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Abstract: The main development direction for current solar technology is to improve absorption
efficiency and stability. To bridge this gap, we design in this paper a structure consisting of two
multilayer disc stacks of different radii, one topped by a TiO2 disc and the other by a cascade disc
stack composed of SiO2-Ti, for use in thermal emitters and solar absorbers. The innovation of our
work is the exploitation of multiple Fabry–Perot resonances in SiO2-Ti cascade optical cavities to
develop absorber bandwidths while investigating it in the field of thermal emission and many aspects
affecting the efficiency of the absorber. The finite difference time domain method (FDTD) results
show absorption averages as high as 96.68% with an absorption bandwidth of 2445 nm (A > 90%) at
280 nm–3000 nm solar incidence and even higher weighted averages as high as 98.48% at 1.5 solar air
mass (AM) illumination. In order to investigate the physical mechanisms of our designed absorber
in a high absorption state, we analyzed the electric field distributions of its four absorption peaks
and concluded that its high absorption is mainly caused by the coupling of multiple Fabry–Perot
resonance modes in the cascaded optical cavity. While considering this high efficiency, we also
investigated the effect of complex environments such as extreme high temperatures and changes in
the angle of incidence of the absorber, and the results show that the thermal radiation efficiency of the
emitter is 96.79% at an operating temperature of 1700 K, which is higher than its thermal radiation
efficiency of 96.38% at an operating temperature of 1500 K, which is a perfect result. On the other
hand, we conclude that the designed structure is independent of polarization, while the absorber still
has 88.22% absorption at incidence angles of up to 60◦, both in transverse electric (TE) and transverse
magnetic (TM) modes. The results of this study can help improve the performance of future solar
absorbers and expand their application areas.

Keywords: stacked structure; Fabry–Perot resonance; highly efficient broadband absorption; heat
resistance; angle insensitivity
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1. Introduction

With the large amounts of fossil fuels being consumed, research into diverse energy
sources for the future has led to extensive research around the globe, with photovoltaic
absorption technology developing extremely fast [1–4]. Eternal, clean solar energy could
be a good substitute for traditional energy sources to solve the growing energy needs
of mankind [5,6]. Nowadays, solar energy has been applied in the field of desalination,
greenhouse gas reduction, and energy conversion [7–10] and has a very promising future.
However, the efficiency of solar energy conversion has not been deemed satisfactory, and
many problems have been faced when investigating it in order to design a perfect absorber.
For example, the absorber has a narrow absorption bandwidth [11], the overall absorption
efficiency is not high [12], the material structure is not resistant to high temperatures [13], or
the absorption angle is too sensitive and not well adapted to actual environmental changes
and other shortcomings [14,15].

In order to make up for these shortcomings, people started with the material of ab-
sorbers [16] and found that nanoarray-placed precious metals have high optical absorption
and excellent electrical conductivity [17–19], which is good for solving the problem of
the low absorption rate of solar absorbers, but considering limited resources as well as
the cost [20,21], it has not been put into practical use in a large number of cases. Many
metamaterials have also been studied to achieve perfect performance with the use of ar-
tificially orientated synthetic materials, but the achieved performance is limited [22–25].
Considering the limitations of heavy metals and metamaterials, we choose Ti and its oxide
TiO2, which is a potential high-temperature material with a unique energy gap structure
that enhances the absorption of photons by the material, which is helpful in extending the
bandwidth [26]. And the refractory metal W with a certain thickness can prevent light
penetration well so that light will be reflected and scattered inside the absorber, which
can then absorb more solar energy well [27]. At the same time, Si and its oxide SiO2 both
have good light absorption ability, which makes their performance in the bandwidth of the
visible and near-infrared regions tend toward perfection [28]. On the other hand, Surface
Plasmon Resonance (SPR) due to shape structure has a significant impact on the absorber’s
performance [29–33]. In previous studies, the emergence of equal-width arranged struc-
tures of discs of different sizes [34], stacked structures of complex trapezoidal shapes [35],
and regularly arranged structures of elliptic and disc arrays [36] showed that highly ab-
sorbing physical properties are the result of both SPR and multiple resonance modes [37].
For nanomaterials, this effect is strongly followed by small shape structure changes in
the same material [38,39]. Therefore, designing unique shapes to create enhanced local
electromagnetic fields on the surface of metallic or semiconducting nanomaterials can
help concentrate sunlight near the surface of nanostructures [40–42], which improves the
light–absorber interaction to increase overall absorption efficiency. And in many studies,
SPR technology has been used as a main idea to improve the performance of solar absorbers
in a targeted manner.

At the same time, thermal radiation, as a way of transferring energy, is also an indis-
pensable factor in the study of absorbers. Absorbers transfer energy with their surroundings
by emitting electromagnetic waves, mainly in the infrared band [43], and when subjected
to thermal radiation from the environment, resulting in an increase in temperature on
the surface as well as inside the absorber, the elevated temperature is converted into heat
energy and lost according to the law of the conservation of energy [44]. At the same time,
excessively high temperatures may also damage materials and structures with low melting
points, greatly reducing their ability to absorb solar energy.

For this reason, we designed a multilayer stacked nanoarray structure. Firstly, TiO2
discs were introduced in the top layer, and the SPR phenomenon enhanced absorption
in the visible wavelength band, followed by the introduction of a cascade disc optical
cavity composed of SiO2-Ti. The coupling effect of multiple Fabry–Perot resonances in this
optical cavity maintained absorption in the infrared wavelength band, and the coupling
effects of the different resonances provided ideas for high-efficiency absorption at long
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wavelengths for the absorber in the future. The bottom layer was made of Si and W films as
the substrate to further improve light absorption and block light transmission, respectively.
The simulation shows that the bandwidth with absorption greater than 90% is 2445 nm, the
bandwidth with absorption greater than 95% is 2311 nm, and the average absorption in this
bandwidth reaches an amazing 98.42%. At 444.5 nm, 980.5 nm, 1796 nm, and 2390.5 nm
(visible infrared band), the absorption rates are all approximately 99% with nearly perfect
absorption. We also studied the radiation effect at high temperatures of 1500 K and 1700 K.
The radiation efficiencies of the two are 96.38% and 96.79%, respectively.

2. Modeling and Structural Parameters of the Absorber

Figure 1a depicts a solar absorber under solar radiation. The structure consists of a
periodic array of refractory tungsten and silicon films with a structural period of P = 400 nm,
and a silicon film with a thickness of H1 = 50 nm is used to provide excellent light absorption
and thermal conductivity. An opaque tungsten metal film with a thickness of D1 = 150 nm
was used as a substrate to eliminate light transmission. The uppermost layer is a titanium
dioxide disc with a thickness of H3 = 200 nm and a radius of R1 = 80 nm. Titanium dioxide
is widely used for solar energy utilization due to its low cost, high temperature resistance,
and excellent optical and electrical properties [45]. On the other hand, SiO2, as a common
nanomaterial for absorbers, improves absorption by reducing reflected light in the absorber
cavity, and for this purpose, a multilayer absorber disc structure with cascaded optical
cavities consisting of Ti and SiO2 between the substrate and TiO2 discs was designed.
This multilayer disc structure has a radius of R2 = 150 nm, where the SiO2 and Ti films
form an optical cavity, which mainly generates multiple Fabry–Perot resonance modes
coupled with SPR resonance modes to capture sunlight, thus enhancing the absorption
effect. The thickness of the SiO2 film is H2 = 50 nm, and the thickness of the Ti film is
D3 = 10 nm. A thick Ti film deposited on the substrate was used as the last optical cavity,
with a thickness of D2 = 150 nm [46]. We used planar light with wavelengths from 280 nm
to 3000 nm illuminated from above the Z-axis to compute a given model structure while
making exactly matched layers in the Z-direction with periodic boundary conditions in
the X- and Y-directions. We used a mesh precision of 5 and further divided the thinnest Ti
disc structure in the cascade optical cavity with a finer mesh precision of 2. The dielectric
constants of Ti, TiO2, Si, SiO2, and W were taken from Palik [47]. The light absorption can
be expressed as A = 1 − T − R [48]. Since the transmittance is cancelled out completely, it
is shown that T = 0. Therefore, the absorptivity can be expressed as A = 1 − R.
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3. Results and Discussion

The absorption is shown in Figure 1b, where it can be seen that the structure exhibits
efficient absorption in selected spectra. It can be seen that the average absorption from
280 nm to 2725 nm is as high as 98.12% (A > 90%), with a bandwidth of 2445 nm, which
covers the important visible absorption range. It is noteworthy that this also includes the
A > 95% band with a bandwidth of 2311 nm, which indicates that the absorber achieves
a high-efficiency absorption of A > 95% for most of the available bands. On the other
hand, the main absorption losses are in the mid-infrared band after 2390.5 nm. Meanwhile,
the innovation of this work is to exploit the multiple Fabry–Perot resonances in the SiO2-
Ti cascade optical cavity to increase the absorber’s bandwidth, and in order to discuss
later why we can achieve such smooth and highly efficient absorption, we chose four
wavelengths with near-perfect absorption intensities, namely λ = 444.5 nm, 980.5 nm,
1796 nm, and 2390.5 nm, respectively. Their absorption intensities reach 99.788%, 99.025%,
98.568%, and 99.463%, respectively, and will be discussed later.

In order to make the simulated near-perfect absorber’s results more reliable, we
also investigated its spectral absorptivity when placed under AM1.5. The global spectral
equation for AM1.5 incident solar energy is given by Formula (1) [49,50]:

ηA =

∫ λMax
λMin

A(w)IAM1.5(w)dw∫ λMax
λMin

IAM1.5(w)dw
(1)

where IAM1.5 (w) is the solar spectral distribution under AM1.5 conditions, and A(w) is the
absorptivity of the absorber. Figure 2a shows the energy from the sunlight absorbed and
lost by the absorber under AM1.5, with the red region being the absorbed energy and the
black region being the lost energy. It can be seen that solar energy is mainly absorbed in
the 300–2500 nm band. Meanwhile, the weighted average absorption in the overall band
reaches 98.48%, indicating that the absorber loss is very small, which is attributed to a
series of effects from multiple light reflections between the designed cascade optical cavity
based on the Ti and SiO2 discs.
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Figure 2. (a,b) Solar energy absorption and loss profile under AM1.5 from 280 nm to 3000 nm.

And in Figure 2b, the red region is the energy spectrum at AM1.5, and the black region
is the absorption energy spectrum, which shows that the efficient wavelength range of
the solar radiant energy of the absorber is concentrated in the near-UV, visible, and near-
infrared bands. The simulation results show that the solar radiation energy spectrum in the
AM1.5 band almost coincides with the absorption energy spectrum, and the absorber has a
high absorption rate in this band (the average absorption rate, A, from 300 nm to 2500 nm
is as high as 98.47%), which confirms that our design for this solar absorber absorbs solar
energy very well [51,52].
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We also chose 1500 K and the approximate melting point of silicon, which has the
lowest melting point among the absorber materials (1700 K), as the simulated ambient
temperatures to study the intensity of the thermal emission from the absorber. Figure 3a,b
show the thermal emission characteristics of the absorber at elevated temperatures of
1500 K and 1700 K, respectively. In order to evaluate the thermal emission characteristics
of the solar absorber, we defined the parameter thermal radiation efficiency (ηE) using
Formula (2) [53,54]:

ηE =

∫ λMax
λMin

ε(w)·IBE(w, T)dw∫ λMax
λMin

IBE(w, T)dw
(2)

where IBE (w, T) is the ideal blackbody spectral intensity at frequency w and temperature T,
and ε(w) is the absorptivity of the surface of the object. As shown in Figure 3a, at a high
temperature of 1500 K, we find that only the band around 1500 nm and the infrared band
above 2500 nm have a small energy radiation loss, and in all other wavelength ranges,
the radiators show a very good fit with the ideal blackbody model, and at this time, the
radiation efficiency is 96.38%. As shown in Figure 3b, the losses in the bands around
1500 nm and in the infrared bands above 2500 nm are further compensated at 1700 K, and
the thermal radiation efficiency is 96.79%. Since Si has the lowest melting point among the
absorber materials we chose, about 1700 K, and any higher temperature would destroy
the original absorber structure and material properties, only high temperatures up to
1700 K were investigated, and 1500 K was chosen as a control. It was also concluded that
the thermal radiation efficiency of the structure increases with increasing temperature at
1700 K. This is in accordance with the theory in [55], as, at this point, the radiator already
exhibits extremely high spectral energy radiation, allowing the radiator to be in the range
of 280–2500 nm, showing perfect emission intensity, which further shows that this radiator
performs perfectly at high temperatures.
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In addition to this, other typical solar absorbers were chosen to compare their results
to highlight the superiority of our simulation model. Most of these articles do not analyze
the thermal radiation aspect of them, but this does not mean that this aspect is not impor-
tant. On the contrary, the study of thermal radiators provides a viable way to implement
blackbody thermal emission or light sources. The detailed comparison results are shown in
Table 1.
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Table 1. Performance comparison of different absorbers.

Ref. Materials >90% Absorption
Bandwidth

Average Absorption
Rate

Maximum
Absorption Rate

Optimum Operating
Temperature

[34] Ti-SiO2 1007 nm 91.4%
(400–2000 nm) 97.5% /

[35] Metal-Al2O3-SiO2 1700 nm 95%
(300–2000 nm) 99% 400 K

[36] W-MoS2-SiO2-Fe 1750 nm 88.3%
(280–2030 nm) 99.6% /

[46] Ti-SiO2-Si 2100 nm 97.97%
(400 nm–2500 nm) / /

[56] TiN-Ti-SiO2 1182 nm / 96% /

[57] Ni-SiO2-W-TiO2 1609 nm 96%
(371–1858 nm) 95.57% 373.15 K

proposed Ti-TiO2-Si-SiO2-W 2445 nm 98.42%
(309.5–2620.5 nm) 99.788% 1700 K

SPR in semiconductor nanocrystals as a near-field enhancement phenomenon enables
an absorber to obtain light with maximum absorption at the nanoscale level [58,59]. As
shown in Figure 4, in order to investigate the stable absorption of the absorber and further
physical mechanisms at high radiation intensities, we calculated the electric field of the
absorber at the four absorption peak intensities and have included the XOY cross-section
and XOZ cross-section of their electric field distributions to illustrate the reasoning.
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diagram of the absorber in the XOZ plane.

Figure 4a,e show that at 444.5 nm, the electric field is mainly distributed on the surface
of the TiO2 disc and at the junction of the Ti and SiO2 discs, which suggests that the strong
absorption at 444.5 nm is induced by the coupling of the SPR of the TiO2 discs and the
multiple Fabry–Perot resonance modes at the junction of the Ti and SiO2 discs, which helps
maintain the high efficiency of absorption in the visible range. Figure 4b,f show that at
980.5 nm, the influence of the TiO2 disc surface plasma on the absorber diminishes, and
the electric field is concentrated in the corner surface region of the cascaded optical cavity
multilayer absorber disc array consisting of Ti and SiO2, where the absorption peaks in
the corner surface region are determined by the SPR. Figure 4c,d,g,h show that the electric
field strength in the corner of the TiO2 disc increases with increasing wavelength, and the
plasma resonance effect in the disc part of the cascade optical cavity is also transferred to
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the lowest Ti disc, but there is no coupling of multiple Fabry–Perot resonance modes at the
junction of the Ti and SiO2 discs. On the other hand, with the increase in wavelength after
2390.5 nm in the mid-infrared region, the plasma resonance effect is rapidly transferred
from the cascade optical cavity to the bottom of the absorber, so the absorption efficiency
of the absorber is strongly affected by the SPR effect in the unique cascade optical cavity
designed by us. This leads to a decrease in the absorption in the mid-infrared band after
a wavelength of 2390.5 nm. In summary, we can conclude that the smooth broadband
absorption and efficient emission of our absorber are dominated by the SPR of the discs
and the coupling of multiple Fabry–Perot resonance modes in the cascade optical cavity,
where the multiple Fabry–Perot resonance modes in the cascade optical cavity are the main
influences on the absorption. Included in this, in the mid-infrared region, the absorption
efficiency of the absorber in the wavelength range after 2390.5 nm is mainly affected by
the transfer of the plasma resonance to the bottom layer, while a deeper reason is the fact
that the absorption efficiency is limited by the compatibility between the SiO2-Ti cascade
optical cavities of our design as well as the structure of the absorber. In order to reduce the
absorption loss, future solar absorbers can be investigated with semiconductor materials
with better Fabry–Perot resonance coupling.

Since the size structure of the model largely determines the SPR of the nanomateri-
als and thus the absorption properties, there is a pressing need to analyze the different
shape structures [60]. Figure 5a shows six cases of different shape structures. Figure 5b
shows the absorption of the six different model structures at incident light wavelengths
of 280 nm–3000 nm. In these six cases, the structural parameters of the material and the
thickness and radius of the film and disc are the same.
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six shapes.

As shown in Figure 5b, the difference between case 1 and case 3 is the number of layers
in the cascade optical cavity in the middle of our designed absorber, with case 1 having one
less recirculation layer than case 3. It can be clearly seen that the overall absorption in the
absorption efficiency plot for case 1 is significantly smaller than that for case 3, which is due
to the reduced action of the Fabry–Perot resonance coupling therein, suggesting that more
than one resonance cavity contributes to the improvement in the overall absorption [61,62].
For cases 2 and 3, the stacking of thinner metal discs of Ti in the SiO2 discs produces a
large difference in absorption in the NIR ranges of 1490 nm to 1600 nm, respectively, with
better absorption compared to a single conventional dielectric SiO2 disc structure, which
reinforces the novelty of our work in introducing SiO2-Ti cascade optical cavities [63,64].
Meanwhile, case 3, compared to the designed structure, lacks a top TiO2 disc, and the
absorption is much worse than that in case 6, both in the visible wavelength range at the
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absorption peak at 432 nm and in the infrared wavelength range after the absorption peak
at 1600 nm. So, we explored the effect of the radius of the TiO2 disc and found that the
absorption of the TiO2 disc with a large radius fluctuates significantly after continuous
optimization. After continuous optimization, we finally determined the optimal coupling
radius between the TiO2 disc and the lower cascade optical cavity.

In order to confirm the superiority of the chosen material, we replaced the material in
the structure in order to study its absorption properties, as shown in Figure 6. Since the
broadband absorption of our designed absorber is a result of the combined effect of the SPR
properties of the material and the multiple Fabry–Perot resonances in the cascade optical
cavity [65], this also confirms the excellent fit of the absorption between the designed TiO2,
SiO2, and Ti discs. In order to investigate whether there is that kind of coupling between
combinations of other materials, we verified it with the absorption efficiency. For this
purpose, we compared cases 1 and 2 and case 4 by replacing the SiO2-Ti cascade optical
cavity discs with SiO2-TiN versus SiO2-Cr structures for observation, respectively. TiN
is a better refractory and high-temperature-resistant material than Ti and is commonly
used in the fabrication of a wide range of solar absorbers [66]. After the replacement of the
SiO2-TiN cascade optical cavity, the absorption in the near-infrared range was unstable,
the absorption spectrum showed obvious fluctuations, and the absorption effect in the
band never exceeded that of Ti, which is obviously not the result we want. The absorption
after replacing the precious metal Cr was even more obviously decreased and unstable,
so we did not carry out too much research on this. In case 3, we replaced the top TiO2
disc with another kind of oxide, Al2O3. As can be seen in Figure 6b, case 3 makes up for
the disadvantage of the absorption of the TiO2 disc near 1500 nm, but with an increase
in NIR wavelengths after 1500 nm, this advantage is rapidly weakened, and the average
absorption rate of the disc is 94.54% from 280 nm to 3000 nm, which is far inferior to that
of our designed material. For this reason, we chose the SiO2-Ti optical cavity, with stable
absorption at 280 nm–3000 nm.
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The complex structure of our design makes it difficult to manufacture the absorber,
so in daily industrial production, the product will have unavoidable errors. In order to
study the effect of these small errors on the absorber, we chose four typical structural
parameters in order to explore their effect on the absorber’s absorption. Figure 7a shows a
light absorption diagram of the structure with the period increasing from 350 nm to 450 nm
and a period interval of 25 nm, and it can be seen that the absorption of the absorber
fluctuates over a large range in the whole wavelength band, no matter whether the period,
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P, is increased from 400 nm to 450 nm or decreased to 350 nm. In the visible band, the
absorption at P = 400 nm is more stable than all the other parameters. Figure 7b shows the
absorption spectra of the Ti disc in the last resonant cavity in the cascade optical cavity with
the height, D2, increased from 100 nm to 200 nm. During the electric field analysis of the
absorber, we learned that the strong absorption of visible light is caused by the coupling
of the SPR of the TiO2 disc with multiple Fabry–Perot resonance modes at the junction of
the Ti and SiO2 discs. So, as D2 increases, it enhances the Fabry–Perot resonance in the
cascade optical cavity, which explains why the absorber absorbs better than at D2 = 150 nm
in the visible band when D2 increases from 150 nm to 200 nm in Figure 7b. However, after
that, in the near-infrared wavelength band, this advantage quickly ceases to exist as the
Fabry–Perot resonance decreases for the absorber. Figure 7c,d show the variation in the
structural parameters for two thicknesses of the Si film, H1, and the SiO2 disc, H2. In the
absorber, the Si film in the substrate does not participate in the near-field coupling; it serves
to enhance the multiple absorptions of sunlight in the cascade optical cavity, which largely
determines the absorption of light in the absorber. As shown in Figure 7c, with the increase
in H1 to 30 nm so that the light is absorbed several times in the cavity, it can be clearly seen
that the absorption in the near-infrared wavelength band is gradually enhanced, and the
average absorptions in the range of 780 nm–2500 nm are 96.13%, 97.57%, 98.6%, 98.75%,
and 98.95% in that order. However, this does not mean the larger the thickness of H1, the
better, and this effect is seen in general in the visible wavelength band. After continuous
optimization, H1 = 50 nm was finally determined to be the optimal parameter. Figure 7d
shows that the absorption of the SiO2 disc with thickness H2 in a multilayer absorbing
structural layer increased from 30 nm to 70 nm. As can be seen from the figure, our design
of H2 = 50 nm is always in the middle of the five cases for a given range of wavelengths,
and an efficient and stable absorption case is desirable.
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Figure 7. (a) is the absorption spectrum of the absorber period, P, increasing over a 25 nm gradient
from 350 nm to 450 nm. (b) is the absorption spectrum of the underlying Ti thickness increasing over
a 25 nm gradient from 100 nm to 200 nm. (c) is the absorption spectrum of the Si thickness increasing
over a 10 nm gradient from 30 nm to 70 nm. (d) is the absorption spectrum of the SiO2 thickness in a
cascade optical cavity increasing over a 10 nm gradient from 30 nm to 70 nm.

We chose three wavelengths in the figure, 444.5 nm, 1544 nm, and 2390.5 nm, for
our analysis. At a wavelength of 1544 nm, the absorption peaks are seen at H2 = 30 nm
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and H2 = 40 nm, which are related to the SPR effect at the rounded corners of Ti, but this
coupling enhancement drops off very quickly, which also makes the overall absorption
efficiency less favorable. The same absorption peaks appear at wavelengths of 444.5 nm
and 2390.5 nm for the three cases at H2 = 50, 60, and 70 nm, and the physical mechanism
behind them, which we explained during the electric field analysis, cannot be separated
from the coupling effect of the SPR with the Fabry–Perot resonance. After that, we conclude
that the increase in the thickness of the SiO2 discs increases the distance between the Ti
discs in the cascade optical cavity, which leads to a decrease in the near-field coupling of
the SPR, and the achieved absorption is ultimately poor, so we determine that H2 = 50 nm
is optimal.

For solar absorbers, it is usually necessary to take into account that the actual sunlight
is incident from more than one direction, which requires that the absorber we design fulfill
the requirement of being angle-insensitive [67]. As shown in Figure 8a,b, we simulate the
absorbance maps of the absorber in TE (red) mode and TM (black) mode and give the
normalized absorption spectra when the normal polarization angle is varied over a range
of 0◦–90◦ (TM polarization to TE polarization). We can find that the absorption curves
of the two modes completely overlap, and there is no change in the absorption at each
polarization angle as the polarization angle increases from 0◦ to 90◦, which is due to the
fact that we designed the structure to be completely symmetric. Figure 8c,d show spectral
plots of the change in absorbance in the TE and TM modes with the incidence angle varying
from 0◦ to 60◦. In this case, the absorption spectra of both the TE and TM polarization
modes are the same, and the average absorptivity of the absorber remains at 88.22% in
both polarization modes. Ultra-broadband perfect absorption is achieved at a bandwidth
of 2263.5 nm (280 nm–2543.5 nm) (A > 80%) when the angle of incidence is increased up to
60◦. It was also found that the permittivity of the waveguide layer decreases as the angle of
incidence is increased, which leads to the phenomenon of absorption blueshift [68–71]. The
results show that our designed symmetric broadband absorber can absorb independent of
polarization as well as being insensitive to the incident angle.
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4. Conclusions

In conclusion, the solar absorber we simulated is a high-efficiency broadband absorber,
and the physical mechanism of its high-efficiency absorption mainly lies in the coupling
effect between the SPR on the absorber surface and the Fabry–Perot resonance modes under
the cascaded disc’s optical cavity, which results in an average absorptivity of 96.68% in the
wavelength band 280 nm–3000 nm, with an absorption bandwidth of 2445 nm (A > 90%)
and a weighted average solar absorptivity of 98.48% under AM1.5 irradiation. Meanwhile,
the thermal radiation efficiency is 96.38% at 1500 K and 96.79% at 1700 K. On the other hand,
the material we chose well enhances the absorber’s characteristics of high temperature
resistance. At the same time, we found that its high efficiency performance did not drop
significantly when we probed for errors in the geometrical parameters of its structure, and
its excellent performance far exceeds that of comparable absorbers. Its high efficiency in
absorbing incident light at a wide angle in the 280 nm–3000 nm band and its insensitivity
to polarization demonstrate its suitability for more complex environments.
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