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Abstract: Time lenses can measure ultrafast signals but are based on single-mode fibers (SMFs). To
develop multimode time lenses that are based on a four-wave mixing process, we must have full
control of the nonlinear interaction between the modes. Specifically, we need to generate an idler from
each mode without any cross-talk between the modes. Here, as a first step toward a multimode time
lens, we study how stable a short pulse is traveling in a multimode fiber, and how pulses at different
modes interact with each other. We utilize a single-mode-based time lens to measure the dynamics of
these pulses in the time and spectral domains. We found that there is cross-talk between the modes
and that the pulses are not stable and excite other modes, rather than staying in the same modal
order. These findings indicate that developing a multimode time-lens may be more challenging
than expected.

Keywords: multimode dynamics; nonlinear optics; temporal optics

1. Introduction

Nonlinear interactions of short pulses in fibers lead to numerous effects that are
implemented in microscopy, telecommunication, and quantum optics. When short pulses
propagate in multimode fibers, a new world of nonlinear phenomena is added to the field
of nonlinear single-mode interactions thanks to the additional spatial dimension [1]. As
the pulse travels in the multimode fiber, the different modes in the pulse are coupled
by nonlinear interactions, and the energy is transferred between the modes [2–4]. These
nonlinear multimode interactions, as well as the spatial separability of the output pulse,
are important for different applications, such as improving the brightness of nonlinear
imaging [5,6], detecting the temporal shapes of ultrashort pulses by deep learning [7,8],
and increasing the output power from ultrashort fiber lasers [9–11].

Multimode nonlinear interactions also lead to unique multimode phenomena, such as
modal self-cleaning [12–14], multimode solitons [15,16], spatiotemporal mode-locking [17,18],
supercontinuum generation [9], and modulation instabilities [19,20]. Different theoretical mod-
els and advanced numerical tools were developed for analyzing these phenomena, including
the effective potential model [21], the multi-component approach [22], the 3D+1 nonlinear
Schrodinger equation [23], the Gross–Pitaevskii equations [24], and the Laguerre–Gaussian
mode sorter [25]. To understand all these phenomena and test competing models [26], the
dynamics of the modes must be measured with high temporal resolution.

Time lenses are temporal optics devices that exploit the time–space duality and mea-
sure signals with high temporal resolution [27]. Time lenses that are based on the four-
wave mixing process (FWM), where a chirped pump induces the quadratic phase in time,
have a shorter focal length than other time lenses. These time lenses lead to temporal
imaging [28–32], ultrafast spectroscopy [33], temporal holography [34], and are imple-
mented in studying rogue waves [35,36] and soliton dynamics [37]. However, all these
temporal devices are based on ultrafast dynamics in single-mode fibers. To develop a
multimode time lens that can image ultrafast signals both in space and time, we must study
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the FWM process and the nonlinear interaction between a pump pulse and multimode
signals with high temporal resolution.

In this work, we study the dynamics of pulses in multimode fibers and the interaction
between the modes for the future realization of multimode time lenses. We develop
multimode temporal devices based on single-mode time lenses that measure the dynamics
of spatial modes in multimode fibers with high temporal resolution. With this multimode
temporal device, we excite specific spatial modes and measure their spatio-temporal
dynamics resulting from FWM, self-phase modulation, and modulation instabilities. We
detect the energy transfer between the modes and the coupling between them. We found
energy transfer between modes occurs even when the coupling symmetry does not allow it.
These findings indicate that developing multimode time lenses is more challenging due to
the cross-talk between the modes. This research on spatio-temporal dynamics of ultrashort
pulses in multimode fibers can open avenues for understanding modal phenomena.

2. Methods

In this work, we study the ultrafast dynamics of pulses in few-mode fibers (FMFs),
while focusing on the FWM processes, since this is the process required for time lenses. The
four-wave mixing process is governed by

Ei(t) ∝ χ(3)E∗
s (t)E2

p(t), (1)

where Ep, Es and Ei are the pump, signal, and idler electric waves, oscillating at frequencies
ωp, ωs, and ωi, respectively. In our experiment, we consider the degenerate pump case.
During this process, two pump photons generate two photons at the signal and idler
frequencies simultaneously, while conserving energy and momentum. The momentum
conservation is satisfied by the intermodal phase matching process 2kp = ks + ki, whereas
the energy conservation is satisfied by 2ωp = ωs + ωi.

The spatial profile of a linearly polarized mode of radial order l and angular order
m propagating inside a graded-index multimode fiber (GIMF) is LPm,l [38]. Our few-
mode fiber supports the propagation of LP01, LP11a, LP11b and their combinations. The
propagation constant of each mode, βg, is [39]

βg =
2πn0

λ
−

√
2∆
R

g (2)

where g = 2l + m + 1 is the group number, n0 is the maximum refractive index at the center
of the core, ∆ is the relative index difference between the core and cladding, and R is the
core’s radius. Since the propagation constant has a linear dependency in g, modes with the
same group number have the same propagation constant. Due to phase matching, only
modes with propagation constants that satisfy βs

µ − βi
ζ − β

p
ν − β

p
κ = 0 can perform efficient

FWM. By placing βg into the phase matching condition, we rewrite it as

√
2∆
R

(gs + gi − g(1)p − g(2)p ) = 2π(ns/λs + ni/λi − 2np/λp) (3)

where
√

2∆
R (gs + gi − g(1)p − g(2)p ) is the material mismatch denoted as δkM , and 2π(ns/λs +

ni/λi − 2np/λp) is the waveguide mismatch denoted as δkW .
We calculate the phase matching condition for different idler wavelengths at different

modal combinations. We set the pump wavelength to λp = 1550 nm and the signal
wavelength to λs = 1568 nm. When we calculate the waveguide mismatch, we denote
LP11a and LP11b as LP11, since their group number is identical. From this simulation, we
find that the idler wavelengths that satisfy the phase matching condition in our fiber
are 1527 nm, 1532 nm, 1535 nm and 1538 nm for modal combinations {p1, p2, s, i} of
{LP01, LP01, LP11, LP11}, {LP01, LP11, LP01, LP11} and {LP11, LP11, LP11, LP11}, {LP11, LP11,
LP01, LP01}, and {LP11, LP11, LP11, LP01}, respectively. The only idler wavelength which
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also satisfies energy conservation is λi = 1532 nm, which corresponds to {LP01, LP11, LP01,
LP11} and {LP11, LP11, LP11, LP11}. The other combinations are less likely to generate idler
beams, since only combinations that satisfy both phase matching condition and energy
conservation are likely.

For the combinations that are phase matched and conserve energy, we evaluate the
coupling coefficient between the modes, γ. We consider the spatial overlap integral as

γµνκζ = ∫∫
S LP∗

µ (ρ, ϕ, ωs)LPν(ρ, ϕ, ωp)LPκ(ρ, ϕ, ωp)LP∗
ζ (ρ, ϕ, ωi) ds(∫∫

S |LPµ(ρ, ϕ, ωs)|4 ds
∫∫

S |LPν(ρ, ϕ, ωp)|4 ds
∫∫

S |LPκ(ρ, ϕ, ωp)|4 ds
∫∫

S |LPζ(ρ, ϕ, ωi)|4 ds
)1/4

(4)

where LPξ(ρ, ϕ, ωp,s,i) is the propagating mode inside the GIMF at the modal order ξ.
We calculate the spatial overlap between the pump, signal, and idler waves in the

modal orders of LP01, LP11a, LP11b in all relevant permutations. When all four waves have
the same modal order, the coupling coefficient is unity (γ = 1), while odd combinations
of LP11a or LP11b at the integrand vanish due to symmetry (γ = 0). Therefore, the only
combinations with a non-trivial coupling are γ01,01,11a,11a = 0.5166, γ01,01,11b,11b = 0.5166,
and γ11a,11a,11b,11b = 0.3338.

In addition to the nonlinear interaction between the modes, the spatial modes are also
linearly coupled due to inhomogeneities in the fiber caused by stresses and temperature
gradients. However, this coupling linearly depends on the input power and we neglect it
by taking into account changes that are quadratic as a function of the input power.

Schematics of our experimental setup are shown in Figure 1. We use a 90 fs laser, with
an average intensity of 120 mW, and a repetition rate of 100 MHz. From this pulse, we
filter two bandwidths of 3 nm centered at different wavelengths of 1555 nm and 1565 nm
to obtain two pulses with 1 ps width as the pump and signal waves, respectively. We
excite with the signal pulse different modes in a few-mode fiber (FM GI-4, YOFC) with
an LP multiplexer (MUX) (LPMUX3-1550, Modular Photonics, Sydney, Australia). The
LP MUX has three single-mode inputs and one multimode output. Each single-mode
input is coupled to a different spatial mode at the multimode output. We connect the
MUX to the few-mode fiber, which supports the propagation of LP01, LP11a, LP11b and their
combinations. During the propagation in the few-mode fiber, all the spatial modes interact
with the other modes and transfer energy between them as a function of wavelength, time,
and power.

modal excitation

Graded-Index FMF
500 m

LP mux

LP01

LP11a

LP11b

Signal LP mux

LP01

LP11a

LP11b

SMF
250 m

CWDM
PumpHNLF

300 m

DCF
1000 m

Wavelength [nm]
1535 1575

Time [ns]
-2 2

SCOPEOSA

multimode temporal device

Figure 1. Schematics of the experimental setup. The two insets show representative results acquired
by the optical spectrum analyzer (OSA) and oscilloscope (Scope) when we excite LP11b. Solid, dashed,
and dotted curves represent output modes LP01, LP11a and LP11b, respectively.

We measure the output of the fiber with our multimode temporal device. We connect
the output of the few-mode fiber to a second LP MUX. The second LP MUX separates
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the different spatial modes into single-mode channels. We connect each single-mode
channel to a time lens, which measures the dynamics of the spatial modes with a high
temporal resolution. time lenses can perform temporal imaging of ultrafast signals [40].
Our time lenses are based on a four-wave mixing (FWM) process between a signal wave
and a chirped pump wave, which occurs in a highly nonlinear fiber (HNLF). We combine
the pump and signal waves with a Coarse Wavelength Division Multiplexer (CWDM)
before sending them into the HNLF. Since the pump frequency is linearly shifting in time,
according to ω(t) = αt, setting Ep(t) = Ap(t) exp iω(t)t + iβpz in Equation (1) results in

Ei(z, t) ∝ χ(3)E∗
s (t)A2

p(t)e
i2αt2

ei∆βz, (5)

where ∆β = 2βp − βs. Therefore, the idler wave is proportional to the signal wave multi-
plied by a quadratic phase shift in time, namely, a time lens. Such time lenses are highly
robust and impose large quadratic phase shifts on the input signals [41–43]. The temporal
magnification is given by [44]

M = −
β
(DCF)
2 LDCF

β
(SMF)
2 LSMF

, (6)

where β2 is the group velocity dispersion parameter of the fibers and L is the length of
the dispersion-compensating fiber (DCF) or SMF. The temporal imaging condition is [40]
1/βSMF

2 LSMF + 1/βDCF
2 LDCF = 1/ϕ

′′
f where ϕ

′′
f is the temporal focus of the time lens. In

our setup, the magnification is M = 8.46. The bandwidth of our oscilloscope is 16 GHz;
therefore, the temporal resolution in our setup is 7.38 ps and the spectral resolution is
0.19 nm.

By measuring the idler wave, we obtain the temporal magnification of the input signal,
and by measuring the signal wave, we obtain its Fourier transform. We measure either in
the time domain with an oscilloscope or in the spectral domain with an optical spectrum
analyzer. Measuring in the time domain enables single-shot measurements but requires
high output intensities, while measuring in the spectral domain has a higher sensitivity for
lower output intensities, but averages over several milliseconds. Due to a low idler intensity,
we measure in the spectral domain with its higher sensitivity. In this measurement, the
signal represents the temporal magnification, and the idler represents the Fourier transform
of the input.

3. Results

We measure the spectra of the signal and idler waves. The measured idlers have a
Gaussian spectral structure regardless of the input power, while the measured signals have a
complex spectral structure that changes as a function of the input power, as shown in Figure 2.
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Figure 2. Spectral structures of the measured (a) idler and (b) signal at output mode LP11b, when
exciting LP11a mode.
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First, we study the dynamics of a single spatial mode propagating in the few-mode
fiber. We excite a single spatial mode in the few-mode fiber, and measure the signal wave
at each output mode as a function of the input power. Each output mode has a different
spectral structure, with power peaks at different wavelengths. The peak power as a function
of the input power when we excite LP01 and measure LP01 is shown in Figure 3a, and when
we excite LP11a and measure LP11a is shown in Figure 3b. Both modes’ peak power as a
function of the input power follows a quadratic curve, indicating a nonlinear interaction.
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Figure 3. Peak power as a function of the input power for (a) input mode LP01 and output mode LP01

at 1566.04 nm, and (b) input mode LP11a and output mode LP11a at 1566.66 nm. The accuracy of the
fit is R2 = 0.9852 and R2 = 0.9787 for (a,b), respectively.

Next, we study the spectra of the output signal wave as a function of the input power
for each output mode. The representative results of the spectral structure, when we excite
and measure the same spatial modes, are presented in Figure 4a–c. As is evident, the
spectrum changes and broadens as we increase the input power, namely, we observe self-
phase modulation and modulation instabilities. The representative results of the spectral
structure, when we excite and measure different spatial modes, are presented in Figure 4d–f.
During the nonlinear interaction, the energy flows toward specific wavelengths, namely, it
flows towards 1566 nm, both 1566.5 nm and 1565 nm, and both 1567 nm and 1566.5 nm
in Figure 4d–f, respectively, as emphasized by the arrows. Specifically, we observe that it
is possible to receive energy in certain output modes although the overlap integral of the
energy transfer vanishes due to symmetry. We observe this cross-talk and energy transfer
in all the forbidden combinations. These measurements are supported by our numerical
simulations, which are presented in Section 4.
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Figure 4. Spectral structures of the output modes when (a) exciting LP01 and measuring LP01,
(b) exciting LP11a and measuring LP11a , (c) exciting LP11b and measuring LP11b , (d) exciting LP11a and
measuring LP01, (e) exciting LP11b and measuring LP11a, and (f) exciting LP11a and measuring LP11b

as a function of the input power. The different colors are for improving the visibility of the figure.
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Finally, we excite two modes simultaneously and study the dynamics as they prop-
agate in the fiber. For each combination of input modes, we measure the output mode,
and compare it to the combination of exciting each mode separately. Since the measured
idlers are Gaussian, we study the difference in the peak power between exciting a com-
bination of modes and exciting the modes separately. The representative results of the
output peak power of the idler for input mode combinations LP01 + LP11a, LP01 + LP11b,
and LP11a + LP11b are presented in Figure 5a, b, and c, respectively. The circles, stars, and
squares represent output modes LP01, LP11a and LP11b, respectively. These results indicate
that the energy flows from the two input modes, which are excited, towards the third
unexcited mode. In Figure 5a,b we observe the coupling between the different modes due
to cross-phase modulation. In Figure 5c we observe that the energy flows from LP11a and
LP11b towards LP01 with a higher efficiency than in Figure 5a,b, as we increase the input
power. This is consistent with spatial beam self-cleaning, where the light in the multimode
fiber tends to flows toward the low-order mode as we increase the input power.
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Figure 5. Difference in the peak power between exciting a combination of modes and exciting the
modes separately, as a function of the input power, for different input combinations: (a) LP01 + LP11a,
(b) LP01 + LP11b and (c) LP11a + LP11b. Circles, stars, and squares represent output modes LP01, LP11a

and LP11b, respectively.

For studying the dynamics in the time domain, we measure the signal wavelength,
which represents the temporal magnification. We study the spectral difference between
exciting a combination of modes and exciting the modes separately. In these measurements,
we detect the nonlinear interaction between the different modes. The representative results
of the output signal are shown in Figure 6. We observe the spectral difference in the
output for 17.4 dBm (red curves) and 8.5 dBm (blue curves) input power for all output
modes. The solid, dashed, and dotted curves represent output modes LP01, LP11a, and
LP11b, respectively. Input combinations of LP01 + LP11a, LP01 + LP11b, and LP11a + LP11b
are shown in Figure 6a, b, and c, respectively. The energy flows from wavelengths with a
negative difference towards wavelengths with a positive difference. This flow increases
as a function of the input power. From these measurements, we identify the wavelengths
where the symmetry in the overlap integral breaks. In these wavelengths, the modes can
transfer energy between them even when the overlap integral vanishes and the coupling
is zero.

While our system offers the advantage of high temporal resolution, it has several
limitations. The number of spatial modes we can measure and monitor depends on our
ability to separate them, namely, the distinguishability of our LP MUX, which degrades
as we increase the number of modes. Another limitation is the sensitivity of the fiber
to changes, such as temperature variations, physical bending, and mechanical stresses.
This sensitivity can cause modal dispersion and redundant coupling between the modes,
thereby limiting our ability to identify the nonlinear modal dynamics. We mitigate these
limitations by handling the fiber carefully and focusing only on dynamics that have a
quadratic power dependence.



Photonics 2024, 11, 591 7 of 9

P
o

w
e

r 
d

iff
e

re
n

ce
  [

m
W

]

-1

0

1

2

Wavelength [nm]

1564 1566 1568

(a)

-2

-1

0

1

2

Wavelength [nm]

1564 1566 1568

(b)

-2

LP
01

 17.4 dBm

LP
01

 8.5 dBm

LP
11a

 17.4 dBm

LP
11a

 8.5 dBm

LP
11b

 17.4 dBm

LP
11b

 8.5 dBm

-1

0

1

2

Wavelength [nm]

1564 1566 1568

(c)

-2
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4. Numerical Simulation

We numerically simulate the spectra of a pulse propagating in a few-mode fiber as
a function of the input power and modes. In the simulation, we consider both the linear
coupling due to inhomogeneities in the fiber and the nonlinear coupling due to nonlinear
processes. We model the linear coupling as a unitary transformation, with ≈1 values on
the main diagonal, and random smaller values at the off-diagonal. The fiber supports the
propagation of the first three modes; therefore, the dimension of the transformation is 3 × 3.
To ensure unitary transformation, we span this space with a linear combination of the
Gell-Mann matrices, with randomly generated weights. We model the nonlinear coupling
as a non-unitary transformation, with coupling values that result from FWM, SPM, XPM,
and modulation instability. Figure 7a–c show the representative simulated spectra when we
excite and measure the same spatial modes. Figure 7d–f show the representative simulated
spectra when we excite and measure the different spatial modes. Here, we calculate the
spectra for the same excitations as shown in Figure 4. We observe the same behavior as in
Figure 4; thus, we conclude that the numerical simulations have a qualitative agreement
with the experimental measurements.
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Figure 7. Numerical simulations of the spectral structures of the output modes when (a) exciting
LP01 and measuring LP01, (b) exciting LP11a and measuring LP11a , (c) exciting LP11b and measuring
LP11b , (d) exciting LP11a and measuring LP01, (e) exciting LP11b and measuring LP11a, and (f) exciting
LP11a and measuring LP11b as a function of the input power. The different colors are for improving
the visibility of the figure.

5. Conclusions

In this work, we present the experimental measurements of the spatio-temporal
dynamics of ultrashort pulses in a few-mode fiber. The measurements indicate that the
interactions between the different modes in the few-mode fiber are nonlinear. When we
excite a single spatial mode and measure it at the output of the fiber, we observe self-phase
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modulation and modulation instabilities. When we measure different output modes, we
observe the symmetry breaking of the spatial overlap integral at specific wavelengths,
leading to energy transfer and cross-talk between the modes at these wavelengths. When
we excite a combination of spatial modes, the two modes enhance the nonlinear interaction
of each mode separately, leading to increased output power at the third mode due to spatial
beam self-cleaning, FWM, and cross-phase modulations. Therefore, in this research, we
show that it is possible to transfer energy between the modes even when the overlap integral
vanishes and the coupling is zero. This cross-talk can lead to aberrations and distortion in
the output of a multimode temporal imaging system, thereby making a multimode time
lens a greater challenge than expected.
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