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Abstract: The precise thermal control of aerial cameras is crucial for the acquisition of high-resolution
imagery, and an accurate temperature prediction is essential to achieve this. This paper presents
a methodology for modifying thermal network models to improve the accuracy of temperature
prediction for aerial cameras. Seven types of thermal parameters are extracted from the thermal
network model, and a thermally sensitive analysis identifies eleven key parameters to streamline
the processing time. Departing from traditional methods that rely on steady-state data, this study
conducts transient thermal tests and leverages polynomial fitting to facilitate thorough parameter
modification. To ensure data reliability, the Monte-Carlo algorithm is employed to explore the param-
eter spaces of key parameters, analyzing temperature errors. Subsequently, the Least-Squares method
is utilized to obtain optimal estimates of the key parameter values. As a result, the updated model
demonstrates significantly improved accuracy in temperature predictions, achieving a reduction in
the maximum absolute error between the predicted and experimental results from 22 ◦C to 4 ◦C, and
a lowering of the relative error from 33.8% to 6.1%. The proposed modification method validates its
effectiveness in modeling and enhancing the precision of thermal network models for aerial cameras.

Keywords: aerial camera; thermal network model; parameter modification; Monte-Carlo algorithm;
least-squares method

1. Introduction

Aerial cameras, as precision optical instruments, require stringent machining and
assembly tolerances, and exhibit remarkable sensitivity to their surrounding environment.
Operating under intricate and dynamic conditions, temperature fluctuations play a crucial
role in significantly affecting the imaging quality [1–4]. Therefore, a thermal optimization
design is paramount for achieving high resolution and reliability in optical systems. This
optimization heavily relies on accurate predictions of thermal characteristics derived from
a thorough thermal analysis. However, the intricate internal structure of aerial imaging
systems, coupled with the constantly fluctuating external thermal environment, poses
significant challenges in thermal analysis and temperature calculations [5–8]. The lumped-
parameter thermal network (LPTN) model, which leverages the analogies between heat
transfer and electrical conduction processes, offers a practical and effective means for
estimating the temperature of aerial cameras [9–11].

However, the development of a lumped-parameter thermal network (LPTN) model
inherently involves approximations and assumptions that may introduce modeling in-
accuracies. Differences in processing methods, surface characteristics, and the dynamic
environmental conditions can create discrepancies between physical properties and the
estimated parameter values. Additionally, accurately determining the contact heat transfer
coefficient and convection heat transfer coefficient can be a challenging task, potentially
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leading to inaccuracies in the thermal network model’s parameter values. Consequently,
it is crucial to refine the LPTN model to achieve more precise predictions of temperature
distributions within aerial camera systems [12,13].

Numerous researchers have delved deeply into the correction of thermal networks
pertaining to aerospace instruments. Toussaint et al. [14] initially proposed a systematic
method for correcting satellite thermal network models, which was founded on experimen-
tal data from thermal balance tests. Shimoji et al. [15] further refined crucial parameters
of the thermal network by utilizing statistical regression analysis. Weng and Papalexan-
dris [16,17] leveraged the Least-Squares method to update the parameter values of thermal
network models. Beck et al. [18] successfully applied the particle swarm optimization
technique to adjust thermal model parameters, with a primary focus on linear conductivity.
Torralbo et al. [19] employed the Jacobian matrix formulation along with the Moore–Penrose
pseudo-inverse to effectively minimize parameter uncertainty within the thermal mathe-
matical model. Cui et al. [20] introduced a thermal model updating method that utilized the
Kriging model as a surrogate model to optimize the thermal design parameters of a solar
spectrometer, rather than relying on direct iterations of finite element analysis. Li et al. [21]
integrated Latin hypercube sampling with the coordinate rotation method to enhance the
accuracy of the spacecraft’s thermal analysis model.

Herrera and Sepúlveda [22] were the pioneers in applying the Monte-Carlo stochastic
approximation method to satellite thermal analysis. Cheng et al. [23] successfully refined
the thermal model of a thermally controlled satellite in ground test conditions by leveraging
the Monte Carlo hybrid algorithm. Zhang et al. [24] corrected the sensitive parameters of a
small satellite using the Monte-Carlo mixed method, which involved classification layer
by layer. Shi et al. [25] developed a predictor-corrector Monte-Carlo method, resulting
in more precise solutions for the thermal radiative transfer equations. Gómez et al. [26]
developed a new method based on statistical error analysis and the Monte-Carlo method
for an uncertainty calculation in spacecraft thermal control and design. Furthermore,
Anglada et al. [27] presented the validation of the genetic algorithm to correlate thermal
mathematical models of space vehicles. Garmendia et al. [28] examined the correlation of a
small–medium-size thermal model of space instruments using genetic algorithms.

Nevertheless, there has been a paucity of research into the modification of thermal
network models for aerial cameras, particularly when considering convective heat transfer.
Furthermore, most existing thermal network corrections are based on experimental steady-
state thermal data, which require a lengthy and costly testing period. Consequently, the
amount of experimental data available to perform corrections for all thermal network
parameters is often insufficient to meet the demands of the task.

The present study aims to refine the parameters of thermal network models for
aerial cameras by employing a combined approach of the Monte-Carlo and Least-Squares
methods. The objective is to enhance the precision of temperature predictions for aerial
cameras, which will ultimately result in more accurate and dependable assessments of
the thermal performance. Based on the initial thermal network model, seven distinct
thermal parameters are derived from the thermal resistances. Subsequently, a thermally
sensitive analysis is conducted to assess the impact of each parameter on the temperature
distribution within the optical system, thereby facilitating the identification of critical
parameters. Additionally, transient thermal tests are performed to gather experimental
data for a comprehensive parameter modification procedure. To ensure data reliability,
the Monte-Carlo algorithm is utilized to explore parameter spaces for temperature error
analysis. Following this, the Least-Squares method is employed to determine optimal
estimates for the key parameters. Subsequently, a comparative analysis is undertaken,
whereby the results of the original model are contrasted with those of the modified model.
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2. Thermal Network Model of the Aerial Camera
2.1. Introduction of the Aerial Camera

An experimental aerial camera, derived from the original prototype and integrated
with the preliminary thermal control design, is proposed to streamline the computational
process, as shown in Figure 1. The experimental aerial camera, hereafter referred to as the
aerial camera, has rotational symmetry along the X-axis and has an external dimension of
Φ173 mm × 258 mm. It consists of an optical window, three sets of lenses, a lens barrel, an
inner frame, an outer frame, and a rear cover. In addition, an insulation cover is attached to
the end of the lens to simulate the influence of heat flow from the CCD components.

Figure 1. Cross section of the experimental aerial camera.

The aerial camera is installed in an unmanned aerial vehicle (UAV) that maintains
a flight altitude of 9 km. During this flight, when the ground temperature is 20 ◦C,
the ambient temperature surrounding the UAV reaches −38.5 ◦C. The optical window,
oriented vertically towards the ground target, has its outer surface directly exposed to the
external environment, leading to a rapid temperature drop and significant axial temperature
difference. This variation directly affects the temperature of Lens 1, thereby influencing
its performance and precision. Furthermore, the lens assembly and framework structure
undergo substantial heat transfer through conduction, convection, and radiation, causing a
rapid decrease in temperature levels and significant radial and axial temperature differences
within the optical components.

2.2. Lumped-Parameter Thermal Network

The physical model is segmented into temperature units that maintain consistency in
the temperature and heat flux. The thermal essence of each unit is focalized on its centroid,
referred to as a node. Each node is distinctively characterized by its aggregated thermal
attributes, encompassing the temperature and heat capacity, offering a holistic portrayal
of its thermal behavior. To streamline the model, elements such as screws, apertures,
and threads that minimally impact temperature are disregarded. Components with high
thermal conductivity, like lens barrels and inner, and outer frames, are sparsely segmented
into several nodes. In the instance of a lens with a confined thickness, the temperature
variance along the radial axis is significantly greater than that along the axial axis. Therefore,
the lens nodes should be densely allocated along the radial axis to guarantee precise thermal
analysis. As the outer surface of the optical window is uniformly influenced by the external
heat flux, resulting in minor temperature disparities in both radial and axial directions, it
can be modeled as a solitary node. The original thermal network of the aerial camera is
formulated by interconnecting nodes via thermal resistances, as depicted in Figure 2. In
the figure, R1–R43 are the conduction, contact, convection, or radiation thermal resistances
between the nodes or the parallel or series connections of these thermal resistances, the
arrows indicate the direction of the heat flow, and qs is the external heat flux received by
the outer surface of the optical window.



Photonics 2024, 11, 641 4 of 17

Figure 2. Lumped structure design of R and T parameters’ network of the aerial camera.

2.3. Thermal Mathematical Model

The foundation of the thermal network mathematical model lies primarily in the anal-
ogous nature of heat transfer and conduction processes. Utilizing insights from Kirchhoff’s
current law and Ohm’s law, the thermal balance equations for the nodes can be effectively
established as [29]

Ci
dTi
dτ

= ∑
j=1

Dij(Tj − Ti) + ∑
j

Eij(T4
j − T4

i ) + ∑
j

Hij(Tj − Ti) + qi (1)

where Ci is the thermal capacity, Ti and Tj are the temperature of adjacent nodes, respec-
tively, Dij, Eij, and Hij are the thermal conduction, radiation, and convection coefficients,
and qi is the total heat source of the node, including the internal heat source and external
heat flow into the node.

Dij, Eij, and Hij can be represented by four types of thermal resistance, namely Rcd,
Rct, Rcv, and Rrad, which correspond to the conduction, contact, convection, and radiation
thermal resistances, respectively. The calculation methods for the four types of thermal
resistance are presented below.

A. Conduction thermal resistance

As the aerial camera is a rotationally symmetric structure, the conduction thermal resistance
between nodes can be equated to the thermal resistance in a circular section [29], i.e.,

Rcd =
ln(r2/r1)

2πdλ
(2)

where r1 and r2 are the radii of two adjacent nodes, respectively, d is the average thickness
of the units where node 1 and node 2 are located, and λ is the thermal conductivity.

B. Contact thermal resistance

The contact thermal resistance can be expressed as

Rct =
1

hc A
(3)

where hc is the contact heat transfer coefficient, which can be given by the following
empirical formula [29]:

hc =
1
Lg

(
Ac

A
2λAλB

λA + λB
+

Av

A
λ f

)
(4)
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where Lg is the thickness of the gap between the contact surfaces, A is the nominal contact
area, Ac is the actual contact area, Av is the uncontacted area, λA and λB are the thermal
conductivities of the two contact parts, and λf is the thermal conductivity of the gas in
the gap.

C. Convection thermal resistance

The convection thermal resistance in a concentric cylinder can be derived from the
convective heat transfer coefficient as follows:

Rcv =
1

1.472πLλ f

[
gPr

αν(r−3/5
m + r−3/5

n )
5
(0.861 + Pr)

]−1/4∣∣∣∣Tm + Tn

Tm − Tn

∣∣∣∣0.25
(5)

where L is the width of the rectangular cavity, λf is the thermal conductivity of the fluid, Pr is
the Prandtl number, g is the gravitational acceleration, α is the thermal diffusion coefficient,
ν is the kinematic viscosity, and rm, rn, Tm, and Tn are the radius and temperature of the
hot surface and the cold surface, respectively.

D. Radiation thermal resistance

The radiation thermal resistance between concentric cylindrical surfaces can be written as

Rrad =

1
εi
+ 1−εo

εo

(
ri
ro

)
σAi(T2

i + T2
o )(Ti + To)

(6)

where εi, εo, ri, ro, Ti, and To are the emissivity, radius, and temperature of the inner and
outer surfaces, respectively, σ is the Steven–Boltsman constant, and Ai is the area of the
inner surface.

The main thermophysical parameters that affect the thermal resistances are the thermal
conductivity of the material, the contact heat transfer coefficient, the external and internal
convective heat transfer coefficients, as well as the surface emissivity.

Table 1 presents seven types of thermal network parameters that are extracted from
the thermal resistances. Due to the complexity of the camera structure, uncertainty in
contact conditions, and fluctuations in the surface properties induced by environmental
variations, the values of thermal network parameters are uncertain. These parameter values
can be defined within a certain range based on empirical or theoretical values. Due to the
limitations of the experimental conditions, it is unfeasible to simulate the flying convective
environment on the exterior surface of the optical window. To align with the thermal
testing parameters, it is assumed that the convection conditions on both the outer surface
of the window and the exterior of the camera body are identical; specifically, both are
subject to natural convection. The thermal resistances represented by the thermal network
parameters are presented in Table A1, which is located in Appendix A.

Table 1. Thermal network parameters of the aerial camera.

Type Parameter Description Initial Value Range

Thermal conductivity
(W·m−1·◦C−1)

k1 Optical components 1.0 0.5–1.3
k2 Frame 160 8–200

Contact heat transfer coefficient
(W·m−2·◦C−1)

k3 Between lens and lens frame 5000 100–8000
k4 Between lens frame and lens barrel 4000 100–7000

Convective heat transfer
coefficient of cylindrical structures

(W·◦C−1)

k5 Between lens barrel and inner frame 0.2 0.1–3.5

k6 Between inner frame and outer frame 0.3 0.1–4

Convective heat transfer
coefficient of planar

structures (W·m−2·◦C−1)

k7 Between lens1 and optical window 7.8 2–50
k8 Between lens barrel and rear cover 6.7 2–50
k9 Between lens3 and lens insulation cover 8.2 3–50
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Table 1. Cont.

Type Parameter Description Initial Value Range

External convective heat
transfer coefficient

(W·m−2·◦C−1)
k10

Between camera surface
and environment 5 2–25

Emissivity

k11 Lens barrel surface 0.8 0.5–1
k12 Frame surface 0.1 0.03–0.5
k13 Lens surface 0.9 0.3–1
k14 Optical window surface 0.4 0.2–1

Thermal resistance of insulation
structure (◦C·W−1)

k15 Insulation structure of frames 50 10–50

k16
Insulation structure of the optical

window 5 1–5

3. Sensitive Parameter Identification

To increase the efficiency of the model modification, it is essential to perform a sen-
sitivity analysis of the thermal parameters. This analysis quantifies the influence of each
parameter on the temperature distributions within the optical system and facilitates the
identification of the key parameters that dominate the temperature variations.

The temperature fluctuation of the optical system resulting from variations of the
thermal network parameters can be estimated by the following statistical equation:

∆Ti =

√√√√ p

∑
m=1

(Sm · ∆km)
2 (7)

where Ti is the temperature of node i, ∆km is the variation of the m-th thermal network
parameter, p is the number of parameters related to Ti, and Sm is the sensitivity of the m-th
thermal network parameter, which is defined as:

Sm =
∂Ti
∂km

(8)

where km is the m-th thermal network parameter.
The analytical calculation of sensitivities can be a challenging task due to the complex

nature of the thermal network equations. The numerical analysis method is used as a viable
solution. The steady-state temperature variations of optical components are calculated
by inserting parameter values within their respective ranges into the thermal network
equations in response to changes in a single parameter. The sensitivity curves can then be
derived by differentiating the temperature curves with respect to the respective parameters.
It should be noted that when analyzing the sensitivity of a particular parameter, all other
parameters are held at their initial values.

The sensitivity analysis results of partial parameters are indicated in Figure 3. By
meticulously comparing the influence exerted by diverse parameters on the temperature of
the optical system, along with analyzing the sensitivity curve, it is feasible to identify the
crucial thermal network parameters that significantly impact the temperature distribution
within the optical system of the aerial camera. The sensitivities of k3, k4, k9, k11, and k13
approximate zero, suggesting their minimal influence on the temperature distribution
within the optical system. When revising the thermal network model, modifications are
exclusively applied to the values of the crucial thermal network parameters, specifically
k1, k2, k5, k6, k7, k8, k10, k12, k14, k15, and k16. Meanwhile, the initial values of the insensitive
parameters remain unchanged.
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Figure 3. Sensitivity analysis of parameters in the thermal network model: (a) k1; (b) k3; (c) k5; (d) k7;
(e) k10; (f) k12; (g) k14; and (h) k15.
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4. Experimental Data Acquisition and Analysis
4.1. Transient Thermal Test

To overcome the limitation of limited data gathered from traditional steady-state
thermal experiments, transient thermal tests have been conducted in this study. The
objective is to gather more extensive and reliable experimental data, thereby facilitating
comprehensive parameter modification. The transient thermal testing system comprises an
aerial camera, a DC power supply, and a data acquisition and control module, as depicted
in Figure 4. Inside the camera, heating films are wrapped onto the surface of the lens barrel,
with varying heating conditions achieved by adjusting the power of each heating film.
Temperature sensors are affixed at designated locations, corresponding to each node of the
thermal network model, allowing for the real-time monitoring of temperature fluctuations
at each node within the optical system. The DS18B20 is employed as the temperature
sensor, offering 9-bit resolution. Its measurement accuracy within the range of −10 ◦C to
85 ◦C is ±0.5 ◦C, which fulfils the requirement of temperature measurement tolerance of
±1 ◦C.

Figure 4. Setup of transient thermal tests.

Transient thermal tests are performed over 11 different heating conditions and the
specific parameters for each condition are detailed in Table 2. Temperature data are collected
at each node every 10 s, and using the N-order polynomial method, the discrete temperature
data are accurately fitted to the temperature variation curves, as shown in Figure 5. This
process generates sufficient temperature data to facilitate model modification.

Table 2. Operating parameters of transient thermal tests.

Condition
Number Voltage (V) Initial Temperature

of the Lens (◦C)
Ambient

Temperature (◦C) Heating Time (s)

1 8.6 30 20 10,900
2 10 21 16 6730
3 11 18 16 5170
4 12 20 17 3920
5 13 17 16 3140
6 14 19 16 2640
7 15 20 16 2610
8 16 22 20 1510
9 17 18 15 2310
10 18 21 19 1570
11 10 74 18 0
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Figure 5. Fitting temperature curves of transient thermal testing data: (a) condition 1; (b) condition 2;
(c) condition 3; and (d) condition 4.

4.2. Temperature Error Analysis

To enhance the precision of the thermal network model modification, evaluating the
reliability of the experimental thermal data is crucial. Generally, discrepancies between the
calculated and experimentally measured temperature values originate from several sources
of error. These include deviations between the physical model and the mathematical model
of the thermal network due to simplifications in the modeling process, calculation errors
associated with numerical solutions, measurement inaccuracies exhibited by temperature
sensors, and the imprecision of thermal network parameter values. Typically, the errors
stemming from the first three factors can be roughly estimated through rigorous analysis.
Therefore, this paper specifically delves into the discussion of temperature errors solely
attributed to inaccuracies in thermal network parameters, with the aim of assessing the
reliability of transient thermal testing data.

The Monte-Carlo method is utilized to analyze the transient temperature error. This
approach involves establishing a probability model for each sensitive parameter. Following
this, parameter values are randomly selected from the model and input into the thermal
network equations. These equations are then solved, and the entire process is iterated
numerous times. Through this iterative process, the mathematical expectation and mean
square deviation of node temperatures are derived. The mathematical expectation signifies
the most probable temperature value that would occur in the aerial camera, while the mean
square deviation quantifies the potential temperature deviation.

The key parameters of the thermal network are regarded as random variables and
presumed to exhibit a uniform distribution. Each parameter undergoes N rounds of
sampling, and the simulation results show that when N ≥ 2000, the parameters exhibit
a uniform distribution. As a case study, the parameter spaces for the key parameters are
randomly generated with a sampling number of 3000, adhering to their respective ranges
of value, as depicted in Figure 6. Subsequently, the temperature variations of each node are
calculated by feeding each set of parameters into the thermal network equations.
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The temperature curve of a node is sampled at equal time intervals, and the average
temperature of the node at the specific time point of τr is determined by

T(τr) =
1
N

N

∑
p=1

Tp(τr) (9)

where N is the sampling number of each key parameter.
In accordance with the Bessel formula, the standard deviation of the node temperature

at the time point of τr is calculated by

σT(τr) =

√√√√√√ N
∑

p=1

[
Tp(τr)−

1
N

N
∑

p=1
Tp(τr)

]2

N − 1
(10)

Figure 6. The parameter spaces for sensitive parameters with a sampling number of 3000.

Then, the transient temperature error of the node can be expressed by the root mean
square of the temperature standard deviation at all sampling time points:

δT =

√√√√√√ nv
∑

r=1

N
∑

p=1

[
Tp(τr)−

1
N

N
∑

p=1
Tp(τr)

]2

(N − 1)nv
(11)

where nv is the sampling number for the calculated temperature curves.
The temperature error derived from the Equation (11) serves as an indicator of the

potential temperature deviation at each node, thereby enabling an assessment of the
reliability of the experimental temperature data.

The measured temperature curves under various heating conditions are sampled at
equal time intervals with the same number of sampling points, and the root mean square
error of the measured temperature values across all sampling points, relative to the average
temperature, is subsequently calculated as follows

δTs =

√√√√√ nv
∑

r=1

[
Ts(τr)− Ts

]2

nv
(12)
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where Ts(τr) is the measured temperature at sampling time point τr and Ts is the average
temperature of all sampling points.

Figure 7 illustrates the calculated and measured temperature errors for the first four
heating conditions. Upon the comparison of the calculated and measured temperature
errors, it is evident that the measured temperature errors are generally smaller than the
calculated ones, and this trend remains consistent across the other seven heating conditions,
which suggests that the transient thermal test data exhibit high reliability and are well-
suited for utilization in the modification of the thermal network model.

Figure 7. Comparison of calculated and measured temperature errors: (a) condition 1; (b) condition 2;
(c) condition 3; and (d) condition 4.

5. Thermal Network Modification
5.1. Least-Squares Modification Process

The conventional approach to parameter modification using the least-squares method
is to correct the values of the coefficients Dij, Eij, and Hij within the thermal network
equations. Although the physical sense of this approach is obvious, it requires the correction
of numerous parameters, which is a significant computational and implementational
challenge. In this study, transient thermal test data from aerial cameras are utilized to
correct 11 key parameters, effectively reducing the number of parameters to be corrected
by a factor of three and improving the efficiency of the correction process.

The specific process of using the least-squares method to correct the parameters of the
thermal network model is as follows:

(1) The thermal balance equation of the aerial camera is written in the form of the
residual equation as follows:

Ci
dTi
dτ

− ∑
j

Dij(Tj − Ti)− ∑
j

Eij(T4
j − T4

i )− ∑
j

Hij(Tj − Ti)− qi = Ui (13)

where Ui is the residual heat of node i.
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(2) Data processing of the thermal tests.
The temperature fitting curve of each node is sampled at regular time intervals, with

the temperature sampling result of node i under the m-th heating condition expressed as
a column vector Ti

(m)
(nm×1), where nm is the number of sampling points. This procedure

guarantees that the temperature disparity between consecutive sampling points surpasses
the measurement error. It is worth noting that the sampling points for each heating condi-
tion may differ, contingent on the temperature variation between adjacent sampling points.
Subsequently, the consolidated sampling outcomes from 11 distinct heating conditions
compile to form the temperature vector for node i, i.e.,

Ti,11 = [T(1)
i (n1×1); T(2)

i (n2×1); . . . ; T(11)
i (n11×1)] (14)

where Ti,11 is a column vector comprising the (n1 + n2 + . . . + n11) temperature values.
For refining the thermal network model, if steady-state thermal test data are utilized, it

becomes imperative to perform (n1 + n2 + . . . + n11) steady-state thermal tests. However, by
leveraging transient thermal test data for correction, the requirement reduces to 11 transient
thermal tests, significantly diminishing the overall number of thermal experiments.

The temperature polynomials of each node are differentiated with respect to time,
resulting in the temperature change rate curves, as illustrated in Figure 8.

Figure 8. Temperature change rate curves of each node: (a) condition 1; (b) condition 2; (c) condition 3;
and (d) condition 4.

The temperature change rate curve of the node is sampled at the same interval as
the temperature curve, resulting in the temperature change rate vector [dTi

(m)/dτ](nm×1)
being obtained under the m-th heating condition. By combining the sampling results of the
temperature change rate from 11 heating conditions, the temperature change rate vector of
node i is derived by

dTi,11

dτ
=

[
dT(1)

i
dτ (n1×1)

;
dT(2)

i
dτ (n2×1)

; . . . ;
dT(11)

i
dτ (n11×1)

]
(15)
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The heating power of node i is sampled at the same time interval, and the sampling
results of the heating power from 11 working conditions are combined, resulting in the
derivation of the heating power vector as follows

qi,11 =
[
q(1)i (n1×1); q(2)i (n2×1); · · · ; q(11)

i (n11×1)

]
(16)

where qi
(m)

(nm×1) is the heating power vector of node i under the m-th heating condition,
and m = 1, 2, . . ., 11.

(3) By having the temperature vector, temperature change rate vector, and heating
power vector of each node substituted into the residual equation of the corresponding
node, the residual equations are derived as

Ci
dTi,11

dτ − ∑
j

Dij(Tj,11 − Ti,11)− ∑
j

Eij(T4
j,11 − T4

i,11)

−∑
j

Hij(Tj,11 − Ti,11)− qi,11 = Ui
(17)

(4) The summation of the squared residuals pertaining to the heat of 23 nodes is
obtained by

Φ =
23

∑
i=1

U2
i (18)

Since Dij, Eij, and Hij are all dependent upon the thermal network parameters, Φ is
also a function of k1 to k16.

(5) Utilizing the principle of least squares, the cumulative squared deviation of the
node heat Φ is minimized. By taking the derivative of the 11 key thermal network parame-
ters, the subsequent system of equations is derived as

∂Φ
∂ki

= 0, i = 1, 2, 5, 6, 7, 8, 10, 12, 14, 15, 16 (19)

In the above equation system, the initial values of non-critical parameters are adopted,
and a nonlinear system of equations comprising 11 key parameters is formulated. By
solving the equations, the optimal estimate of the key parameters can be obtained.

5.2. Modification Results

Table 3 shows the optimal estimated values of the crucial thermal parameters derived
from Equation (19), together with their original values and the corresponding percentage
changes. It is noteworthy that k5, k6, k7, k8, and k10 exhibit considerable variations post-
correction, suggesting that the convective heat transfer coefficients cannot solely rely upon
theoretical formulations due to the fluid parameter uncertainties and irregular structural
configurations. Additionally, remarkable alterations are also observed in the emissivity of
the optical window surface, k14, as well as the thermal resistance of insulation structures,
k15 and k16.

To determine the effectiveness of the model refinement, the initial and updated pa-
rameter values are introduced separately into the thermal network model for temperature
calculation. Figure 9 displays the computed and observed transient temperature profiles for
the central nodes of the lenses (nodes 1, 5, and 9) and the node positioned on the lens barrel
(node 13), specifically during heating condition 1. Prior to thermal parameter refinement,
it is evident that as the flight duration elongates, the temperature disparities between the
calculated and measured temperatures substantially increase, attaining peak differences
of 18 ◦C for the lens and 22 ◦C for the lens barrel. However, following the refinement
process, considerable reductions in temperature deviations have been attained. Figure 10
portrays the transient temperature discrepancies between calculated and measured values
post-correction of the thermal network model. It is discernible that the absolute errors
remain within the range of −4 ◦C to 4 ◦C, accompanied by a substantial reduction in the
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maximum absolute error by 18 ◦C, and a significant decline in the maximum relative error
from 33.8% to 6.1%.

Table 3. Modified key parameter values of the thermal network model.

Parameters Initial Value Corrected Value Change Percentage

k1 (W·m−1·◦C−1) 1.0 0.92 −8.0%
k2 (W·m−1·◦C−1) 160 148.8 −7.0%

k5 (W·◦C−1) 0.2 0.63 215.0%
k6 (W·◦C−1) 0.3 0.74 146.7%

k7 (W·m−2·◦C−1) 7.8 10.4 33.3%
k8 (W·m−2·◦C−1) 6.7 9.46 41.2%
k10 (W·m−2·◦C−1) 5 7.52 50.4%

k11 0.8 0.76 −5.0%
k12 0.1 0.09 −10.0%
k14 0.4 0.56 40.0%

k15 (◦C·W−1) 50 35.6 −28.8%
k16 (◦C·W−1) 5 4.1 −18.0%

Figure 9. Comparative analysis of pre- and post-correction transient temperatures: calculated versus
measured values.

Figure 10. Transient temperature error curves: the deviations between calculated values refined by
the least-square method and measured values.
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5.3. Discussion

The parameter modification process and its outcomes demonstrate that the proposed
methodology offers an efficient means of modeling the thermal network of aerial cameras.
This methodology involves identifying the potential range of variations in thermal network
parameters, considering factors like the geometric dimensions, fluid properties, and radi-
ation angle coefficients during the modeling stage. For each thermal network parameter,
an initial value is randomly selected from this range, and subsequently, the exact value is
refined through the process of parameter correction.

As shown in Figure 10, after the modification, 90% of the deviations between calcu-
lated and measured values are within ±2 ◦C, which is a significant improvement in the
temperature prediction accuracy compared to previous studies [18,23]. However, a residual
error of up to 4 ◦C remains in lens 1, mainly due to the following sources of error:

(1) During the modeling process of the thermal network, the radiative heat transfer
between the optical window and lens 1 is not considered, resulting in the heat from lens 1
not being fully transferred to the optical window. Consequently, the calculated temperature
differs significantly from the measured value.

(2) Computation errors associated with the least-squares solutions. The least-squares solu-
tion depends on the experimental data and is very sensitive to errors in the experimental data.

Therefore, it is crucial to correct the structure of the thermal network prior to modifying
its thermal parameters. Additionally, there is a need for further research into more robust
methods for parameter correction within thermal networks.

6. Conclusions

In this paper, a comprehensive and systematic method for modifying the thermal
network model is introduced, aimed at elevating the precision of temperature predictions
and thermal performance acquisition for aerial cameras. A thermally sensitive analysis
is performed among sixteen parameters, narrowing the focus to eleven critical thermal
parameters, which enhances the efficiency of the model modification process. Transient
thermal tests are conducted across eleven diverse heating conditions, resulting in the
gathering of extensive experimental data to facilitate thorough parameter modification.
This approach distinctively differs from conventional correction processes that rely solely
on steady-state experimental data. To ensure the high reliability and suitability of the
experimental data for parameter modification, a meticulous temperature error analysis
is conducted utilizing the Monte-Carlo algorithm. Following this rigorous analysis, the
Least-Squares method is employed to derive optimal estimates of the key parameters.
Notably, due to the uncertainty of fluid parameters and structural factors, significant
changes are observed in the values of convective heat transfer coefficients. Consequently,
the temperature predicted by the updated model exhibits significantly improved accuracy.
Specifically, the maximum absolute error is reduced from 22 ◦C to 4 ◦C, and the relative
error is lowered from 33.8% to 6.1%.

The proposed modification method can be efficiently utilized to enhance the precision
of thermal network models for aerial cameras. Simultaneously, it provides an effective
methodology for the modeling process. This renders the simulation results derived from
the mathematical models as valuable in exploring thermal performance and facilitating
thermal design for such intricate systems.

In future research, the correction of the thermal network structure and the investigation
of other optimization methods for thermal parameters will be considered to further improve
the prediction accuracy of the thermal network model. In addition, based on the prediction
of the thermal performance, research will be conducted on thermal control technology for
aerial cameras.
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Appendix A

Table A1. The thermal resistances represented by thermal parameters.

R1 16.8/k1 R2 11.7/k1 R3 4.9/k1 + 2.4/k2 + 1194.7/k3 + 313.8/k4
R4 22.5/k1 R5 17.3/k1 R6 8.6/k1 + 5.3/k2 +2144/k3 + 458.5/k4
R7 13.5/k1 R8 8/k1 R9 2.7/k1 + 1.7/k2 + 684.8/k3 + 235.2/k4
R10 43/k2 R11 59.7/k2 R12 10.3/k2 + 482.3/k4
R13

1

0.003k8

∣∣∣ T21 − T20
T21 + T20

∣∣∣0.28
+ 1.6 × 10−10

1/k11 + 1/k12−1 (T
2
21 + T2

20)(T21 + T20)

R14 23.6/k2 R15 17.9/k2 R16 k15
R17

1

k5

∣∣∣ T8 − T16
T8 + T16

∣∣∣0.25
+ 1.9 × 10−9

1/k11 + 0.6(1/k12−1) (T
2
8 + T2

16)(T8 + T16)

R18 k14 R19 35.2/k2 R20 35.2/k2
R21 k15 R22

1

k6

∣∣∣ T16 − T19
T16 + T19

∣∣∣0.25
+ 3.4 × 10−9

1.8/k12−0.8 (T
2
16 + T2

19)(T16 + T19)

R23 k15 R24 31.1/k2 R25 36/k2
R26

1

0.01k8

∣∣∣ T13 − T20
T13 + T20

∣∣∣0.28
+ 4.8 × 10−10

1/k11 + 1/k12−1 (T
2
13 + T2

21)(T13 + T21)

R27
1

0.002k7

∣∣∣ T1 − T22
T1 + T22

∣∣∣0.28
+ 4.8 × 10−11

1/k11 + 1/k14−1 (T
2
12 + T2

22)(T12 + T22)

R28
1

0.001k7

∣∣∣ T1 − T22
T1 + T22

∣∣∣0.28
+ 4.4 × 10−11

1/k11 + 1/k14−1 (T
2
4 + T2

22)(T4 + T22)

R29
1

0.001k7

∣∣∣ T1 − T22
T1 + T22

∣∣∣0.28
+ 3.6 × 10−11

1/k13 + 1/k14−1 (T
2
3 + T2

22)(T3 + T22)

R30
1

7.4 × 10−4k7

∣∣∣ T1 − T22
T1 + T22

∣∣∣0.28
+ 2.3 × 10−11

1/k13 + 1/k14−1 (T
2
2 + T2

22)(T2 + T22)

R31
1

2.3 × 10−4k7

∣∣∣ T1 − T22
T1 + T22

∣∣∣0.28
+ 7.3 × 10−12

1/k13 + 1/k14−1 (T
2
1 + T2

22)(T1 + T22)

R32
1

0.005k10 + 2.9 × 10−10k14(T2
22 + T2

24)(T22 + T24)

R33 11/k1 + 4.6/k2 + 1/(0.1 + 0.0015k3)
R34

1
0.02k10 + 1.2 × 10−9k11(T2

23 + T2
24)(T23 + T24)

R35 k16 R36
1

0.008k10 + 4.3 × 10−10k12(T2
17 + T2

24)(T17 + T24)

R37
1

0.08k10 + 4.6 × 10−9k12(T2
19 + T2

24)(T19 + T24)

R38
1

0.03k10 + 1.5 × 10−9k12(T2
18 + T2

24)(T18 + T24)

R39
1

0.05k10 + 2.6 × 10−9k12(T2
20 + T2

24)(T20 + T24)

R40 40.9/k2 + 89.4/k4
R41

1

0.001k9

∣∣∣ T9 − T21
T9 + T21

∣∣∣0.28
+ 3.7 × 10−11

1/k12 + 1/k13−1 (T
2
11 + T2

21)(T11 + T21)

R42
1

7 × 10−4k9

∣∣∣ T9 − T21
T9 + T21

∣∣∣0.28
+ 2.6 × 10−11

1/k12 + 1/k13−1 (T
2
10 + T2

21)(T10 + T21)

R43
1

2 × 10−4k9

∣∣∣ T9 − T21
T9 + T21

∣∣∣0.28
+ 7.8 × 10−12

1/k12 + 1/k13−1 (T
2
9 + T2

21)(T9 + T21)
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