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Abstract: Intensity-modulated direct-detection (IM/DD) optical systems are most widely employed
in short-reach optical interconnects due to their simple structure and cost-effectiveness. However,
IM/DD systems face mixed linear and nonlinear channel impairments, mainly induced by the
combination of square-law detection and chromatic dispersion, as well as the utilization of low-
cost non-ideal transceivers. To solve this issue, recent years have witnessed a growing trend of
introducing machine learning technologies such as neural networks (NNs) into IM/DD systems for
channel equalization. NNs usually present better system performance than traditional approaches,
and various types of NNs have been investigated. Despite the excellent system performance, the
associated high computational complexity is a major drawback that hinders the practical application
of NN-based equalizers. This paper focuses on the performance and complexity trade-off of NNs
employed in IM/DD systems, presenting a systematic review of the current status of NN-based
equalizers as well as a number of effective complexity reduction approaches. The future trends of
leveraging advanced NN in IM/DD links are also discussed.

Keywords: intensity-modulated direct-detection; neural network; training; equalization; computational
complexity

1. Introduction

With the exponential growth of Internet Protocol (IP) traffic, there is an ever-increasing
demand for capacity in data centers. According to International Data Corporation, global
data center traffic will reach 175 Zettabytes (ZB) per year by the end of 2025, up from
33 ZB per year in 2018. Inspired by this dramatic demand for capacity, data centers have
become a hot topic for both academia and industry, which drive the research on short-reach
optical fiber interconnects within the data centers [1–9]. Compared to coherent detection,
intensity-modulated direct-detection (IM/DD) optical links are ideal for such short-reach
applications due to their cost-effectiveness and simple structure [10–17]. However, the
intensity-only direct-detection, or the simple square-law detection of the optical field,
creates a nonlinear channel when combined with channel chromatic dispersion (CD).
Additionally, to maintain low costs, bandwidth-limited transceivers and inexpensive lasers,
such as directly modulated lasers (DMLs), are preferred, which present non-ideal frequency
responses and chirp impairments [18–22]. These mixed linear and nonlinear impairments
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can significantly degrade bit error rate (BER) performance and limit the system’s achievable
capacity. Therefore, effective nonlinear equalization techniques are crucial to ensure the
desired system BER.

Traditional digital signal processing (DSP) approaches such as decision feedback
equalization (DFE) and Volterra series-based equalization, are decades old. They have been
widely applied in IM/DD systems to deal with the nonlinear impairments [23–29]. In recent
years, advances in machine learning (ML) [30–39] have led to the introduction and growing
popularity of numerous ML algorithms in the field of optical fiber communication. These
algorithms have found applications across various aspects of optical communications, such
as optical performance monitoring [40–60] and channel equalization for different types of
optical systems [61–87]. For IM/DD channel equalization, ML algorithms, especially neural
networks (NNs), have been found superior to traditional approaches in terms of system
performance. Due to the introduction of different nonlinear activation functions and the
layered DSP design, NNs are extremely suitable to solve nonlinear problems. Among the
broad topic of applying ML in optical communications, this paper specifically focuses on
leveraging NN for nonlinear equalization in short-reach IM/DD systems. Different types
of NNs and their variants are presented targeting at improved system performance.

While introducing the cutting-edge NNs trying to explore better system performance,
it is also important to pay special attention to the computational complexity (CC) [88–90].
Complicated NN equalizers with increased CC can lead to higher latency and greater
power consumption in the receiver, which hinders their practical implementation. CC
is particularly relevant for NN-based equalization, where it impacts both the training
and equalization (inference) processes. The training process for NNs typically requires
a substantial number of training symbols and epochs. When the link scenario changes,
the performance of the previously trained NNs may degrade, necessitating retraining to
adapt to the new conditions, which is computationally inefficient. During the equalization
process, the computational load is significant as well, with the number of multiplications
per equalized symbol needing to be limited to a few tens to enable real-time DSP implemen-
tation [91–93]. Given these considerations, it is highly desirable to reduce CC in both NN
training and the equalization processes. We can make a trade-off between the performance
and CC of NN-based equalizers according to different link requirements.

In this paper, we provide a systematic review of the application of NN for equalization
in short-reach IM/DD optical links, taking both system performance and CC into account.
The remainder of this paper is organized as follows. Section 2 provides the introduction and
the mathematical model of typical IM/DD systems, discussing the benefits and bottlenecks.
Section 3 presents different performance-oriented advanced NN-based equalization struc-
tures, providing a comprehensive summary of existing works. Section 4 gives a detailed
overview of a number of techniques effectively addressing both training and equalization
CC of NN-based equalizers. Finally, Section 5 concludes this paper and discusses future
perspectives.

2. Short-Reach IM/DD Systems
2.1. IM/DD System Structure

This paper discusses the traditional double-sideband (DSB) IM/DD systems which
possess the simplest structure among various designs of optical transmission systems. A
general illustration of a typical IM/DD communication system as well as the associated DSP
processes are depicted in Figure 1. In this system, a laser serves as the light source, and the
transmitted electrical signal is directly modulated onto the optical intensity. Various types
of laser/modulator modules can be employed at the transmitter, including DML; a vertical-
cavity surface-emitting laser (VCSEL); an electro-absorption modulated laser (EML), which
consists of a laser combined with a separate electro-absorption modulator (EAM); a laser
combined with a Mach-Zehnder Modulator (MZM); and other advanced silicon photonic
modulators. Pulse amplitude modulation (PAM) formats with different levels are usually
adopted for intensity-only optical transmission, such as PAM-2, PAM-4, and PAM-8. At the
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transmitter DSP, the PAM signals are generated and passed through a root raised cosine
(RRC) filter for pulse shaping. The signals are sampled at a proper sampling rate before
being sent out for transmission. The choice of fiber can vary based on the transmitter
type. A single-mode fiber (SMF) is commonly used for most of the transmitters, while a
multi-mode fiber (MMF) is selected for systems utilizing a VCSEL-based transmitter.
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Figure 1. A typical structure of IM/DD systems with transceiver DSP procedures.

At the receiver, as shown in Figure 1, only a single-ended photo-detector (PD) is
employed to convert the optical signal into electrical power. Unlike coherent detection,
which could preserve both amplitude and phase of the signal, the simple square-law direct-
detection can only preserve the amplitude information, and that is why PAM is usually
employed for IM/DD systems. The received electrical signal is further processed by a series
of commonly employed DSP procedures such as resampling, synchronization, and matched
filtering. The signals are then fed into the NN-based equalization module for nonlinearity
mitigation. Finally, hard-decision is performed and the system BER is calculated.

2.2. IM/DD System Model

Most IM/DD systems face intrinsic nonlinearity problem when performing square-law
detection over signals affected by a dispersive channel [94]. When the IM/DD system is
not operated at zero-dispersion wavelength, the CD effects is not negligible. The frequency
response of CD can be expressed by

H(ω) = ej 1
2 β2ω2L, (1)

where β2 is the group velocity dispersion coefficient, L denotes the fiber length, and ω
denotes the signal angular frequency. Assuming an ideal transmitter is employed, after
intensity-modulation, the output optical power of the transmitter laser, denoted by PTx(t),
is given by

PTx(t) = η(S0 + STx(t)), (2)

where STx(t) represents the transmitted electrical signal, S0 denotes the bias current, and
η denotes the modulation coefficient. If we omit the phase impact, the optical field of the
transmitter laser, denoted by ETx(t), can be written as

ETx(t) =
√

PTx(t) =
√

η(S0 + STx(t)) =
√

ηS0

√
1 +

STx(t)
S0

. (3)

Note that the bias current S0 normally needs to be large enough to make the signal
located at the linear modulation range of lasers. As such, we can perform Taylor series
expansion over ETx(t), and ETx(t) can be rewritten as

ETx(t) =
√

ηS0

(
1 +

∞

∑
n=1

cn

(
STx(t)

S0

)n
)

, (4)
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where the Taylor expansion coefficients are calculated by

cn =
(−1)n−1(2n)!

22n(n!)2(2n − 1)
. (5)

After transmission through the optical fiber channel, the received optical field, denoted
by ERx(t), is modeled by the convolution of the transmitted optical field ETx(t) and the CD
response in time domain denoted by h(t), which is shown as

ERx(t) = ETx(t)⊗ h(t)

=
√

ηS0

(
1 +

∞
∑

n=1
cn

(
STx(t)

S0

)n)
⊗ hR(t) + j

√
ηS0

(
1 +

∞
∑

n=1
cn

(
STx(t)

S0

)n)
⊗ hI(t)

, (6)

where hR(t) and hI(t) represents the real and imaginary part of h(t), and ⊗ represents the
convolution operation. Equation (6) can be simplified by calculating 1⊗ hR(t) and 1⊗ hI(t)
based on Equation (1), where the simplified version is written by

ERx(t) =
√

ηS0

(
1 +

∞

∑
n=1

cn

(
STx(t)

P0

)n
⊗ hR(t)

)
+ j
√

ηS0

∞

∑
n=1

cn

(
STx(t)

P0

)n
⊗ hI(t). (7)

The received square-law detected electrical signal, denoted by SRx(t), is shown as

SRx(t) = R|ERx(t)|2, (8)

where R represents the responsivity of the PD. With simple mathematical derivation, SRx(t)
can be expanded and written as (note that c1 = 1

2 )

SRx(t) = RηS0 + RηSTx(t)⊗ hR(t) + 2RηS0
∞
∑

n=2
cn

(
STx(t)

S0

)n
⊗ hR(t)+

RηS0

[(
∞
∑

n=1
cn

(
STx(t)

S0

)n
⊗ hR(t)

)2

+

(
∞
∑

n=1
cn

(
STx(t)

S0

)n
⊗ hI(t)

)2
] . (9)

As shown in Equation (9), the received signal SRx(t) is separated into four parts. The
first term denotes the direct current, which is constant and can be easily removed. The
second term is a linear convolution of the transmitted signal STx(t) and the real part of
time-domain CD response hR(t). This is known as the power fading effect, where the
IM/DD signals suffer from destructive frequencies especially when the data rate and fiber
length increase. The third term is the convolution of the high order signal term with the real
part of time-domain CD response hR(t), while the fourth term shows the signal-to-signal
beating interference (SSBI). The first two terms are linear, while the last two terms show
nonlinear impacts. Even in the ideal case, we find that IM/DD channel is intrinsically
nonlinear. In practical applications, the laser, modulator, and PD can introduce more
severe nonlinear impairments. The mixed linear and nonlinear impairments significantly
degrade system performance, which necessitate advanced equalization methods such as
powerful NNs.

3. Performance-Oriented NN-Based Equalizers
3.1. FNN-Based Equalizer

The NN-based equalizers for IM/DD links are first investigated targeting at improved
system BER performance. As the simplest form of NN, feedforward NNs (FNNs) are
widely employed for equalization in IM/DD systems [95–106]. A typical two-layer FNN
equalization structure is depicted in Figure 2. Assuming n[0] inputs and n[1] hidden neurons
are employed for the FNN, the DSP process is operated by

y = f [2]
(

W[2] f [1](W[1]x + b[1]) + b[2]
)

, (10)
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where x ∈ Rn[0]
and y represents the inputs and output of FNN, W[1] ∈ Rn[1]×n[0]

/b[1] ∈
Rn[1]

/ f [1] and W[2] ∈ Rn[2]×n[1]
/b[2]/ f [2] denotes the weights/biases/activation functions

of the hidden and the output layer. The NN is operated in a sliding-window manner, which
predicts the received symbol sequentially. Different NN parameters can be selected and
optimized to yield different system performance.
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The first application introducing FNN into IM/DD systems is observed in [95], where a
simple two-layer FNN is deployed to infer simultaneously the linear and non-linear channel
response. The NN has four outputs, each corresponding to one level of the PAM-4 signal
and the entire NN function as a classifier. With the help of the FNN, a 168-Gb/s PAM-4
signal is successfully transmitted over 1.5-km SMF, achieving up to 10 times BER reduction
over conventional FFE. In [96], FNN is implemented to attain a 64-Gb/s PAM4 4-km MMF
link employing 850-nm VCSEL. FNN outperforms 3rd order Volterra series in their VCSEL-
based IM/DD setup. Recorded high 256-Gb/s·km data-rate distance product is achieved
supported by FNN-based equalization. In [97], FNN is used for nonlinear equalization in
IM/DD passive optical network (PON) scenarios. With the aid of FNN, 50-Gb/s PAM4
IM/DD PON transmission via 20 km SMF is realized using 10-GHz class optical devices,
where the end-to-end 3-dB bandwidth is only 3.6 GHz. FNN shows its superiority over
conventional approaches, and shows its effectiveness in resolving bandwidth problems.
In [98], a DML-based IM/DD link is shown using FNN at the receiver. A 20-Gb/s 18-km
O-band PAM4 transmission is realized, where the FNN nonlinear equalizer is found to
increase the channel capacity and drastically reduce the impact of nonlinear penalties.
In [99], the authors extend their [98] and increase the data rate to 54 Gb/s. Different
modulation formats are used, where the FNN-based equalizers work well for all the cases.
FNN is adopted in wavelength division multiplexing (WDM) IM/DD links in [100], where
4 × 50-Gb/s PAM4 signal is transmitted over 80-km SMF. In this work, a dispersion
compensation fiber (DCF) is used to pre-compensate the CD impacts. FNN shows about
2 dB power sensitivity improvement over conventional nonlinear DSP methods.

The demonstration of FNN in IM/DD systems has not gone away in years. More
recently, FNN is applied in 137-Gb/s PAM4 link using 25-GHz class 850-nm optical de-
vices [101]. The signal is transmitted over an in-house fabricated 40 cm optical backplane.
The 112-Gbps 100-m VCSEL-MMF optical interconnects are demonstrated in [102], and
the FNN achieve more than one order of magnitude BER improvement compared with
Volterra series in such system. Similar as [97], a 50-Gb/s 20-km link is shown in [103] using
bandwidth-limited transceivers. Under bandwidth constraints, the FNN-based equalizer
again presents superior performance. IM/DD link using the simple OOK modulation
format is shown in [104], where a 50-Gb/s OOK signal is transmitted over 30-km SMF.
The FNN is also successfully demonstrated in real-time field-programmable gate arrays
(FPGAs) in this work. The IM/DD link data rate is increased to as high as 160 Gb/s in [105],
employing a GeSi EAM. The highest single-wavelength PAM4 data rate is achieved based
on a single EAM, supported by FNN-based nonlinear mitigation. A more generalizable
FNN-based equalizer is shown in [106], where a 56-Gb/s PAM4 signal is transmitted over
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20/30/40-km SMFs using the proposed FNN. All the above works prove that FNN is
effective in mitigating the channel impairments of short-reach IM/DD systems.

3.2. CNN-Based Equalizer

Following the introduction of FNN, more powerful NNs are employed for equalization
in IM/DD systems. Convolutional NNs (CNNs) are employed to explore deeper into the
system performance in [107–111]. CNN is a regularized type of FNN that learns feature
engineering by filter optimization with the help of convolutional and pooling layers, which
are widely used for image classification tasks. The schematic of a CNN-based equalizer
is illustrated in Figure 3. Considering only one-dimension data (which is the case of
signal processing for channel equalization), assuming the input, filter, and output of the
convolutional layer are represented by x, f, and y, the convolution operation is expressed as

yi =
L

∑
k=1

xi+k−1 fk, (11)

where L denotes the filter length. The pooling operation reduces the number of data by
combining the outputs of neuron clusters at one layer into a single neuron in the next
layer. Max pooling and average pooling are the most commonly used, which take either
the maximum or the average value of each local cluster of neurons in the feature map.
A typical CNN consists of many stacks of convolutional and pooling layers, where each
stack represents one feature of the input data. The features are collected and fed into fully
connected layers same as the FNN to give the final outputs.
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CNN is applied for equalization in a 112-Gb/s 40-km PAM4 optical link using EML
in [107]. The CNN has one input layer, three convolutional layers, two fully connected
layers, and one output layer for classification of PAM signals. It has been shown that the
performance of the proposed CNN model outperforms Volterra series and FNN equaliz-
ers. In [108–110], the same group use different types of CNN for equalization in different
IM/DD systems. The system is varied in modulation formats (PAM-4, PAM-8, PAM-16),
transmission bands (C-band, O-band), data rates (56 Gb/s, 100 Gb/s) and system band-
width (10-G class, 20-G class). The CNN is changed with different number of convolutional
layers and the number of neurons in each layer. All the different demonstrations show
strong equalization ability of CNN. A temporal CNN (TCNN) is proposed in [111], which
introduce dilated convolutions and residual connections onto the traditional CNN. Better
system performance is observed compared with traditional CNN equalization architecture,
and the proposed scheme enables as far as 100-km SMF IM/DD transmission of a 56-Gb/s
PAM4 signal.

3.3. RNN-Based Equalizer

Although CNN presents better performance, it also requires much larger network
structures, which is deemed too complex for real-time application. The investigation on
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CNN-based equalization seems to have disappeared in recent years, and researchers focus
more on recurrent NN (RNN)-based equalization [112–124]. Four types of RNNs are found
in IM/DD applications, which are auto-regressive RNN (AR-RNN), layer-recurrent NN
(L-RNN), long short-term memory (LSTM) and gate recurrent unit (GRU) networks. These
RNNs are built on top of the traditional FNN.

The schematic of a two-layer AR-RNN-based equalizer is shown in Figure 4. On top
of the FNN, a few output delays are sent back to the hidden layer and serve as new inputs.
Assuming the number of output delays used in the feedback loop is denoted by k, and the
output delays and the associated weights are represented by yd and Wd ∈ Rn[1]×k, the DSP
process is given by

y = f [2]
(

W[2] f [1]
([

W[1], Wd
][

xT , yT
d

]T
+ b[1]

)
+ b[2]

)
. (12)Photonics 2024, 11, x FOR PEER REVIEW 8 of 24 
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In terms of the equalization process, the operation of using past predicted output
symbols as additional inputs provides more information when predicting the current
output symbol. As such, better performance can normally be achieved with the help of this
information. AR-RNN is first used for equalization in IM/DD systems in [112]. The 50-Gb/s
PAM-2 and 100-Gb/s PAM-4 signals are transmitted over 20-km SMF, where the receiver
adopt AR-RNN with seven feedbacks to read the historical decision results. In [113,114],
the AR-RNN is implemented using FPGAs in a parallel manner, and a 100-Gb/s IM/DD
PON system is demonstrated. It is shown that the AR-RNN can beat FNN equalizers
with the same input/output size and the number of training parameters, achieving better
receiver sensitivity performance.

The structure of L-RNN is depicted in Figure 5. Different from AR-RNN, which uses
output feedbacks, L-RNN collects the delays from the outputs of hidden neurons and sends
them back to the hidden layer again for data processing. Assuming the number of rounds
of hidden layer delays used in the feedback loop is denoted by k, and the hidden layer
delays and the associated weights are represented by hd and Wh ∈ Rn[1]×kn[1]

, the DSP
process of L-RNN is given by

y = f [2]
(

W[2] f [1]
([

W[1], Wh
][

xT , hT
d

]T
+ b[1]

)
+ b[2]

)
. (13)

Similar to AR-RNN, additional useful information about former predictions is also
provided in L-RNN when predicting the current symbol. An L-RNN-based equalizer
is proposed for equalization in a VCSEL-MMF optical interconnect in [115]. It has been
shown that L-RNN is more powerful than ANN in dealing with sequential signals, and
has the potential of reaching much lower BER with similar complexity. In [116], the
authors extend their work in [115] by employing hidden feature extraction before sequence
training. The input features are first extracted using principal component analysis or other
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dimensionality reduction approaches before sending into the L-RNN equalizer. Aided by
the feature-enhanced L-RNN, single-lane 288-Gb/s PAM-8 signal transmission over 100-m
MMF is realized with BER well below the 20% SD-FEC threshold.
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The architecture of LSTM and GRU networks are given in Figure 6. Compared
with traditional FNN, an LSTM/GRU layer is added, where inside contains a number
of LSTM/GRU cells. Both LSTM and GRU address the vanishing gradient problem in
traditional RNNs by introducing gating mechanisms that allow them to capture long-term
dependencies more effectively. The detailed complicated LSTM/GRU cell structure will not
be discussed in this paper. Interested readers can refer to [117–124] for more information.
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LSTM is used for equalization in both classification and regression manners in [117].
Both cases work well for a 50-Gb/s 100-km PAM4 optical system. In [118,119], a 160-Gb/s
1-km PAM4 link is conducted using a silicon-microring-modulator (Si-MRM) and an LSTM-
based equalizer. Two LSTM layers and two fully connected layers are employed. The
nonlinearity induced by the modulator is effectively mitigated by the proposed powerful
equalizer. In [120], the authors extend their work in [118,119] with updated experimental
configuration. The LSTM now supports 270-Gb/s PAM-8 signal to transmit 1-km SMF using
the Si-MRM, which greatly increases the achievable data rate. LSTMs are also employed
in [121,122] to achieve 200+ Gb/s per single lane. Note that non-zero dispersion-shifted
fiber (NZDSF) is used to reduce the impact of CD. In addition to LSTM, the performance
of GRU is also tested in [122], where it achieves slightly higher BER than LSTM. More
works on GRU-based equalization can be found in [123,124], where the GRU is proposed
to resolve the patterning effect of the semiconductor optical amplifiers (SOAs) applied in
IM/DD systems. The input power dynamic range of SOA can be greatly extended with the
help of the GRU-based equalization.
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3.4. Cascade NN-Based Equalizer

The introduction of different recurrent structures of RNN significantly improves the
system performance. However, the training and equalization complexity also increase,
especially for the LSTM and GRU ones. Another variant of FNN is the cascade NN, which
is computationally friendly. The structure of cascade FNN is shown in Figure 7. On top of
the traditional FNN, cascade connections are included, which connect the input and every
previous layer to the following layers. For a two-layer cascade FNN, the input layer is
simply connected to the output layer. Assuming the cascaded weights and are represented
by Wc ∈ Rn[0]+k, the equalization process of cascade FNN is given by

y = f [2]
([

W[2], Wc
][(

f [1]
(

W[1]x + b[1]
))T

, xT
]T

+ b[2]
)

. (14)Photonics 2024, 11, x FOR PEER REVIEW 10 of 24 
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The cascade connections produce a pure linear path for direct mapping of the inputs to
the output. This enables an efficient joint linear and nonlinear effect estimation and results
in better system performance when used for equalization. Both cascade FNN and cascade
RNN are proposed in [125,126]. A 100-Gb/s 15-km PAM4 link is built using a band-limited
DML, where the cascade structure help improves the receiver sensitivity by 1 dB compared
with NNs without cascade connections. It is also demonstrated that cascade NN-based
equalizers have a much faster training speed. A more recent work is found in [127], where
the cascade structure is shown as “skip connections”. The experimental setup is similar
as used in [123,124], where the NN performs well with skip connections. The effect of
simplified training is also verified in this work.

3.5. Other Types of NN-Based Equalizers

In addition to the above-mentioned NNs, there are also many different type of NN-
based equalizers demonstrated in IM/DD systems. Radial basis function NN (RBF-NN) is
shown in [128] in a 4 × 50-Gb 80-km PAM-4 IM/DD link. The RBF-NN employs Gaussian
activation function in the hidden layer, and achieves better network stability and fitting
ability compared with traditional Volterra series or FNN. There are many discussions on
the application of spiking NN (SNN) in IM/DD systems recently, as shown in [129–133].
In addition to neuronal and synaptic state used in traditional NNs, SNNs incorporate
the concept of time into their operating model. The SNN-based equalizers have been
implemented in application-specific integrated circuits (ASICs), and have been verified
in both simulation and experiments. Interested readers can refer to [129–133] for more
details about SNN-based equalization in IM/DD systems. The different types of NN-based
equalizers and IM/DD links are summarized and shown in Table 1.
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Table 1. Different types of NN-based equalization for various short-reach IM/DD links.

NN Type Ref. Modulation Data Rate Fiber Length Tx Type Wavelength

FNN

[95] PAM4 168 Gb/s 1.5 km SMF MZM (35 GHz) ~1550 nm
[96] PAM4 64 Gb/s 4 km MMF VCSEL (25 GHz) ~850 nm
[97] PAM4 50 Gb/s 20 km SMF MZM (10 GHz) ~1550 nm
[98] PAM4 20 Gb/s 18 km SMF DML (10 GHz) ~1310 nm
[99] PAM2/PAM4/PAM8 54 Gb/s 25 km SMF DML (10 GHz) ~1550 nm

[100] PAM4 4 × 50 Gb/s 80 km SMF DML (20 GHz) ~1550 nm
[101] PAM4 137 Gb/s 40 cm MMF MZM (25 GHz) ~850 nm
[102] PAM4 112 Gb/s 100 m MMF VCSEL (NA) ~850 nm
[103] PAM4 50 Gb/s 20 km SMF DML (10 GHz) ~1310 nm
[104] PAM2 50 Gb/s 30 km SMF MZM (35 GHz) ~1310 nm

[105] PAM4 160 Gb/s 2 km SMF GeSi EAM (30
GHz) ~1550 nm

[106] PAM4 56 Gb/s 20/30/40 km
SMF MZM (40 GHz) ~1550 nm

CNN

[107] PAM4 112 Gb/s 40 km SMF EML (25 GHz) ~1310 nm
[108] PAM4 56 Gb/s 25 km SMF DML (10 GHz) ~1310 nm

[109,110] PAM8/PAM16 100 Gb/s 25 km SMF DML (20 GHz) ~1310/1550 nm
[111] PAM4 56 Gb/s 100 km SMF MZM (40 GHz) ~1550 nm

RNN

[112] PAM2/PAM4 60/100 Gb/s 20 km SMF MZM (40 GHz) ~1550 nm
[113,114] PAM4 100 Gb/s 20 km SMF MZM (NA) ~1310 nm

[115] PAM4 56 Gb/s 100 m MMF VCSEL (18 GHz) ~850 nm
[116] PAM8 288 Gb/s 100 m MMF VCSEL (23 GHz) ~850 nm
[117] PAM4 50 Gb/s 100 km SMF DML (18 GHz) ~1550 nm

[118,119] PAM4 160 Gb/s 1 km SMF Si MRM (47 GHz) ~1550 nm
[120] PAM8 270 Gb/s 1 km SMF Si MRM (55 GHz) ~1550 nm

[121,122] PAM4 212 Gb/s 1 km NZDSF EML (40 GHz) ~1550 nm
[123,124] PAM4 100 Gb/s 5.4 km SMF MZM (NA) ~1550 nm

Cascade
NN

[125,126] PAM4 50/100 Gb/s 25/15 km SMF DML (16 GHz) ~1550 nm
[127] PAM4 100 Gb/s 4.8 km SMF MZM (33 GHz) ~1550 nm

RBF-NN [128] PAM4 4 × 50 Gb/s 80 km SMF DML (18 GHz) ~1550 nm

SNN
[129,130] PAM4 224 Gb/s 4 km SMF NA ~1270 nm
[131,132] PAM4 100 Gb/s 2 km SMF NA ~1310 nm

[133] PAM4 200 Gb/s 5 km SMF NA ~1270 nm

Besides the direct utilization of NN for equalization, NNs are often combined with
sequence decoders to achieve better system performance. Maximum likelihood sequence
estimation (MLSE) based on NN is proposed in [134], where the NN is used to estimate the
nonlinear channel responses and to calculate the metrics for the Viterbi algorithm. Similarly,
an NN-BCJR equalization scheme is proposed in [135], where an NN-based nonlinear
channel emulator is adopted to calculate the transition metric in the BCJR algorithm.
In [136,137], duobinary training strategy is proposed. The NN equalizer is first trained
targeting at the duobinary form of the signal, and MLSE is followed to recover the enforced
ISI. This approach is particularly effective in addressing the bandwidth limitations problems
in IM/DD systems. In [138], the NN equalizer is trained targeting at adaptive duobinary
form of the signal. The optimal partial-response parameter is learned through NN training,
where the system performance can be further improved compared with equalization with
conventional partial-response target.

3.6. Performance and Complexity Comparison of FNN-, L-RNN-, Cascade FNN-, and
AR-RNN-Based Equalizers

An IM/DD experiment is conducted to verify the performance and complexity of
above-mentioned NN-based equalizers. Here we only show the results of four types, i.e.,
FNN-, L-RNN-, cascade FNN-, and AR-RNN-based equalizers, since other types such as
CNN- or LSTM/GRU-based ones are considered much more complex, which makes them
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difficult to be applied in real-time applications. Interested readers can refer to [95–133] for
more details on the performance of different types of NN-based equalizers. The IM/DD
experiment is based on a DML with a 3-dB bandwidth around 16 GHz, where a 50-Gb/s
PAM4 signal is generated and transmitted over 25-km SMF [125,126]. A variable optical
attenuator (VOA) is applied at the receiver to tune the received optical power (ROP). The
NNs only have two layers, where tanh activation function is selected for the hidden layer
and linear activation function is used for the output layer. The NNs are used in a regression
manner which means that only one output is adopted. A total of 20,000 random PAM4
symbols are used for training the NNs, while an additional 1.2 million PAM4 symbols are
collected for NN-based nonlinear equalization and BER calculation.

We first show the best system performance of each NN-based equalizers, where the
complexity constraint is omitted. As many as 15 inputs and nine hidden neurons are
selected, which can guarantee that the NNs achieve their best performance. The BER-ROP
curves of different NN-based equalizers are shown in Figure 8a. We use the form (the
number of inputs, the number of hidden neurons) to represent the size of the different NNs,
as shown in the figure. It can be observed that the performance of NNs follows the order of
AR-RNN, cascade FNN (denoted by C-FNN in the figure), L-RNN, and FNN. Compared
with traditional FNN, the three FNN variants all improve the system performance. The
receiver sensitivity is improved by approximately 2/1/0.5 dB by AR-RNN/cascade FNN/L-
RNN. Figure 8b illustrates the number of multiplications (denoted by Nmul) of all the NNs
adopted in Figure 8a. Considering the same number of inputs and hidden neurons, L-RNN
is obviously more complicated than the other employed NNs. Cascade FNN and AR-RNN,
however, show limited additional complexity compared with traditional FNN.
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Figure 9a depicts the system BER performance of the NN-based equalizers under the
complexity constraint, where the Nmul of all the NNs are all kept below 100, shown in
Figure 9b. The number of inputs and hidden neurons of the different types of NNs are care-
fully chosen to achieve the best system performance with only a few tens of multiplications
involved to recover one symbol, showing the potential for real-time implementation. When
the Nmul of NNs are lower than 100, L-RNN becomes the worst equalizer since its size is
affected most by the complexity constraint. Cascade FNN and AR-RNN, however, still
present superior BER performance over FNN, increasing the receiver sensitivity by about
1.5 and 2 dB, respectively.
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3.7. Possible Pitfalls When Applying NN-Based Equalizers

One thing we need to pay special attention to when using NNs is the so-called possible
pitfalls or overestimation traps [139–143]. It has been observed that NNs are capable of
learning the operational logic of pseudo-random bit sequences (PRBSs). This ability may
lead to an overestimation of the NNs’ performance, as the performance improvements
might stem from predicting the sequence patterns rather than from mitigating channel
impairments. Such overestimation is not limited to PRBS but can also occur with other data
types that follow specific patterns, including short repeated sequences.

To mitigate this overestimation problem, several approaches can be adopted. First is
employing pure random data, i.e., true random numbers generated through unpredictable
physical processes, to ensure that each transmitted symbol is independent. This method
prevents NNs from learning any underlying patterns. Second is using different mixtures
of PRBSs with varying orders to train the NNs. This can also prevent the recognition of
consistent patterns across the combined sequences. Lastly, ensuring that the number of
NN inputs does not exceed the PRBS order can naturally address the issue. For PRBS
transmission, the NNs require at least as many inputs as the PRBS order to fully grasp the
PRBS operational logic. In the context of equalization in small-scale optical transmission
systems such as IM/DD links, where only a limited number of NN inputs are needed for
equalization, one viable strategy is to use sufficiently long PRBSs.

4. Computationally Efficient NN-Based Equalizers

The NNs indeed greatly exploit the performance of IM/DD system. However, it is
also obvious that the CC is largely increased, which makes NN receivers less practicable for
real-time implementation. Much progress has been made on resolving the complexity issue
when applying NN for IM/DD equalization. This section will review all the techniques,
focusing on both NN training and equalization.

4.1. Transfer Learning

The training process of NN-based equalizers is usually time-consuming, which in-
volves many iterations of forward- and backward-propagation calculations. When there
are many optical links needed for equalization, the training of different NN-based equal-
izers becomes a big problem. Transfer learning is proposed to speed up the NN training
process [144]. Transfer learning is a machine learning strategy that involves repurposing a
model designed for one task to serve as the foundation for a different, but related, task. This
method capitalizes on the insights gained from the initial task and applies them to a new
challenge. It is especially advantageous when the new task has a limited amount of labeled
data, as it enables the model to utilize the extensive data and computational resources
already invested in training the original model. Transfer learning has been introduced into
optical communications for optical performance monitoring [145–147], and for equalization
of coherent or single-sideband (SSB) signals [148–151]. It is first introduced for equalization
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in IM/DD systems in [152,153], where the flow diagram is given in Figure 10. For NN
training of the target IM/DD system, we can leverage the NN trained from different source
IM/DD systems and use transfer learning. Since the source NN-based equalizers preserve
channel information that are related to the target system, they can serve as a better starting
point for NN training in the target system, instead of training purely from scratch. Transfer
learning-aided fast equalization is demonstrated for both FNN and RNN-based equalizers
in a 50-Gb/s 20-km PAM-4 target IM/DD system [152,153]. The target system equalization
is accelerated by adopting NNs from a number of source systems with different data rates
and fiber lengths. The 60-Gb/s 15-km source system is found closest to the target one,
where significant reduction of 90%/87.5% in training epochs and 62.5%/53.8% in training
symbols are achieved. The study also reveals that FNNs can be smoothly transferred to
RNNs for equalization in the target system, whereas the reverse adaptation is not practical.
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In addition to FNN- and RNN-based equalizers, transfer learning can be smoothly
applied for CNN-based equalization in IM/DD systems, as shown in [154]. Similar
to [152,153], source systems with varying data rates and fiber lengths are employed, and
transfer learning again shows its effectiveness in reducing the number of training epochs
and the size of the training dataset. The iterative pruning technique is introduced into the
transfer learning-aided equalization for IM/DD links in [155,156], where the convergence
speed can be further enhanced during TL between the source and target links. By fine-
tuning the pruning parameters, an optimal balance between performance stability and
complexity can be attained. Transfer learning is set to be pivotal in the advancement of
optical-switched data center networks, where the dynamic reconfiguration of optical
link parameters is crucial. Utilizing transferred NN receivers, new optical interconnects
can be rapidly deployed.

4.2. Pruning

When the optical links are fixed and do not change dynamically, the training complex-
ity of NNs can be omitted since the well-trained equalizer can be stably used without the
need for retraining. The equalization complexity becomes the primary concerns. Pruning
is one possible technique to reduce the size and equalization complexity of an NN by
removing less important weights. As shown in Figure 11, after pruning, a sparse NN
structure is presented compared with its fully connected counterpart. This process helps
in making the model more efficient, often leading to faster inference times and reduced
computational resources, without significantly compromising the model’s performance.
Pruning can also enhance generalization by preventing overfitting and is particularly useful
for deploying models on resource-constrained devices. The pruning techniques have been
applied in Volterra-series-based equalization [157–160] for IM/DD systems, as well as in
NN-based equalization for coherent [161] and SSB signals [162]. Pruning of NN-based
equalizers in IM/DD systems is found in [98,163–167].
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The pruning process include the importance assessment of all the weights in the NN-
based equalizer. This is commonly performed by setting a threshold, where the weights
with absolute values lower than the threshold are considered insignificant and can be
pruned. In [98], the traditional pruning method is applied in a DML-based IM/DD link.
It has been demonstrated that the BER curves of the pruned NN are close to that of the
unpruned NN, showing the ability of pruning in reducing receiver complexity without
degrading much of the system performance. In [163], an iterative pruning algorithm is
proposed for NN-based equalization in VCSEL-based IM/DD links. Compared with tradi-
tional one-shot pruning, which prunes the NN only one time, the iterative pruning method
prunes the NN many times. The NN can be fine-tuned accordingly, which leads to a better
complexity reduction efficiency. Ref. [164] presents the real-time pruned NN in FPGAs for
VCSEL-based optical interconnects. The included hardware resources are minimized by
pruning, showing the potential of applying NN receivers in practical applications. In [165],
pruning is applied in a different cascade RNN-based equalization structure in a DML-based
IM/DD link. It is shown that the receiver complexity is largely decreased, despite the
utilization of NN structures. The importance of cascade and recurrent connections are also
verified in the pruning process. In [166,167], adaptive L2-regularization is introduced to
facilitate pruning in EML-based optical interconnects. A two-step training scheme is pro-
posed, where the first step involves using L2-regularization during training to encourage
sparsity in weight representations, and the second step applies the traditional pruning
mechanism to remove the insignificant weights. The proposed L2-regularization-aided
pruning approach shows better performance compared with conventional direct pruning.

4.3. Multi-Task Learning

Multi-task learning is also an efficient technique to address the equalization complex-
ity issue. Multi-task learning is a machine learning approach where a model is trained
simultaneously on multiple related tasks, leveraging shared representations to improve
performance on each task. By learning commonalities and differences among tasks, the
model can lead to improved accuracy and efficiency. Considering the equalization tasks in
optical transmission systems, multi-task learning is referred to as multi-symbol prediction,
shown in Figure 12, where multiple symbols are recovered simultaneously rather than
processed sequentially, one at a time. By dealing with multiple symbol using only one NN,
a better utilization of weights and biases can be realized. The information provided by
the weights and biases in the traditional single-output NN to recover the current symbol
can still be useful for predicting the following symbols. Part of the NN parameters can be
shared to enable a more efficient equalization structure.
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NNs with multi-outputs are adopted in IM/DD links in [104,113,114,124,168], where
the main purpose is to enable high throughputs. By increasing the number of NN outputs,
parallel computing can be realized. At the same FPGA clock frequency, higher throughputs
can be achieved while the number of employed FPGAs remains the same. For the com-
plexity reduction purpose, multi-symbol IM/DD equalization is first proposed in [169,170],
where FNN-, cascade NN-, and RNN-based multi-symbol equalizations are demonstrated.
All the cases reduce the number of multiplications for one symbol recovery to about a few
tens, which indicates the potential real-time implementation of NNs with multi-output
selections. The work also finds that there exist an optimal number of NN outputs that
reduce the computational complexity most. The multi-symbol equalization idea is then in-
troduced into LSTM and GRU-based IM/DD equalization in [121,122], as well as reservoir
computing-based equalization [171,172], where similar conclusions about complexity reduc-
tion are given. The multi-symbol equalization scheme can even be combined with pruning
techniques to jointly reduce the receiver complexity [173]. Recent hardware demonstrations
of multi-output NN-based equalizers further indicates their effectiveness in reducing the
equalization complexity [174,175], where the chip areas are considerably saved.

4.4. Quantization

Another approach to relax the equalization complexity requirement of NN is quantiza-
tion. NN quantization is a method that reduces the computational and memory demands of
an NN by changing its parameters and activations from high-precision (e.g., 32-bit floating-
point) to lower-precision formats (e.g., 8-bit integers). A quantized NN-based equalizer is
shown in Figure 13, where bit shifters and quantizers are adopted between each layer. The
quantization approach shrinks the model size and speeds up inference, enhancing efficiency
for hardware deployment. Although quantization can lead to some loss of accuracy, careful
tuning helps preserve the performance while significantly lowering computational costs
and power usage. A few works [176–179] have already demonstrated the computationally
efficient quantized NN-based equalization in coherent optical transmission systems.

For equalization in short-reach IM/DD scenarios, fixed-precision quantization of NNs
is employed in [114,168], targeting FPGA implementation NN receivers. Both works quan-
tize the floating-point (32-bit)-based NNs to integer-based ones, where only a few bits are
used to represent each weight and bias. Negligible BER penalty is observed when reducing
the quantized bits, which suggests the floating-point-based NNs are actually redundant
in precisions. By reducing the number of bits, the floating-point calculations all change
to integers, and the memory needed for NN parameter storage is drastically decreased.
In [180,181], a mixed-precision quantization method is proposed for IM/DD equalization
to further decrease the number of quantized bits compared with the fixed-precision coun-
terpart. A straightforward input neuron partitioning approach is applied to determine the
high- and low-precision weights. The proposed mixed-precision quantization is verified in
both traditional FNN and advanced cascade RNN scenarios. In [182], joint mixed-precision
quantization and pruning is proposed to squeeze out more bits in the NN-based equalizer.
The connections of NN are either directly eliminated or represented by a suitable number of
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quantization bits through weight clustering, creating a hybrid compressed sparse network
structure that computes much faster and consumes less hardware resources. The system
performance can still be upheld using the pruned mixed-precision-quantized NN receivers.
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5. Conclusions and Future Perspectives

This paper presents a comprehensive overview of the current status of applying NNs
for equalization in short-reach IM/DD optical links, considering both system performance
and complexity. Traditional FNN and a series of advanced NNs are adopted to effectively
mitigate the linear and nonlinear impairments in IM/DD channels. Transfer learning,
pruning, multi-task learning, and quantization approaches are introduced to make the
NN-based equalizer more computationally efficient, considering both the training and
equalization phases.

Future directions of NN-based equalization in short-reach IM/DD systems still focus
on improving the performance and reducing the complexity. One key area of interest
is the continuous exploration of more advanced and powerful NN-based equalizers to
enhance system performance. One thing we need to mention is that the works present in
this paper mainly consider only post-equalization for simplicity. Joint optimizations of
both pre- and post-NN-based equalization, or the so-called end-to-end learning structures,
may be viable solutions to further improve BER. Considering different short-reach links,
it is also important to develop approaches to improve the ability of generalization for
NN-based equalizers. Another area of interest lies in the development of more efficient
and intelligent approaches for complexity reduction. Algorithms that enable faster NN
training and equalization are vital for realizing real-time receiver implementations. More-
over, the NN-based equalizers shown in this paper are all used as black boxes, relying
purely on data-driven methods. It is also important to incorporate physical interpretations
into the equalization model and develop physics-informed NN receivers for short-reach
IM/DD applications.
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