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Abstract: Fibre lasers are distinct in that their optical train is decoupled from the environment,
especially in the all-fibre format. The attractive side of this decoupling is the simplicity of maintenance
(no need to align the cavity or keep the optical elements clean), but the flip side of this is the difficulty
one encounters when trying to control the output parameters. The components used in all-fibre
laser cavities are usually different from those of free-space laser cavities and require new approaches
to control. Essentially, an important task emerges, i.e., research and development of all-fibre laser
components able to adjust their parameters (ideally by electronic means) in order to tune key
parameters of the output radiation—wavelength, output power, and so on. The present review
analyses the existing methods of control over the output parameters of mode-locked all-fibre lasers.
It is further noted that a method relying on several independently pumped active media may be
promising in this regard.

Keywords: fiber laser; mode-lock; “all-PM-fibre” configuration

1. Introduction

Fibre lasers bring a new level of convenience, and especially when implemented
in the “all-PM-fibre” configuration [1], because there is no need to align the laser cavity
or to keep clean the intracavity optical elements, there is no need to keep the ambient
conditions very stable, and so forth. The obverse of this convenience, however, is the
quite limited possibility of control over the output parameters of fibre lasers, particularly
mode-locked fibre lasers (MLFLs) and particularly those with electronic control. Here,
the output parameters of MLFL mean the key parameters—wavelength, power, duration
and repetition rate of pulses, and so forth. The isolation of the fibre laser cavity design
needs further development of new means (compatible with fibre-optical technologies) to
control over radiation properties, which differ substantially from the traditional ones used
in volumetric lasers. Since there is now a significant lack of such new methods, many fibre
lasers are controlled with elements that have been well established in volumetric lasers and
are adapted to fibre-optical technology by adding fibre input/output and a dust-proof (or
evacuated) small package. Application of such elements in fibre lasers can scarcely be a
subject of special study, and this is rather a technical or technological topic. We are more
interested in specifically fibre-based methods of laser radiation control, which are found
only or predominantly in fibre lasers. The additional condition imposed on these methods
is that they should allow electronic control. Such methods need more development because
the users expect from the new methods the same level of flexibility and convenience that
became habitual when working with free-space lasers with discreet elements.

If one considers only fibre lasers with such methods of control, very often MLFL offer
the sole adjustment parameter, the radiation power of one pump source. Because it is not
possible to use only one parameter for the flexible adjustment of several output radiation
parameters (including pulse duration, energy/power, wavelength, and pulse chirp), several
controllable parameters are needed.
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This overview is focused on methods of radiation parameter control in MLFLs with
emphasis on the possibilities of electronic control. It should be noted that in spite of a
relatively long history of MLFL development, there are practically no publications sys-
tematically studying the means of control over MLFL output parameters specific to fibre
optical technology. In part, this is because such means (aside from the already mentioned
pump power adjustment) only started emerging in recent years (both compatible with the
“all-PM-fibre” configuration and electronically controllable). Correspondingly, there also
emerged the need for the thorough study of these means at the current level of advancement
and possibilities.

2. Mechanical Action on Fibre

Geometrical deformation of the MLFL cavity fibre by bending, stretching, compression,
or torsion may be an efficient way of control over the output parameters of MLFLs (Figure 1),
especially if the mechanical action is aimed at a Bragg grating (BG) recorded in the fibre
rather than the fibre itself. One demerit of mechanical methods, similar to controlling MLFL
parameters by temperature variation, is relatively slow response and the need to make sure
that the fibre deformation does not become irreversible.
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Figure 1. General scheme of mode-locked fibre laser with mechanical action on fibre: SA—saturable
absorber (material or artificial); AM—active medium; and 1—coupler.

The possibility of fibre bending as a method of controlling the parameters of radia-
tion propagating inside is a well-known fact [2]. In particular, fibre-optical polarisation
controllers (based on bending and torsion of fibre [3]) are used both for triggering passive
mode-locked operation [4] and for control over the output parameters of MLFL 9 (see, for
instance, [5,6]). Other problems of action of a three-paddle manual polarisation controller
on fibre are that a particular setting is virtually irreproducible and, additionally, has a drift
that necessitates periodic re-tuning. If we add to that the instability of ambient parameters
(air temperature and pressure, and so on), it may be necessary to re-tune such a controller
fairly frequently.

By bending, stretching, or compressing a fibre with a BG written into it, one can tune
the radiation wavelength within broad ranges [7]. High sensitivity of parameters (such as
wavelength, polarisation, mode composition, etc.) characterising radiation passing through
the fibre BG to its response to mechanical action is also used in the opposite direction for
sensing [8].

It must be noted here that the amount of mechanical force applied to the fibre is limited
by the requirement that the resulting deformation be elastic, i.e., reversible. Additionally,
instead of fibre or fibre BG, mechanical action may affect, for example, a cavity mirror [9].
The electrostatically actuated micro-mirror used in [9] played at the same time the role of
the cavity Q-switch.
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3. Temperature Adjustment of MLFL Cavity Elements

Temperature adjustment of MLFL cavity elements is an obvious approach to remotely
modify their parameters (Figure 2). The advantage of this method is the possibility of
electronic control of heating and temperature stabilisation, and the drawbacks are slow
response time and the need of thermally isolated spaces around the controlled elements.
Aside from this, controlling the temperature of MLFL elements does not allow adjustment of
MLFL radiation parameters in a broad range. However, this last statement is not universal:
temperature sensitivity of various MLFL elements may be different, and some of them
may be controlled fairly efficiently. First, let us consider the temperature dependence of
the properties of the cavity fibre itself. Its chromatic dispersion is the most temperature-
sensitive parameter [10–15]. Within a modest range of temperature excursion (e.g., −10 ◦C
to +50 ◦C), the chromatic dispersion variation is also relatively small and amounts to 0.0003–
0.004 (ps/nm/km)/◦C. Correspondingly, adjustment of the fibre temperature within a small
range does not affect chromatic dispersion significantly. Nevertheless, the temperature
adjustment range may be substantially expanded into positive values up to ~+1000 ◦C
(silica glass does not suffer deformation up to 1000 ◦C) and into negative values down to
~−270 ◦C [16]. As the temperature excursion range was broadened (from 20 ◦C to 420 ◦C),
the measured shift of the zero-dispersion wavelength was found to be 0.02 nm/◦C [15].
Temperature dependence of chromatic dispersion and the zero-dispersion wavelength are
fairly weak, and to change them significantly, the temperature must be varied in even
broader ranges and/or longer fibre must be used.
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It is more efficient to vary temperature of fibre Bragg gratings (FBG) [17]. Temperature
expansion/contraction of the fibre material leads to the modification of the grating period,
which, in its turn, shifts the spectral position of the grating reflection peak [17,18]. The
typical magnitude of change lies within ~12–14 pm/◦C (around 1.55 µm) [19,20]. This
sensitivity may be improved significantly (by a factor of 4–5), for example, through the use
of an external conduit with a larger coefficient of thermal expansion [21]. High thermal
sensitivity of the transmission/reflection spectrum of FBG makes it possible not only to
control the fibre laser parameters by adjustment of the FBG temperature, but also to use
FBG as a high-precision temperature sensor [22].

It may be possible to use the temperature dependence of some physical effect (for
instance, the Kerr effect [23]) not for controlling the laser’s output parameters, but for
changing the temperature or electrical field strength.

Another element whose properties may significantly change over a temperature
range is a saturable absorber. Temperature sensitivity of this element’s properties was
demonstrated in [24].
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Heating/cooling of other elements of a fibre laser cavity (WDM combiners/dividers,
couplers, isolators, etc.) only affects weakly the optical properties of these elements.
Therefore, in practice, their properties are not adjusted by temperature variation.

A certain temperature profile is necessary when the mechanism of nonlinear polarisa-
tion evolution is used [4] for mode locking of the laser radiation. The evolution of radiation
polarisation within the fibre depends, among other things, upon the fibre temperature.
Hence, for maintaining mode-locked operation of a fibre laser by this method, the fibre
temperature must be stabilised.

Other ambient parameters (air humidity, pressure) affect comparatively weakly the
properties of the fibre laser elements. However, specially designed elements (D-shaped/no-
core fibre or micro-cavities, etc.) may be more sensitive to these parameters [25–28]. It
should be mentioned that controlling fibre laser parameters by variation in humidity or
ambient pressure is not practically used.

Furthermore, variation in magnetic or electric field for controlling output parameters
of fibre lasers is also not used, even though fibre lasers are actually used as sensors of these
fields [29,30]. Although, instead of the natural fibre sensitivity to these fields, that of the
material (e.g., modulator piezo-element and so on) used in a quasi-fibre component (a
volumetric element with fibre-optical input and output) may be relied upon [29].

4. Controlling Output Parameters of MLFLs with Two Pump Sources

This method may be applicable when changing the ratio of the pump source powers
may extend the range of control and/or the number of adjustable MLFL parameters or may
even modify the MLFL generation regime. This method is attractive because the pump
sources may be electronically controlled, particularly in the “all-fibre” configurations. For
control, one may use relatively inexpensive semiconductor pump lasers, which may be well
integrated into fibre-optical systems (fibre-coupled output and wavelength division mul-
tiplexing fibre device). Its application is especially effective in combination with artificial
saturable absorbers [31] based on NOLM/NALM [32–35]. Placing the pump sources either
in the same NALM ring or in different rings of the Figure 3 cavity (Figure 3) improves
the flexibility of control over the output laser parameters. Adjustment of the ratio of the
pump source input powers allows compiling a map of generation regimes [36] that usually
spans three distinct regimes: continuous wave, noise-like pulse [37,38], and generation of
conventional unstructured pulses. If the laser cavity uses polarisation-maintaining fibre and
other elements, the generation map is reliably reproducible and can be used not only for
the selection of the generation regime but also for choosing a regime with desirable pulse
parameters. The main disadvantage of the method is that the desired pulse parameters
may be only reachable at pumping powers below the maximum, thus reducing generation
efficiency. This is why this method cannot be called perfect. Furthermore, it does not allow
substantial tuning of the output wavelength. Among the advantages of this approach are
compatibility with electronic control, all-fibre configurations, and the good scaling. Using
a greater number of pump sources for controlling the output parameters of MLFLs may
become a promising field of development because pumping laser diodes are relatively
inexpensive and long-lasting.

It is important to emphasise that the smooth adjustment of the ratio between the pow-
ers of the two pumping sources does not always correspond to a continuous change in some
radiation parameter. Nevertheless, this method allows in some way (either continuously or
discretely) changing the parameters of the generated pulses.
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5. Controlling the Output Radiation Parameters of MLFLs through Adjustment of the
Material-Based Absorbers

Most implementations of material-based saturable absorbers in fibre lasers do not
provide for any adjustment of any absorber property during operation. Such absorbers are
secured between fibre ferrules or deposited on the end facet of the fibre/ferrule or interact
with the cavity radiation through side-polished/tapered fibre. Normally, the conditions
of interaction between the radiation and the absorber remain fixed, even though they
may be altered manually (by variation in the fixation pressure). Nevertheless, certain
types of material-based saturable absorbers allow the electrical control of their properties.
Consequently, this makes them amenable to electronic control of the generated pulse
parameters. In particular, such control is possible with semiconductor-based saturable
absorber structures [39,40] (Figure 4).
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It must be mentioned here that non-semiconductor material-based saturable absorbers
may be also electrically controllable (such as graphene-based super-capacitors [41–43]),
and not only in the free-space configuration, but also in the “all-fibre” format [44,45].
Moreover, the “all-fibre” format was demonstrated for variation in the properties of a
graphene saturable absorber driven by separate optical radiation [46,47]. Essentially, this is
equivalent to electronic control. A different approach was demonstrated in [48–50] where it
is shown that an ionic liquid in contact with a carbon-nanotube saturable absorber (CNSA)
may provide electrically driven control over the CNSA properties by the application of
voltage to the ionic liquid.
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As it is demonstrated, electronic control over the parameters of material-based sat-
urable absorbers is possible. It does not, however, solve their major problem, a limited
lifetime [51,52], which is substantially shorter than that of other components in a fibre laser
cavity. Artificial saturable absorbers [53] deliver far better lifetime, but other methods are
necessary to control their parameters.

6. Controlling Output Parameters of MLFLs with Modified Fibres

Another way of action on radiation propagating down the optical fibre core and
fully contained inside is a modification of the fibre that allows the radiation in the core
to partially spread outside (for example, as an evanescent field: D-shaped fibres [54] or
tapered fibres [55,56]). Fibre modification technologies may include side polishing [57,58],
chemical [59] or CO2 laser etching [60,61], femtosecond laser-induced water breakdown [62],
or D-shaped fibre drawn from D-shaped preforms [63], or arc-shaped fibre [64], or others.
Furthermore, for affecting the radiation in the fibre core, the corresponding modifications
may be made directly to the core: it may be local or periodic changes in the core refractive
index by UV radiation [65,66] or by ultra-short laser pulses [64], introduction directly into
the core of some material through a microscopic hole in the fibre [67], or formation of a
micro-cavity inside the fibre [68]. Additional optical action on the fibre core may be created
by a V-groove [69].

Nevertheless, these methods, in their majority, do not allow dynamic control over
output parameters of MLFLs; the interaction of radiation with introduced objects inside
or close to the core is stationary. Rare exceptions are those objects (substances) whose
properties may be changed by electric signals [48–50].

7. Controlling Output Parameters of MLFLs by Radiation Selection: Spectral,
Amplitude, Polarisational, and Temporal

This type of control implies the presence in the cavity of an element that can be electri-
cally driven to modify the spectrum, intensity, and polarisation of MLFL output. A recent
review [6] analyses the methods of electronic control over the generation wavelength(s) of
MLFL. Variation in the radiation intensity may be implemented both with the adjustment
of the pump power fed into the active medium (relatively fast changes may be introduced
if the active medium is a semiconductor optical amplifier [70]) or when using radiation
intensity modulators [71] (electro-optical, acousto-optical, and others). It must be noted
that there are a variety of approaches to adjusting the MLFL radiation intensity. Modulation
of the radiation polarisation can also be implemented [72]. A more complex mechanism of
electrically driven polarisation control using liquid crystal phase plates was demonstrated
in [73]. Application of liquid crystals for the control of MLFL radiation polarisation is
known for a long time [74]. However, this method is only feasible at relatively low output
power of the laser that does not cause excessive heating or photo-darkening of the liquid
crystal. Spatial light modulators [75] allow modification not only of the radiation spectrum,
but also of the temporal properties of MLFL pulses. The drawback of this method is that it
is not compatible with the “all-fibre” format. For the same reason and because electrical
control is not possible, passive radiation intensity filters are rarely used [76]. Spectral
filters with variable transmission bandwidth may have fibre-optical input and output [77],
and also may be electrically driven [78], but they are used infrequently in their simple
configurations (as a free-space component without electrical control [79]). A promising so-
lution compatible with the “all-fibre” format and allowing electronic control was proposed
in [80]: wavelength tuning in the range exceeding 40 nm around 1.5 µm was achieved by
temperature adjustment from 23 ◦C to 100 ◦C of a system consisting of three Bragg gratings
with different periods. For selection of MLFL radiation, some exotic components may be
used, such as optofluidic chips [81] or micro-fibre [82].
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8. Intellectual Technologies for Controlling MLFL Radiation Parameters

This approach relies on the assumption that it is possible to use machine learning
methods (or artificial intelligence, neural networks, etc.) in order to make a fibre laser
generate radiation with pre-determined (or improved) parameters. Here, the output data
are radiation parameters (in the case of short pulses, it will be spectrum, duration, energy,
and pulse structure), whereas the input data are the pumping radiation power and other
control parameters described earlier. The objective of intellectual technologies is the
identification of complex dependencies between the input and output data [83–90].

The general problem of this approach is that acquisition of the output parameters
requires measurement equipment (auto-correlator, spectrum analyser, and so forth), whose
cost may exceed that of the laser. Careful identification of radiation pulse parameters is also
important because diverse generation regimes may exist in one and the same laser [91,92].
Comprehensive definition of the output data, as well as their sufficient amount, are the
pre-requisite for the successful application of artificial intelligence algorithms. Only being
able to detect the presence of a pulsed generation is not adequate for the unambiguous
determination of the generated pulses. Consequently, the weak spot of the intellectual
methods is the need of data about the output pulse parameters, which is acquired by
complex equipment that effectively becomes an integral part of the laser. This poses
additional onus on the users: they have to be proficient in working with this equipment.

Therefore, adoption of intellectual technologies entails extra costs and efforts. There is
no clarity about the net advantage because fibre lasers with output parameters meeting the
users’ expectations may be also implemented without intellectual technologies.

The main advantages and drawbacks of the methods discussed so far are summarised
in Table 1.

Table 1. The main advantages and drawbacks of controlling methods.

№ Control Method Advantages Disadvantages

1 Mechanical action on fibre
Simplicity, possibility of

implementation in practically
any conditions

Slow response time, repeatability problems,
possible lack of parameter reproducibility

due to plastic deformation of the fibre

2 Temperature adjustment of MLFL
cavity elements

Simplicity, possibility of
electronic control

Slow response time, need of thermally
isolated spaces

3 Controlling output parameters of
MLFL with two pump sources

Fast response time, possibility of
electronic control

Desired pulse parameters may be only
reachable at pumping powers below

the maximum

4
Controlling the output radiation

parameters of MLFL through
adjustment of material-based absorbers

Certain types of material-based
saturable absorbers allow electrical

control of their properties

Limited lifetime of material-based
absorbers, difficulties in controlling the

properties of absorbers

5 Controlling output parameters of
MLFL with modified fibres

Great variety of methods,
possibility of electronic control in

rare cases

Methods, in their majority, do not allow
dynamic control over output

radiation parameters

6
Controlling output parameters of

MLFL by radiation selection: spectral,
amplitude, polarisational, and temporal

Fast response time, use of
components adapted to the

all-fibre format

Needs intracavity elements allowing
adjustment (electronic or manual) of

their parameters.

7 Intellectual technologies for controlling
MLFL radiation parameters

Many laser tuning functions may
be automated

Acquisition of the output radiation
parameters requires complex

measurement equipment

9. Conclusions

The analysis of methods used to control the parameters of radiation pulses generated
by mode-locked fibre lasers shows that one of the promising approaches may be control
through laser diodes pumping independent active media (Figure 5). Such control may be
electronic and relatively inexpensive to implement. Another advantage of this method is
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its compatibility with the “all-fibre” format. Two laser diodes independently pumping
two active media may modify the parameters of an artificial saturable absorber [34] or
the laser as a whole [36]. It has been already demonstrated that, in principle, broad-
range tuning of the output wavelength of a mode-locked fibre laser is possible through
adjustment of the pump radiation power [93]. This method may be further developed
by implementation in a cavity with an artificial saturable absorber. Control over other
radiation parameters (for instance, the radiation spectral width and so on) via local changes
in intracavity gain so far has not been demonstrated. But controlling these parameters
with additional laser diodes could further develop the idea of using several pumping laser
diodes to control output parameters of a mode-locked fibre lasers and thus achieve a certain
uniformity in doing this. One obvious advantage of this control method is the possibility
of electronic implementation, relatively low cost, and compatibility with the “all-fibre” or
“all-PM-fibre” format.
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