
Citation: Han, N.; Wang, C.; Wu, Z.;

Zhai, X.; Pei, Y.; Shi, H.; Li, X.

Modulated Short-Time Fourier-

Transform-Based Nonstationary

Signal Decomposition for Dual-Comb

Ranging Systems. Photonics 2024, 11,

560. https://doi.org/10.3390/

photonics11060560

Received: 14 May 2024

Revised: 6 June 2024

Accepted: 12 June 2024

Published: 14 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

photonics
hv

Article

Modulated Short-Time Fourier-Transform-Based Nonstationary
Signal Decomposition for Dual-Comb Ranging Systems
Ningning Han 1 , Chao Wang 2, Zhiyang Wu 3, Xiaoyu Zhai 4, Yongzhen Pei 1, Haonan Shi 5,* and Xiaobo Li 5,*

1 School of Mathematical Sciences, Tiangong University, Tianjin 300387, China;
ningninghan@tiangong.edu.cn (N.H.); yzhpei@tiangong.edu.cn (Y.P.)

2 Academy of Opto-Electronic, China Electronic Technology Group Corporation (AOE CETC),
Tianjin 300308, China; wangchao67@cetc.com.cn

3 Tianhe Mechanical Equipment Manufacturing Co., Ltd., China Communications Construction,
Changshu 215557, China; wuzy@ccccth.net

4 National Ocean Technology Center, Tianjin 300112, China; cynthiachai@126.com
5 School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
* Correspondence: shihaonan@tju.edu.cn (H.S.); lixiaobo@tju.edu.cn (X.L.)

Abstract: Analyzing and breaking down nonstationary signals into their primary components is
significant in various optical applications. In this work, we design a direct, localized, and mathe-
matically rigorous method for nonstationary signals by employing a modulated short-time Fourier
transform (MSTFT) that can be implemented efficiently using fast Fourier transform, subsequently
isolating energy-concentrated sets through an approximate threshold process, allowing us to directly
retrieve instantaneous frequencies and signal components by determining the maximum frequency
within each set. MSTFT provides a new insight into the time-frequency analysis in multicomponent
signal separation and can be extended to other time-frequency transforms. Beyond the analysis of
the synthetic, we also perform real dual-comb ranging signals under turbid water, and the results
show an approximate 1.5 dB improvement in peak signal-to-noise ratio, further demonstrating the
effectiveness of our method in challenging conditions.

Keywords: nonstationary signals; instantaneous frequencies; dual-comb; turbid water; LiDAR;
challenging conditions

1. Introduction

Various signals occurring in optical fields, such as biomedical signals, sensor ar-
rays, and laser ranging, are comprised of nonlinear and nonstationary components [1–4].
Breaking down these signals and effectively extracting information from their individ-
ual components, such as frequencies, amplitudes, and waveforms, will be invaluable in
identifying and quantifying the underlying multicomponent signals. This technique has
demonstrated success in applications within the field of optics, including optical fiber
communication [5], fringe pattern enhancement [6], and wind light detection and ranging
(LiDAR) signal denoising [7].

The empirical mode decomposition (EMD) proposed by Huang et al. is an iterative
algorithm that breaks down a nonstationary signal into a sum of intrinsic mode functions
(IMFs) [8], leaving a minimally oscillatory function (referred to as the trend) as the residual
component. The algorithm also calculates the instantaneous frequency of each IMF through
the application of the Hilbert transform. Due to the time-frequency analysis ability, EMD
was always applied to restore optical LiDAR signals, but it failed when handling some
special signal, for example, the laser ranging interferograms owing to the mode aliasing and
the boundary effect of EMD [9]. Inspired by EMD and compressed sensing theory, Hou et al.
introduced a nonlinear matching pursuit method to seek the sparsest representation of
a signal within a potentially vast dictionary comprising intrinsic mode functions [10].
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Similarly, Gilles proposed the empirical wavelet transform by decomposing a given signal
into various modes by creating an adaptive wavelet basis [11].

Benefiting from computational efficiency, the reassignment method and the syn-
chrosqueezing transform (SST, which is indeed a special reassignment technique) are
other well-known time-frequency analysis tools [12]. The main idea of SST is to concentrate
the time-frequency representation into the frequency reassignment reference. In this way, it
will sharpen the time-frequency representation and decrease smearing while still recon-
structing different signal components. As powerful tools for mode retrieval, SST can be
extended to other time-frequency representations, such as wavelet packet transform [13],
curvelet transform [14], S-transform [15], and short-time Fourier transform (STFT) [16].
Furthermore, for obtaining a more accurate estimate of instantaneous frequencies than the
original SST, two-order or high-order adaptive SST has been proposed to achieve the mode
retrieval results with a high accuracy [17]. SST-based methods have also been applied
in optical signal processing. Recently, Cui et al. proposed an effective signal separation
operator (SSO), which first removes the polynomial trend from the blind source signal,
and then applies the signal separation operator to some discrete samples in the fixed time
and extracts different modes and instantaneous frequencies via finding the maximum over
frequency domain [18].

In this work, we present a straightforward, localized, and mathematically rigorous
method for analyzing and decomposing nonstationary data, utilizing the modulated (STFT)
coupled with a strategy of local maximum-frequency approximation. This method enables
the direct extraction of all instantaneous frequencies and the reconstruction of all modes
by forming energy-concentrated clusters through approximate thresholding. Its main
advantage lies in its simplicity and directness, offering a method that simultaneously
reconstructs all instantaneous frequencies and modes with a theoretical guarantee. We
conduct numerical experiments with both simulated data and actual underwater dual-
comb ranging signals, which demonstrates our method’s applicability in reconstructing
signals when navigating through diffuse scattering media.

2. Main Result

Considering the following nonstationary model, which is related to various optical signals:

f (t) =
K

∑
k=0

fk(t) =
K

∑
k=0

Ak(t)ei2πφk(t), (1)

where fk(t) denotes intrinsic mode function (IMF), the phase function φk(t) is differential,
φ′k(t) is the instantaneous frequency, and the amplitude function Ak(t) is non-negative
and continuous. With φ′0(t) = 0, the function A0(t), called the trend of f (t), is (at most)
minimally oscillatory. Given some discrete samples of the composite signal f (t), the
objective is to recover fk(t) and φ′k(t), k = 0, . . . , K.

We first introduce modulated short-time Fourier transform (MSTFT), defined as follows:

Vf (t, ξ) =
∫ +∞

−∞
αg(α(x− t))e−i2π(x−t)ξ dx, (2)

where g is an admissible window function and α controls the width of the window function.
For each t, by applying a small thresholding parameter to |Vf (t, ξ)|, we can obtain

precisely K + 1 nonempty frequency sets Sk(t), where K + 1 is the number of the signal
component as described in (1). For each set Sk(t), we find local maximum-frequency by
solving the following problem:

ωk(t) = arg max
ξ∈Sk(t)

|Vf (t, ξ)|. (3)
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Then the instantaneous frequencies, amplitudes, and signal components can be com-
puted as follows:

φ
′
k(t) ≈ ω̂k(t),

|Ak(t)| ≈ |Vf (t, ω̂k(t))|,
fk(t) ≈ Vf (t, ω̂k(t)).

(4)

More details about the rigorous mathematical proof of the above error bounds can be
found in the Supplemental Document.

The pseudocode of our method can be found in Algorithm 1, and the setting param-
eter µ is a simple example. The goal is to extract energy-concentration bands of Vf (t, ξ);
therefore we can choose the parameter µ according to the magnitude of time-frequency
energy of |Vf (t, ξ)|. In addition, we can also apply an appropriate curve-fitting scheme to
extract local maximum frequency curves directly from energy-concentration bands instead
of thresholding and clustering.

Algorithm 1. MSTFT-based nonstationary signal decomposition.

1. Input: signal f (t), µ (a small thresholding parameter);
2. Calculate MSTFT of f (t) to obtain Vf (t, ξ);
3. For each t, cluster |Vf (t, ξ)| > µ

2 to obtain precisely K + 1 clusters Sk(t), k = 0, . . . , K.
4. Extrema estimation ω̂k(t) = arg max

ξ∈Sk(t)
|Vf (t, ξ)|.

5. Output: Recovered frequencies φ
′

k(t) = ω̂k(t),
recovered amplitudes |Ak(t)| = |Vf (t, ω̂k(t))|,
recovered modes fk(t) = Vf (t, ω̂k(t)).

3. Experimentation and Examples

Firstly, we explain the implementation of the proposed method by a numerical exam-
ple. To illustrate the process, we consider the following multicomponent signal:

f (t) = f1(t) + f2(t) + f3(t), 0 ≤ t ≤ 30, (5)

where the three subcomponents are defined by

f1(t) = exp(
t2

450
− t

15
+ 1) cos

(
2π(2t +

cos(t)
10

)

)
,

f2(t) = (
t

10
+ 2) cos

(
2π(3t +

t2

50
)

)
,

f3(t) =
t3

100
− 47t2

100
+

27t
5
− 9,

(6)

and the related waveform is shown in Figure 1a. It can be seen that due to the original
signal comprising multiple spectral components, it appears “chaotic” in the time domain
(i.e., the amplitude as a function of the time), characterized by many spikes.
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Figure 1. (a) Waveform of blind-source signal f (t). (b) Time-frequency spectrogram |Vf (tn, ξm)|.
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With discrete grids of frequencies {ξm}, the first step of the proposed method is to
calculate MSTFT of f (t) to obtain Vf (t, ξ) by applying discrete MSTFT to selected (uniform
or nonuniform) samples f (tn), where {tn} denote uniform or nonuniform sampling points.
As shown in the color bar of Figure 1b, by applying an appropriate thresholding parameter
µ (e.g., µ = 1) to |Vf (t, ξ)|, we can obtain precisely 3 clusters that correspond to f1(t),
f2(t), and f3(t). This process is associated with step 3 in Algorithm 1. We then find three
extrema curves ω̂j(t) (j = 1, 2, 3) in the three clusters, which is equivalent to obtain extrema
estimation ω̂k(t) for each fixed t, as shown in the step 4 of Algorithm 1. Since real-valued
discrete data are considered in this example, the recovered instantaneous frequencies
and signal components can be obtained from the output formulas in Algorithm 1 simply
by computing

φ
′
j(tn) =

ω̂k(tn)

δ
, f j(tn) = 2Re[Vf (tn, ω̂j(tn))], (7)

where j = 1, 2, 3, and δ is the sampling interval.
Figure 2 shows reconstructed results of instantaneous frequencies and signal compo-

nents. It can be seen that the reconstructed submodes after decomposition are essentially
consistent with the original subsignals f j(t), j = 1, 2, 3, set for the simulated signal, as
shown in Figure 2b–d. It verifies the effectiveness and accuracy of the proposed algorithm.
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Figure 2. Recovered results: (a) instantaneous frequencies; (b) f3(t); (c) f1(t); (d) f2(t).

4. Experiments Results for Dual-Comb-Based Underwater LiDAR

To further demonstrate the effectiveness of our method on real signals, the subsequent
section details the application of this method to a practical dual-comb LiDAR signal from
underwater. Figure 3 shows the schematic of the underwater dual-comb LiDAR system [19].
The signal source (SS) and the local oscillator (LO), both having a central wavelength of
515 nm, with the SS boasting an output power of 300 mW and the LO of 20 mW, share
a repetition frequency of approximately 36.5 MHz, which is adjustable within a certain
range. The difference in repetition frequency is maintained at 2 kHz, indicative of the
data refresh rate for the range finding. A rubidium clock (Rb, Microsemi 8040, Aliso
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Viejo, CA, USA) ensures systemwide time synchronization, thus stabilizing the entire
setup. Notably, the SS signal is bifurcated into reference and measurement beams, reflected,
respectively, by the reference mirror (MR) and the underwater target. A large lens captures
backscattered signals containing distance information, which are then combined and made
to interfere with both the reference and LO signals. Importantly, to maintain precision in the
laser’s path, all spatial beams are aligned at an identical height and with strict adherence
to alignment protocols. To reduce common-mode noise, a balanced photodetector (BPD,
Thorlabs PDB230A, Newton, NJ, USA) is employed for capturing the interference signals.
Consequently, by analyzing the reference and measurement interferograms, we are able to
determine distances based on the time-of-flight (ToF) principle [20,21].

Figure 3. Experimental setup for underwater dual-comb LiDAR. SS, signal source; LO, local oscillator;
Rb, rubidium clock; MR, reference mirror; BPD, balanced photodetector.

In the experiment, the measurement target (a retroreflector) is securely positioned approx-
imately 1 m within a water container, dimensions being 1× 1× 1.5 m. This container is filled
to a depth of 0.2 m with tap water, maintaining a turbidity level below 0.5 NTU (nephelometric
turbidity units), as verified by a turbidity meter (REMOND, RMD-Z6, Shanghai, China). Fur-
thermore, environmental conditions, including a temperature of 21.5 ◦C and water density of
977.887 kg/m3, are meticulously monitored and regulated during signal acquisition. The group
refractive index of water can be calculated, based on the Harvey formula [22], as 1.3587851.
To simulate the challenges of turbid water, controlled quantities of pure milk are mixed into
the water, using a calibrated measuring cylinder for precise volume addition [23]. Subsequent
stirring ensures uniform milk distribution, thereby maintaining consistent water concentration.
The turbidity meter is utilized to quantitatively assess water quality, indicating turbidity levels
of 2.1 NTU and 9.3 NTU for milk additions of 5 mL and 25 mL, respectively. Through this
process, genuine experimental signals are captured by an oscilloscope (LeCroy, WaveRunner
9404, Chestnut Ridge, NY, USA) at a 500 MHz sampling rate, facilitating the analysis of the
proposed method’s effectiveness under varying turbidity conditions. Figure 4 showcases both
the original and the reconstructed signals obtained by the proposed method.

To harness the effective information within the signal, we selectively analyze data
proximal to both the reference and measurement interferograms for decomposition. This
approach aligns with our decomposition principle, whereby each interferogram is com-
posed of 215 = 32,768 sampling points, providing a detailed basis for signal reconstruction
and analysis. This methodology underscores our commitment to efficiency in extracting
and interpreting signal data, as evidenced by the comparative visualization presented
in the figure. From Figure 4a,c, it can be observed that both the signal intensity and the
signal quality decrease with the addition of the milk. Specifically, the measurement inter-
ferograms undergo distortion due to the turbid water environment, resulting in elevated
noise levels and irregular contours. This is reasonable, as the scattering particles in turbid
water (i.e., large molecules in milk) simultaneously exert both scattering and absorption
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effects on the dual-comb signal. After implementing decomposition, i.e., the results in
Figure 4b,d, there is a notable reduction in background noise, albeit with the preservation
of the interferogram’s intrinsic characteristics.

Figure 4. Original and reconstructed signals at turbid water with 2.1 NTU and 9.3 NTU. (a,c) Measure-
ment interferograms. (b,d) Reference interferograms.

To quantitatively assess the efficacy of the decomposition, we employ the peak signal-
to-noise ratio (PSNR) as a metric:

PSNR = 10log10

( Imax
p

Imean
n

)
(8)

where Imax
p denotes the maximum intensity of the signal and Imean

n denotes the mean value
of the background noise.

The Imax
p and Imean

n values of each signal are calculated and shown in Figure 4 with
date cursors. After calculation, we find that the proposed method improves the PSNR
by at least 1.5 dB after decomposition and reconstruction. In addition, as indicated by
the enlarged view in Figure 4, the reconstructed signal has a Gaussian-like shape with
symmetry. This configuration enables the precise extraction of the peak position, crucial for
accurate distance measurement. The results prove that the proposed decomposition method
effectively enhances the dual-comb LiDAR performance in turbid water. Leveraging the
algorithm decomposes the signal and realizes the denoising efficiently.

To demonstrate the superiority of our method, we compare the reconstructed result
with several classic time-frequency decomposition algorithms, including wavelets trans-
form (WT), EMD, and complete ensemble empirical mode decomposition (CEEMDAN) [24].
Figure 5 illustrates the compared result of different methods applied for the measurement
interferogram, and the related PSNR values are also presented in the upper right corner
of the figure. From Figure 5, we can find that the PSNR value of our proposed method
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(i.e., 10.31 dB) performs better than that of WT, EMD, and CEEMDAN. In particular, the
shape of our reconstructed signal, especially the measurement interferogram, is close to the
Gaussian shape. As shown in Figure 6, we calculate the Imax

p and Imean
n of signals processed

by WT and our method. Even though the PSNR value of WT is close to our method, the
shape of WT’s result is distorted. In comparison, the other three methods demonstrate a
degree of effectiveness in denoising but are inadequate in extracting Gaussian-modulated
signals. Therefore, the proposed method has great potential in denoising and extracting
dual-comb LiDAR signals of complex and turbid water.

Figure 5. Comparison of different algorithms for the measurement interferogram of dual-comb LiDAR.

Figure 6. Enlarged comparison between WT and our results around the peak.

5. Conclusions

In conclusion, we have introduced a straightforward and efficient approach for an-
alyzing and decomposing nonstationary signals in optical applications, employing an
MSTFT alongside an approximate thresholding technique for isolating energy-concentrated
clusters. This method not only demonstrates superior performance in direct extraction of in-
stantaneous frequencies and signal components but also significantly enhances dual-comb
LiDAR performance in turbid waters, as evidenced by an approximate 1.5 dB improvement
in PSNR and the precision in peak position extraction for accurate distance measurements.
In addition, we establish a mathematical framework, as seen in the Supplemental Doc-
ument, which enables us to mathematically analyze its guarantees of recovery accuracy.
Comparative analysis with established time-frequency decomposition algorithms further
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underscores our method’s effectiveness in denoising and accurately reconstructing signals.
The demonstrated simplicity and effectiveness of this method promise wider applications
in signal processing, particularly for environments with diffuse scattering media, indi-
cating potential for significant advancements in optical and environmental monitoring.
Future works could focus on enhancing algorithmic efficiency, extending its applicability to
more complex signal types, and implementing the selection and optimization of algorithm
parameters using heuristic algorithms.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/photonics11060560/s1.
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