Demonstration of a Low-SWaP Terminal for Ground-to-Air Single-Mode Fiber Coupled Laser Links
Abstract
:1. Introduction
2. Methods
2.1. Ground Segment
2.1.1. Optical Terminal
2.1.2. Initial Acquisition
2.1.3. Target Identification and Tracking
2.1.4. TT Adaptive Optics
2.2. Air Segment
2.2.1. Optical Payload
2.2.2. Flight Dynamics
3. Results and Discussion
3.1. Acquisition and Tracking
3.2. Optical Link
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADS-B | automatic dependent surveillance–broadcast |
AO | adaptive optics |
APD | avalanche photodiode |
CCR | corner-cube retroreflector |
COTS | commercial off-the-shelf |
EM | electromagnetic |
FOV | field of view |
FSO | Free-space optical |
GUI | graphical user interface |
MV | machine vision |
PID | proportional, integral, derivative |
PSD | power spectral density |
RMS | root-mean-square |
SMF | single-mode fiber |
SWaP | size, weight, and power |
SWIR | short-wave infrared |
TT | tip/tilt |
UWA | University of Western Australia. |
References
- Horyna, J.; Walter, V.; Saska, M. UVDAR-COM: UV-based relative localization of UAVs with integrated optical communication. In Proceedings of the 2022 International Conference on Unmanned Aircraft Systems (ICUAS), Dubrovnik, Croatia, 21–24 June 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1302–1308. [Google Scholar]
- Yang, T.; Li, J.; Feng, H.; Cheng, N.; Guan, W. A Novel Transmission Scheduling Based on Deep Reinforcement Learning in Software-Defined Maritime Communication Networks. IEEE Trans. Cogn. Commun. Netw. 2019, 5, 1155–1166. [Google Scholar] [CrossRef]
- Rehmus, P.; Congress of the United States, Congressional Budget Office. The Armys Bandwidth Bottleneck; Congress of the United States, Congressional Budget Office: Washington, DC, USA, 2003.
- Davidson, R.; Bridges, C.P. Adaptive multispectral GPU accelerated architecture for Earth Observation satellites. In Proceedings of the 2016 IEEE International Conference on Imaging Systems and Techniques (IST), Chania, Greece, 4–6 October 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 117–122. [Google Scholar]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Ghatak, A.K. Fibre Optics and Optical Communications: A Perspective. Iete Tech. Rev. 1990, 7, 229–246. [Google Scholar] [CrossRef]
- Ip, E.; Lau, A.P.T.; Barros, D.J.; Kahn, J.M. Coherent detection in optical fiber systems. Opt. Express 2008, 16, 753–791. [Google Scholar] [CrossRef] [PubMed]
- Sisodia, M.; Omshankar; Venkataraman, V.; Ghosh, J. FSO-QKD protocols under free-space losses and device imperfections: A comparative study. Quantum Inf. Process. 2024, 23, 185. [Google Scholar] [CrossRef]
- Kaymak, Y.; Rojas-Cessa, R.; Feng, J.; Ansari, N.; Zhou, M.; Zhang, T. A survey on acquisition, tracking, and pointing mechanisms for mobile free-space optical communications. IEEE Commun. Surv. Tutorials 2018, 20, 1104–1123. [Google Scholar] [CrossRef]
- Strohbehn, J.W. Line-of-sight wave propagation through the turbulent atmosphere. Proc. IEEE 1968, 56, 1301–1318. [Google Scholar] [CrossRef]
- Ricklin, J.C.; Hammel, S.M.; Eaton, F.D.; Lachinova, S.L. Atmospheric channel effects on free-space laser communication. J. Opt. Fiber Commun. Rep. 2006, 3, 111–158. [Google Scholar] [CrossRef]
- Chen, C.; Grier, A.; Malfa, M.; Booen, E.; Harding, H.; Xia, C.; Hunwardsen, M.; Demers, J.; Kudinov, K.; Mak, G.; et al. Demonstration of a bidirectional coherent air-to-ground optical link. In Proceedings of the Free-Space Laser Communication and Atmospheric Propagation XXX, San Francisco, CA, USA, 29–30 January 2018; SPIE: St Bellingham, WA, USA, 2018; Volume 10524, pp. 120–134. [Google Scholar]
- Moll, F.; Horwath, J.; Shrestha, A.; Brechtelsbauer, M.; Fuchs, C.; Navajas, L.A.M.; Souto, A.M.L.; Gonzalez, D.D. Demonstration of high-rate laser communications from a fast airborne platform. IEEE J. Sel. Areas Commun. 2015, 33, 1985–1995. [Google Scholar] [CrossRef]
- Walther, F.G.; Michael, S.; Parenti, R.R.; Taylor, J.A. Air-to-ground lasercom system demonstration design overview and results summary. In Proceedings of the Free-Space Laser Communications X; SPIE: San Diego, CA, USA, 2010; Volume 7814, pp. 256–264. [Google Scholar]
- Walsh, S.M.; Karpathakis, S.F.; McCann, A.S.; Dix-Matthews, B.P.; Frost, A.M.; Gozzard, D.R.; Gravestock, C.T.; Schediwy, S.W. Demonstration of 100 Gbps coherent free-space optical communications at LEO tracking rates. Sci. Rep. 2022, 12, 18345. [Google Scholar] [CrossRef] [PubMed]
- Karpathakis, S.F.; Dix-Matthews, B.P.; Gozzard, D.R.; Schediwy, S.W. High-bandwidth coherent optical communication over 10.3 km of turbulent air. Appl. Opt. 2023, 62, G85–G89. [Google Scholar] [CrossRef] [PubMed]
- Trinh, P.V.; Carrasco-Casado, A.; Okura, T.; Tsuji, H.; Kolev, D.R.; Shiratama, K.; Munemasa, Y.; Toyoshima, M. Experimental channel statistics of drone-to-ground retro-reflected FSO links with fine-tracking systems. IEEE Access 2021, 9, 137148–137164. [Google Scholar] [CrossRef]
- Civil Aviation Safety Authority. Part 91 Manual of Standards: Division 26.16 ‘Surveillance Equipment’. Available online: https://www.casa.gov.au/part-91-manual-standards (accessed on 19 October 2023).
- Bradski, G. The opencv library. In Dr. Dobb’s Journal: Software Tools for the Professional Programmer; OpenCV team: Palo Alto, CA, USA, 2000; Volume 25, pp. 120–123. [Google Scholar]
- Frost, A.; Dix-Matthews, B.P.; Walsh, S.M.; Gozzard, D.R.; Schediwy, S.W. Optimal Design of Small Aperture Optical Terminals for Free-Space Links. Centre for Radio Astronomy Research, The University of Western Australia, Perth, Australia. 2024; in preparation. [Google Scholar]
Parameters | Value | |
---|---|---|
Transmitted fiber power | 33 | dBm |
Geometric loss (10 km folded) | dB | |
Terminal losses | dB | |
Fiber coupling | dB | |
Unrelated experiment | dB | |
Received power | dBm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McCann, A.; Frost, A.; Karpathakis, S.; Dix-Matthews, B.; Gozzard, D.; Walsh, S.; Schediwy, S. Demonstration of a Low-SWaP Terminal for Ground-to-Air Single-Mode Fiber Coupled Laser Links. Photonics 2024, 11, 633. https://doi.org/10.3390/photonics11070633
McCann A, Frost A, Karpathakis S, Dix-Matthews B, Gozzard D, Walsh S, Schediwy S. Demonstration of a Low-SWaP Terminal for Ground-to-Air Single-Mode Fiber Coupled Laser Links. Photonics. 2024; 11(7):633. https://doi.org/10.3390/photonics11070633
Chicago/Turabian StyleMcCann, Ayden, Alex Frost, Skevos Karpathakis, Benjamin Dix-Matthews, David Gozzard, Shane Walsh, and Sascha Schediwy. 2024. "Demonstration of a Low-SWaP Terminal for Ground-to-Air Single-Mode Fiber Coupled Laser Links" Photonics 11, no. 7: 633. https://doi.org/10.3390/photonics11070633
APA StyleMcCann, A., Frost, A., Karpathakis, S., Dix-Matthews, B., Gozzard, D., Walsh, S., & Schediwy, S. (2024). Demonstration of a Low-SWaP Terminal for Ground-to-Air Single-Mode Fiber Coupled Laser Links. Photonics, 11(7), 633. https://doi.org/10.3390/photonics11070633