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Abstract: Metasurface devices have demonstrated powerful electromagnetic wave manipulation
capabilities. By adjusting the shape and size parameters of the metasurface microstructure, we can
control the resonance between spatial electromagnetic waves and the metasurface, which will trigger
wave scattering at a specific frequency. By utilizing these characteristics, we design a metasurface
device with a bandpass filtering function and a unit cell of the metasurface consisting of a double-layer
pinwheel-shaped metal structure and high resistance silicon substrate (forming metal–silicon–metal
configuration). A bandpass filter operating in the terahertz band has been implemented, which
achieves a 36 GHz filtering bandwidth when the transmission amplitude decreases by 3 dB and
remains effective in a wave incidence angle of 20◦. This work uses an equivalent RC resonance circuit
to explain the formation of bandpass filtering. In addition, the photosensitive properties of silicon
enable the filtering function of the device to have on/off tuned characteristics under light excitation,
which enhances the dynamic controllability of the filter. The designed device may have application
prospects in 6G space communication.

Keywords: terahertz; bandpass filter; tunable metasurface

1. Introduction

In recent years, 6G communication based on terahertz waves has attracted widespread
attention [1]. The frequency of terahertz waves is higher than that of existing microwave
communication. Therefore, terahertz waves have faster data transmission rates and larger
data capacity. Space electromagnetic wave filters are one of the key functional devices in
the field of wireless communication. With the development of 6G communication, the
demand for space terahertz wave filters is obviously increasing. A terahertz filter with
small size, easy integration, and rich functionality is expected.

A metasurface is a powerful special device [2–7], and its basic unit is a subwave-
length artificial microstructure, which periodically expands in space to form a metasurface.
Metasurfaces have been proven to have powerful electromagnetic wave manipulation
capabilities. The physical characteristics of electromagnetic waves, such as frequency,
phase, amplitude, polarization, orbital angular momentum, and spin angular momen-
tum [8–13], can be manipulated by metasurfaces, enabling a variety of functions, including
electromagnetic polarization transformation, wavefront manipulation [14], imaging [15],
sensing [16,17], filtering [18–20], and so on. Among them, the filtering characteristics of
the metasurface are controlled by the resonance between electromagnetic waves and the
metasurface. By adjusting the shape and size of the metasurface microstructure, we can
control the resonance between spatial electromagnetic waves and the metasurface. This
resonance effect will trigger the reflection, transmission, and absorption of waves at specific
frequencies. For instance, Zhao et al. [18] proposed a multi-layer metal structure consisting
of a cross-shaped and open ring based on bandpass filtering theory. This structure achieves
reflective C-band bandpass filtering with a polarization conversion function. Also, Ali
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Lalbakhsh et al. [19] proposed a simpler metal structure that uses two identical pinwheel
structures to achieve polarization independent transmission bandpass filtering capability.
The device was successfully demonstrated in the X-band. Amirashkan Darvish et al. [20]
simultaneously proposed a flexible metasurface filter in which a unit cell consisting of
two conductive rings and a flexible substrate is designed to achieve X-band filtering in a
bent state. Generally, compared to traditional filters, metasurface filters have significant
advantages, including small size, customizability, and rich functionality. The current devel-
opment of metasurface filters is toward functional diversity, which is not only beneficial
for further reducing the volume of communication systems but may also generate more
novel applications.

In this work, a bandpass-filtered metasurface device with the interaction between
two adjacent resonances is designed based on a double-layer pinwheel-shaped metal cell
and a substrate with high resistance silicon. The effective filtering range of this device
is 167–203 GHz. When the transmission amplitude decreases by 3 dB, it has a filtering
bandwidth of 36 GHz and a maximum transmission amplitude of 0.9. These characteristics
are effective within a wave incidence angle of 20◦. This work uses an equivalent RC
resonance circuit to explain the formation of bandpass filtering. Furthermore, compared
to previous reports [18–20], this work achieves a bandpass filter with a dynamic on/off
tuning function, where the photosensitive characteristics of silicon are used to modify the
carrier concentration of silicon, thereby affecting the resonance intensity and enhancing the
controllability of the bandpass filtering function. Ultimately, the device has filtering and
switching characteristics under light excitation.

2. Model Design

The designed metasurface device structure is shown in Figure 1a. This device is
composed of a metal with excellent conductivity (aluminum is used in this work) and high
resistance silicon (permittivity ε = 11.9, resistivity ρ > 5000 Ω·cm), presenting a sandwich
structure with the same metal pattern on the top and bottom surfaces of the silicon wafer.
Each unit cell structure is shown in Figure 1b, with a silicon substrate thickness of h = 100
µm and a metal pattern thickness of 200 nm. The metal pattern is composed of four metal
strips of the same size, coded as M1–M4, with an angle of Φ = 45◦ between adjacent metal
strips. The periodic constant of a square cell is P = 300 µm, the length of the metal strip
is l = 300 µm, and the width is w = 50 µm. All simulation results were obtained by CST
microwave studio software. The simulation process relies on a frequency domain solver,
where the “unit cell” boundary conditions are used in the x and y directions, and “open”
boundary conditions are used in the z direction.

Although no experimental research is conducted in this work, the proposed structure
can be prepared in practice. The recommended preparation scheme is shown in Figure 1c.
Using a 200 µm thick silicon wafer as the substrate, first etch one surface of the wafer using
ICP (Inductively Coupled Plasma) technology to remove 50 µm silicon. It should be noted
that the surface of the wafer cannot be completely etched off, and sufficient area needs to
be retained to facilitate subsequent process operations (Step 1). Then, aluminum (Al) film
200 nm thick is deposited on the surface of the etched wafer using thermal evaporation
technology (Step 2), and a mature photolithography process is used to etch the pinwheel-
shaped metal pattern (Step 3), forming a surface pattern of the sample. The next step is
to prepare another surface pattern of the sample. This is shown in Step 4, which requires
flipping the sample and using the pre-reserved wafer area (the part of the wafer that has
not been etched with ICP in Step 1) as support, where the already-made metal patterns will
not be damaged because they do not directly contact the processing platform. At this time,
repeat the above steps, first using ICP technology to etch the surface of the silicon wafer to
remove 50 µm silicon (remaining a silicon wafer with 100 µm thickness), and then using
mature metal vapor deposition and photolithography techniques to prepare a 200 nm thick
pinwheel-shaped metal pattern on the etched wafer surface (Step 5–7), ultimately forming
a sample with a metal–silicon–metal structure.
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Figure 1. (a) Schematic diagram of the designed metasurface device structure. (b) 3D and 2D views
of a unit cell. (c) The suggested sample processing techniques. Step 1: Etch to remove 50 µm silicon;
Step 2: Deposit a 200 nm Al film; Step 3: Photolithography to form a metal pattern; Step 4: Flip the
sample and repeat Steps 1 to Step 3 (corresponding to Steps 5 to Step 7).

3. Results and Discussion

The operating frequency of the device is located in the terahertz band that can serve
6G communication. The incident wave is TE mode, and the transmission and reflection
spectra in the vertical incidence are shown in Figure 2. In this work, when a terahertz
wave is incident vertically, the TE mode corresponds to y-polarization. The transmission
characteristics of the device in the range of 100–300 GHz (0.1–0.3 THz) are shown in Fig-
ure 2a,b. It is easy to know from the symmetry of the device that the same results as
Figure 2 can be obtained when an x-polarized terahertz wave is incident vertically on the
device. It is usually defined that the filtering function is effective when the attenuation
of the transmission amplitude of the filter does not exceed 3 dB. From Figure 2a, it can
be observed that the bandwidth of the transmission attenuation with 3 dB is 36 GHz,
and the effective operating range of the filter is 167–203 GHz. The linear transmission
amplitude spectrum corresponds to Figure 2b, and a maximum transmission amplitude of
0.9 can be found. The bandpass filtering is formed by the interaction of two resonances
located in close proximity. By detecting the reflection spectrum, the central frequencies
of the two resonances can be clearly seen, as shown in Figure 2c. The two resonances are
f 1 = 175 GHz and f 2 = 200 GHz, respectively. In actual manufacture, the structural param-
eters may not be accurate, so the robustness of the device needs to be considered. The
scattering performances may be changed with the disturbances in substrate thickness,
metal size, and pattern offset on the opposite sides of the substrate. The variation in sub-
strate thickness and metal size can be controlled very precisely during the manufacturing
process (the effects of substrate thickness and metal size will be presented in subsequent
discussions.). In contrast, the pattern offset on the opposite sides of the substrate is almost
unavoidable and hard to control. Hence, we mainly discuss the pattern offset effect here.
Due to the fact that the mask used in the actual manufacturing process is the same for
patterns on the opposite sides of the substrate, the patterns can only undergo overall
deviation. The offsets along the x and y directions are analyzed, as shown in Figure 2d–f. It
can be seen that when the patterns on the opposite sides of the substrate produce a relative
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dislocation with dx = 6 µm along the x direction (Figure 2d), as well as a relative dislocation
with dy = 6 µm along the y direction (Figure 2e), the transmission spectra remain generally
unchanged in the range of 100–250 GHz, even if these offsets are as high as 6 µm in both
the x and y directions (Figure 2f), which proves the great robustness of the structure.
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Figure 2. (a,b) show the transmission spectrum of TE mode at normal incidence with (a) dB scale and
(b) linear scale, respectively. Correspondingly, (c) shows the reflection spectrum with dB scale, where
f 1 = 175 GHz and f 2 = 200 GHz. (d,e,f) shows the transmission spectra with dB scale for pattern
offsets (d) along the x direction, (e) along the y direction, and (f) along diagonal line. The inserts in
(d,e,f) shows the relative position for patterns on the opposite sides of the substrate, in which the
red dotted line graphic represents the structure at the initial position, while the grey-filled graphic
represents the offset pattern.
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The reflection amplitude of the second resonance f 2 is stronger than that of the first
resonance f 1, and the reason for this result can be identified through the distribution of
electric field and surface current. As shown in Figure 3a, the surface current motion modes
of the two resonances are the same, with the current flowing back and forth along the metal
strip, which is a characteristic of dipole resonance. The surface current intensity and electric
field distribution intensity both indicate that the resonance radiation of f 2 is stronger than
that of f 1, so the reflection amplitude at f 2 in the reflection spectrum is higher than that
at f 1. From the distribution of electric field amplitude at the cross-section of the device
shown in Figure 3b, it can be seen that the transmitted electric field at the output port for f 1
resonance is stronger than that at the output port for f 2 resonance, which is consistent with
the transmission and reflection intensity trends of the two resonances shown in Figure 2.
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Next, we need to consider an issue as to why the designed metasurface can generate
two resonances f 1 and f 2; in other words, how to explain the formation of these two
resonances. To clarify the formation mechanism of two resonances, we use an equivalent
circuit model, as shown in Figure 4. The interaction between the incident alternating
electric field and the metasurface generates various parasitic electrical effects. The metal
strip itself has weak inductance (negligible self-resistance), and under the excitation of an
external electric field, non-metallic media will also produce resistance and capacitive effects.
The metal strips M1 and M3 on the surface of the unit cell can be equivalent to a weak
inductance L0, and the metal strips M2 and M4 can be equivalent to a weak inductance
L1. There are gaps between M2 and M2 (as well as M4 and M4) of adjacent unit cells,
which will generate equivalent capacitance C1 and resistance R1 with a parallel connection.
The metal structure on the bottom surface of the silicon substrate is identical to that on
the top surface. The metal strips M1 and M3 on the bottom surface are equivalent to L3,
while the metal strips M2 and M4 on the bottom surface are equivalent to L2. The gaps
between M2 and M2 (as well as M4 and M4) of adjacent unit cells on the bottom surface are
equivalent to a parallel connection of C2 and R2. Due to the same size of all metal strips,
where L0 = L1 = L2 = L3, R1 = R2, and C1 = C2. The metal structure between the top and
bottom of the unit cell is a silicon substrate, which has parasitic capacitance and parasitic
resistance. Therefore, it can be equivalent to a capacitor Cs and a resistor Rs in parallel. It
can be understood that the RC circuit in Figure 4 carries two resonance frequencies, namely
1/(2πR1C1) and 1/(2πRsCs), respectively.
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Figure 4. The equivalent RC resonance circuit model of metasurface resonances. The R1 and C1 are
106 Ω and 10−18 F level, respectively. The Rs and Cs are 105 Ω and 10−17 F level, respectively.

By analyzing the changes in resonance positions under different structural parameters,
we can determine the corresponding relationship between the two resonance frequencies
(1/(2πR1C1) and 1/(2πRsCs)) in the RC equivalent circuit of Figure 4 and the two resonance
frequencies (f 1 and f 2) in the reflection spectrum of Figure 2. Firstly, by keeping the
structural parameters of the metal strip unchanged and changing the thickness of the
silicon substrate, the reflection and transmission spectra of the device are obtained as
shown in Figure 5. Due to the constant size of the metal strip structure, both L0–L3,
R1–R2, and C1–C2 in Figure 4 remain unchanged, which means that 1/(2πR1C1) remains
unchanged. In Figure 5, the resonance located at 200 GHz (corresponding to f 2 in Figure 2)
does not vary with the thickness of the silicon substrate, indicating that the resonance
f 2 originates from the metal structure. The values of R1 and C1 are easily estimated: the
resistance value R1 ≈ 1 × 106 Ω, which can be calculated by the distance between two tilted
metal strips, the thickness of silicon h, and the electrical resistivity ρ; and the capacitance
value C1 ≈ 8 × 10−18 F, which can be obtained by the metal strip width w, metal thickness,
gap distance, and vacuum permittivity ε0. Thus, f 2 = 1/(2πR1C1) ≈ 200 GHz. The other
resonance, f 1, is controlled by Rs and Cs. As the thickness of the silicon substrate increases,
the equivalent capacitance Cs decreases while the equivalent resistance Rs significantly
increases, ultimately causing 1/(2πRsCs) to decrease so that f 1 shifts toward low frequencies
in the spectrum. Unlike f 2, the resonance associated with f 1 mainly occurs at the top of
the tilted metal strip (as can be observed from the localized position of the electric field
in Figure 3a), and its resonance area is difficult to accurately calculate, resulting in the
high resistance silicon capacitance value covered by the resonance area being difficult to
calculate. But the order of magnitude of C2 can still be estimated because the thickness of
high resistance silicon is of the same order of magnitude as the gap between tilted metal
strips (both in the order of hundreds of micrometers), and the dielectric parameter of silicon
relative to vacuum is of the order of 10, so the capacitance value of C2 is about 10−17 F level.
In addition, high resistance silicon is sandwiched between the upper and lower metal, with
a resistance of about 105 Ω level, which is easily calculated based on the area, thickness,
and resistivity of silicon. Therefore, the order of magnitude of f 1 = 1/(2πRsCs) is also at the
102 GHz level.
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Figure 5. The (a) reflection and (b) transmission characteristics of devices follow the trend of changes
in silicon substrate thickness while maintaining the size of the metal structure unchanged.

The analysis in Figure 5 shows that resonance f 1 is correlated with Rs. Figure 6
shows the reflection and transmission spectra after changing the metal width of the device
with constant silicon thickness (h = 100 um). The increasing width of the metal leads to
an increase in the metal pattern area, which directly increases the covered silicon area.
Therefore, the equivalent resistance Rs of the silicon substrate decreases, resulting in
1/(2πRsCs) increasing; thus, f 1 moves toward high frequencies. At the same time, increasing
the width of the metal will also lead to a decrease in R1, resulting in 1/(2πR1C1) increasing;
thus, f 2 also moves toward high frequencies.
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Figure 6. The (a) reflection and (b) transmission characteristics of the device follow the trend of
changing the width of the metal strip, keeping the silicon thickness unchanged.

Considering that in practical applications, electromagnetic beams are not completely
perpendicular to the device surface, it is necessary to consider the impact of beam incidence
angle on the filtering characteristics of the device. The transmission spectra at different
incident angles are shown in Figure 7, with the incident wave vector located in the yz plane
and the angle between the incident wave and the z-axis normal in the yz plane being θ. It
can be seen that the two resonance centers located at 175 GHz and 200 GHz do not change
with the change in incident angle, while the resonance amplitude depends on the incident
angle. When the incident angle θ does not exceed 20◦, the device can maintain a similar
operating bandwidth and transmission amplitude as in the case of vertical incidence.
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(b) In linear units.

The carrier concentration of silicon medium can be changed under external light
excitation (it is necessary that the photon energy of excitation light is greater than the
energy gap of silicon), resulting in variable resonance intensity [21]. This property enables
this device to have filtering and switching characteristics. Exciting light can be achieved by
selecting a continuous wave with a wavelength of 1064 nm. Previous studies have shown
that high resistance silicon can absorb light with a wavelength of 1064 nm, and 1064 nm
light can penetrate a high resistance silicon with at least 500 µm thickness [21]. The silicon
thickness used in this work is only 100 µm, which means that carriers in the entire silicon
can be excited by 1064 nm light. Experiments have shown that when the power of a 1064
nm continuous wave reaches several mW, the conductivity of high resistance silicon can
reach tens of S/m [21]. Therefore, it is reasonable for this work to simulate the influence of
light excitation on the performance of the device by changing the silicon conductivity. The
results of the reflection and transmission spectra of the device, accompanied by changes in
silicon conductivity, are shown in Figure 8. When the conductivity of silicon transitions
from a high resistance state to a low resistance state, terahertz resonance weakens, and
the reflection of terahertz waves by silicon is significantly enhanced, mainly due to an
increase in carriers on the silicon surface. Correspondingly, the transmission amplitude
of the device is significantly reduced. When the conductivity of silicon increases from
2 × 10−4 S/m to 60 S/m, the maximum transmission amplitude decreases from 0.9 to 0.1,
meaning that the bandpass filtering characteristics of the device are turned off.
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4. Conclusions

This work is aimed at space terahertz communication applications, and a terahertz
bandpass filter has been designed using highly conductive metals and high resistance
silicon. The filter is a metasurface device with a sandwich structure, and the basic unit
cell configuration is a double-layer pinwheel-shaped metal structure mixed with a silicon
substrate. The bandwidth of the transmission amplitude attenuation of 3 dB is 36 GHz, and
the effective operating range of the filter is 167–203 GHz. The maximum transmission am-
plitude can reach 0.9, and these characteristics can be maintained within an incident beam
angle of 20◦. This work uses an equivalent RC resonant circuit to explain the formation of
bandpass filtering, and it is found that the bandpass filter originates from the interaction
between two close resonances. Furthermore, in order to enhance the controllability of the
bandpass filtering function of the device, the photosensitive characteristics of silicon can be
used to modify the carrier concentration of silicon, thereby affecting the resonance intensity
and ultimately enabling the device to have filtering and switching characteristics under
light excitation.
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