and 2D inverse Lissajous lens: (a–c) show the cases of the Lissajous lens with a = 1, b = 2; a = 1, b = 2;
and a = 2, b = 1; (d–f) show inverse Lissajous lens with a = 1, b = 2; a = 1, b = 2; and a = 2, b = 1.
The color bar on the right side of (c) displays the refractive index at the corresponding color positions
in (a–c), while the color bar on the right side of (f) displays the refractive index at the corresponding
color positions in (d–f). All point sources in these six figures are placed at point G (1,0).

After covering the asymmetric lens scenario in 2D, we can analyze the construction
of 3D non-spherically symmetric AIs. We also studied the 3D Luneburg lens first. From
Figure 3, with the inverse 3D Luneburg lens, we can see that when the point source is
placed at G (1, 0, 0), translations in the y and z directions cause only imaging point H to
move in the corresponding direction. Only when there is a certain degree of eccentricity in
the x direction, as shown in Figure 3b, do the light trajectories no longer close, and there
are no imaging points. Further investigation reveals that the extensions of each light ray
intersect at the origin, leading to optical illusion phenomena similar to those shown in
Figure 1e.
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Figure 3. Ray tracing calculations of 3D inverse Luneburg lenses under various translation conditions:
(a–d) show the cases of the inverse Luneburg lens with x0 = 0, y0 = 0, z0 = 0; x0 = 0.5, y0 = 0, z0 = 0;
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As for the Lissajous lens, we illustrate the ray trajectories in Figure 4. It can be seen
that the point source is placed at G (1, 0, 0), and the trajectories of all light rays still form
Lissajous patterns in the six plots of Figure 4. This phenomenon is related to the selection
of the point source location and the ratios of a, b, and c. However, as long as the ratios
of any two of a, b, and c satisfy the conditions of being non-irrational and non-infinite,
the 3D Lissajous lens is a class of AI [23]. Moreover, it is one of the few non-spherically
symmetric AIs in 3D space. The initial directions of the three light rays emitted from point
source G form acute angles with the negative direction of the x-axis. The positions where
the light rays intersect during propagation correspond to the locations of the imaging
points. In Figure 4a–f, the imaged points other than the point source G are labeled H,
and it can be seen that the number of imaged points for the six cases are 1, 2, 1, 2, 2, and
2, respectively. Regarding the imaging law of the Lissajous lens, it has been pointed out
that the 3D Lissajous lens corresponds to the interaction potential of a 3D anisotropic
harmonic oscillator based on the optical–mechanical analogy [23], and here we regard the
ray trajectory of the 3D Lissajous lens as the synthesis of simple harmonic oscillations in
three mutually perpendicular directions x, y, and z; then, the analytical formula of the
simple harmonic oscillation in each direction is

x = x0 cos(t/a) + A sin(t/a)
y = y0 cos(t/b) + B sin(t/b)
z = z0 cos(t/c) + C sin(t/c)

, (19)

where (x0, y0, z0) represents the coordinates of the point source, [A, B, C] is the direction
vector of the light ray when it is emitted from the point source, and t is the time parameter.
In this way, we can calculate the number of imaging points and the coordinates of a three-
dimensional Lissajous lens after knowing its parameters a, b, and c and the location of
the point source inside the lens. For example, the calculations of ray tracing inside the
3D Lissajous lens are shown in Figure 5a when a = 1, b = 2, c = 3 and the coordinates of
the point source are (1, 1, 1), and the function image drawn after substituting the above
parameters into Equation (19) is shown in Figure 5b.
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Figure 4. Ray tracing calculations of the 3D Lissajous lens under different parameter conditions: (a–f)
show the cases of the Lissajous lens with a = 1, b = 2, c = 2; a = 1, b = 3, c = 3; a = 1, b = 4, c = 4;
a = 2, b = 1, c = 1; a = 3, b = 1, c = 1; and a = 4, b = 1, c = 1, respectively. In all subfigures, the
point sources are placed at point G (1, 0, 0), with the directions of the three coordinate axes indicated
in the bottom left corner of each diagram.
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Figure 5. (a) The 3D Lissajous lens ray trajectories with the cases of a = 1, b = 2, c = 3 where the
point source is located in G (1, 1, 1); all the ray trajectories are a closed three-dimensional space
curve, and the imaging points are the G point and H point. (b) The plots of x, y, z as a function of
the parameter t obtained by substituting the values of the above parameters into Equation (19) are
shown in blue for x, red for y, and green for z. There are three function curves of each color because
the direction vectors [A, B, C] are taken in the three cases of [1, 2, 3], [0.5, 1.5, 2.5], and [0.7, 1.7, 2.7].

According to the 3D Lissajous lens parameters and point source coordinates and other
information, combined with Equation (19) to draw the function image in Figure 5b, at
this time, the black point on the curve in the figure of the longitudinal coordinates is the
coordinates of the imaging point in the lens under the above conditions. From Figure 5b,
it can be seen that when the value of t is an even multiple of 2π, the specific coordinates
of the imaging point are (1, 1, 1), and when the value of t is an odd multiple of 2π, the
coordinates of the imaging point are (1, −1, −1). This gives the coordinates of point H in
Figure 5a as (1, −1, −1). By plotting the graph of the function and analyzing it, we are able
to get the number of image points as well as the coordinates. and summarize the relevant
laws: when t = Nπ, there is an imaging point (N is the least common multiple for a, b
and c). When there are two imaging points, the symmetry of the two imaging points is
symmetric about the three coordinate axes, symmetric about the three coordinate planes,
and symmetric about the origin, which makes seven kinds of symmetry.

Now, let us explore the 3D inverse Lissajous lens for the case with six combinations
of different a, b, c values in the illustration in Figure 6, which is also without spherical
symmetry. We have already learned about the specificity of the refractive index distribution
of the inverse Lissajous lens in the 2D case, and the complexity of the refractive index
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distribution of this lens increases as the spatial dimensionality increases. In the six diagrams
of Figure 6, the three rays labeled with red, green, and blue are all emitted from point
G (1, 0, 0), and the angles between the initial directions of the rays and the negative direction
of the x-axis are also acute angles. The parameters of the six images in Figure 6 are the
same as those of the corresponding images in Figure 5, and the number of final imaging
points also corresponds exactly. It can be seen that the 3D inverse conformal transformation
we derived also does not destroy the imaging properties of the Lissajous lens, and the
number of imaging points and the symmetry between the imaging points in the case of
multiple imaging points are exactly the same before and after the 3D inverse conformal
transformation, and then Equation (19) can be used to predict the distribution of the
imaging points of the 3D inverse Lissajous lens, as well. In this way, 3D inversion Lissajous
lenses have been successfully incorporated into the family of aspherical symmetric AIs.
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are placed at point G (1, 0, 0), with the directions of the three coordinate axes indicated in the bottom
left corner of each diagram.

3. Conclusions

In summary, we investigate 3D non-spherically symmetric AIs through the framework
of conformal mapping. By focusing on the inverse transformation and employing Luneburg
and Lissajous lenses as illustrative examples, we showcase the emergence of asymmetric
AIs. We confirm the form invariance of the scalar Helmholtz equation’s form under
inversion transformation in 3D space, and we use Hamiltonian optics to analyze their
imaging characteristics with geometric rays. Note that in wave optics, those lenses can
also perform imaging (although not perfectly) under the geometric optics approximations,
but the imaging effect is limited by the diffraction limit because the lens cannot collect
evanescent waves during imaging. Our work extends the scope of AIs into 3D space,
introducing asymmetry alongside symmetry, and has the potential to drive further progress
in the development of 3D imaging methodologies. Finally, it is necessary to discuss the
possible experimental preparation and application prospects of 2D and 3D lenses. Of
all the lenses mentioned in this article, the Luneburg lens is currently the most widely
used, with many applications in both 2D and 3D, such as wireless communication [42],
radar systems [43], and optical focusing [44]. In terms of preparation, because of its good
gradient refractive index interval (1–1.4) and rotational symmetry, it can be designed easily
by effective media theory using metamaterials [20,44]. However, the Lissajous lens, as
well as the inverse Luneburg lenses and inversed Lissajous lenses, have non-rotationally
symmetric or non-spherically symmetric refractive index distributions, which are more
challenging to realize, especially in the 3D case. These lenses may be fabricated by 3D
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printing technology, and it was reported that 3D printing can implement some custom 3D
lenses [45]. For future applications, these asymmetric lenses are expected to be used to
study 3D super-resolution imaging. Note that we also found interesting effects of virtual
images in the inverse Luneburg lens, which are expected to be used in the integrated
optical path of telescopes. In theory, these asymmetrical but closed trajectories imply the
integrability of the optical system, and if such rule is broken, it may be helpful to study the
optical chaos and chaotic switch [46]. In addition, due to the similarity of wave equations,
the proposed non-spherically symmetric imaging lenses can be extended to acoustic and
elastic waves.
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Methods

Below, we show the code of the ray tracing based on Hamiltonian optics, where a, b,
and c are the three parameters in the refractive index formula for a 3D Lissajous lens. The
starting point of a ray is (x0, y0, z0) and the initial wave vector of the ray is (kx0, ky0, kz0).
n is the set refractive index distribution. The ode45 function is used to solve the differential
equations and the Plot3 function is used to plot the 3D ray trajectory.

function particle_trajectory()
% Define constants
a = 1;
b = 2;
c = 2;

% Initial conditions
x0 = 1;
y0 = 1;
z0 = 1;
kx0 = −0.5;
ky0 = 1;
kz0 = 0;

% Time span
tspan = [0 100];

% Initial state vector
initial_conditions = [x0 y0 z0 kx0 ky0 kz0];

% Solve the system of differential equations
[t, sol] = ode45(@(t, vars) odefunc(t, vars, a, b, c), tspan, initial_conditions);
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% Extract solutions
x = sol(:, 1);
y = sol(:, 2);
z = sol(:, 3);

% Plot the trajectory
plot3(x, y, z, ‘r’, ‘LineWidth’, 2);
xlabel(‘x’);
ylabel(‘y’);
zlabel(‘z’);
grid on;
axis equal;
box on;
title(‘Particle Trajectory’);

end
function dvarsdt = odefunc(~, vars, a, b, c)

% Unpack variables
x = vars(1);
y = vars(2);
z = vars(3);
kx = vars(4);
ky = vars(5);
kz = vars(6);

% Refractive index
n = sqrt(2 − (x/a)ˆ2 − (y/b)ˆ2 − (z/c)ˆ2);

% Magnitude of the wave vector
k_mag = sqrt(kxˆ2 + kyˆ2 + kzˆ2);

% Derivatives of the refractive index
Dx = −x/(aˆ2 * n);
Dy = −y/(bˆ2 * n);
Dz = −z/(cˆ2 * n);

% Define the differential equations
dxdt = 1/n * kx/k_mag;
dydt = 1/n * ky/k_mag;
dzdt = 1/n * kz/k_mag;
dkxdt = k_mag/nˆ2 * Dx;
dkydt = k_mag/nˆ2 * Dy;
dkzdt = k_mag/nˆ2 * Dz;

% Return the derivatives
dvarsdt = [dxdt; dydt; dzdt; dkxdt; dkydt; dkzdt];

end
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