In-Fiber Hybrid Structure Sensor Based on the Vernier Effect for Vector Curvature and Temperature Measurement
Abstract
:1. Introduction
2. Fabrication and Operating Principle
2.1. Sensor Fabrication
2.2. Operating Principle
2.3. Simulation and Spectral Analysis
3. Results and Analysis
3.1. Curvature Sensing Experiment
3.2. Temperature Sensing Experiment
3.3. Simultaneous Measurement of Curvature and Temperature
3.4. Comparison with Other Sensors
3.5. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ran, Z.; He, X.; Rao, Y.; Sun, D.; Qin, X.; Zeng, D.; Chu, W.; Li, X.; Wei, Y. Fiber-optic microstructure sensors: A review. Photonic Sens. 2021, 11, 227–261. [Google Scholar] [CrossRef]
- Xu, R.; Yurkewich, A.; Patel, R.V. Curvature, torsion, and force sensing in continuum robots using helically wrapped FBG sensors. IEEE Robot. Autom. Lett. 2016, 1, 1052–1059. [Google Scholar] [CrossRef]
- Bronnikov, K.; Wolf, A.; Yakushin, S.; Dostovalov, A.; Egorova, O.; Zhuravlev, S.; Semjonov, S.; Wabnitz, S.; Babin, S. Durable shape sensor based on FBG array inscribed in polyimide-coated multicore optical fiber. Opt. Express 2019, 27, 38421–38434. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Zheng, H.; Alsalman, O.; Naku, W.; Ma, L. Simultaneous and Multiplexed Measurement of Curvature and Strain Based on Optical Fiber Fabry–Perot Interferometric Sensors. Photonics 2023, 10, 580. [Google Scholar] [CrossRef]
- Tang, Z.; Lou, S.; Wang, X.; Zhang, W.; Yan, S.; Xing, Z. High-performance bending vector and strain sensor using a dual-tapered photonic crystal fiber Mach–Zehnder interferometer. IEEE Sens. J. 2019, 19, 4062–4068. [Google Scholar] [CrossRef]
- Shao, L.-Y.; Luo, Y.; Zhang, Z.; Zou, X.; Luo, B.; Pan, W.; Yan, L. Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect. Opt. Commun. 2015, 336, 73–76. [Google Scholar] [CrossRef]
- Zhang, S.; Yin, L.; Zhao, Y.; Zhou, A.; Yuan, L. Bending sensor with parallel fiber Michelson interferometers based on Vernier-like effect. Opt. Laser Technol. 2019, 120, 105679. [Google Scholar] [CrossRef]
- Roesthuis, R.J.; Misra, S. Steering of multisegment continuum manipulators using rigid-link modeling and FBG-based shape sensing. IEEE Trans. Robot. 2016, 32, 372–382. [Google Scholar] [CrossRef]
- Xu, R.; Liu, S.; Sun, Q.; Lu, P.; Liu, D. Experimental characterization of a Vernier strain sensor using cascaded fiber rings. IEEE Photonics Technol. Lett. 2012, 24, 2125–2128. [Google Scholar]
- Zhang, Y.; Xu, B.; Wang, D.N.; Gong, H.; Li, Y.; Zhao, C.-L. Sensitivity-enhanced fiber strain sensing system based on microwave frequency scanning with the Vernier effect. Opt. Fiber Technol. 2018, 43, 175–179. [Google Scholar] [CrossRef]
- Li, J.; Zhang, M.; Wan, M.; Lin, C.; Huang, S.; Liu, C.; He, Q.; Qiu, X.; Fang, X. Ultrasensitive refractive index sensor based on enhanced Vernier effect through cascaded fiber core-offset pairs. Opt. Express 2020, 28, 4145–4155. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Li, Z.; Sun, Y.; Yao, Y. High-sensitivity fiber-optic strain sensor based on the Vernier effect and separated Fabry–Perot interferometers. J. Light. Technol. 2019, 37, 5609–5618. [Google Scholar] [CrossRef]
- Xie, M.; Gong, H.; Zhang, J.; Zhao, C.-L.; Dong, X. Vernier effect of two cascaded in-fiber Mach–Zehnder interferometers based on a spherical-shaped structure. Appl. Opt. 2019, 58, 6204–6210. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Ning, T.; Zheng, J.; Pei, L.; Li, J.; Cao, J.; Gao, X.; Zhang, C. High-sensitivity strain sensor implemented by hybrid cascaded interferometers and the Vernier-effect. Opt. Laser Technol. 2019, 119, 105591. [Google Scholar] [CrossRef]
- Xu, Z.; Shu, X. Fiber Optic Sensor Based on Vernier Microwave Frequency Comb. J. Light. Technol. 2019, 37, 3503–3509. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, Y.; Guo, H.; Zhou, A.; Yuan, L. Highly Sensitive Vector Curvature Sensor Based on Two Juxtaposed Fiber Michelson Interferometers with Vernier-Like Effect. IEEE Sens. J. 2019, 19, 2148–2154. [Google Scholar] [CrossRef]
- Zhang, S.; Zhou, A.; Yuan, L. Simultaneous temperature and bending sensor based on Fabry–Perot interferometer with Vernier effect. Opt. Fiber Technol. 2021, 66, 102657. [Google Scholar] [CrossRef]
- Claes, T.; Bogaerts, W.; Bienstman, P. Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the Vernier-effect and introduction of a curve fitting method for an improved detection limit. Opt. Express 2010, 18, 22747–22761. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Fu, H.Y.; Qureshi, K.K.; Guan, B.-O.; Tam, H.Y. High-pressure and high-temperature characteristics of a Fabry–Perot interferometer based on photonic crystal fiber. Opt. Lett. 2011, 36, 412–414. [Google Scholar] [CrossRef]
- Sun, Y.; Zhou, X.; Yan, X.; Zhang, X.; Wang, F.; Cheng, T. A Temperature-Insensitive Bidimensional Curvature Sensor Employing C-Fiber-Based Fabry–Pérot Air Cavity. IEEE Trans. Instrum. Meas. 2022, 71, 7007806. [Google Scholar] [CrossRef]
- Kersey, A.D.; Davis, M.A.; Patrick, H.J.; LeBlanc, M.; Koo, K.P.; Askins, C.G.; Putnam, M.A.; Friebele, E.J. Fiber grating sensors. J. Light. Technol. 1997, 15, 1442–1463. [Google Scholar] [CrossRef]
- Shu, X.; Liu, Y.; Zhao, D.; Gwandu, B.; Floreani, F.; Zhang, L.; Bennion, I. Dependence of temperature and strain coefficients on fiber grating type and its application to simultaneous temperature and strain measurement. Opt. Lett. 2002, 27, 701–703. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Nan, P.; Zhu, J.; Li, Z.; Dan, J.; Dang, W.; Lim, K.-S.; Udos, W.; Ahmad, H.; Liu, X. Ultrasensitive parallel double-FPIs sensor based on Vernier effect and Type II fiber Bragg grating for simultaneous measurement of high temperature and strain. Opt. Commun. 2022, 508, 127717. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, C.; Yin, G.; Jiang, B.; Zhou, K.; Mou, C.; Liu, Y.; Zhang, L.; Wang, T. Simultaneous directional curvature and temperature sensor based on a tilted few-mode fiber Bragg grating. Appl. Opt. 2018, 57, 1671–1678. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhou, W.; Chan, C.C.; Wong, W.C.; Shao, L.-Y.; Cheng, J.; Dong, X. Simultaneous measurement of curvature and temperature based on PCF-based interferometer and fiber Bragg grating. Opt. Commun. 2011, 284, 5669–5672. [Google Scholar] [CrossRef]
- Liu, H.; Yang, H.; Qiao, X.; Wang, Y.; Liu, X.; Lee, Y.-S.; Lim, K.-S.; Ahmad, H. Curvature and temperature measurement based on a few-mode PCF formed MZI and an embedded FBG. Sensors 2017, 17, 1725. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Chai, Q.; Tan, T.; Mu, B.; Liu, Q.; Liu, Y.; Ren, J.; Zhang, J.; Oh, K.; Lewis, E. Directional bending sensor based on a dual side-hole fiber Mach–Zehnder interferometer. IEEE Photonics Technol. Lett. 2017, 30, 375–378. [Google Scholar] [CrossRef]
- Huang, J.; Huang, S.; Shen, C.; Jin, Y. Simultaneous bending-curvature and temperature measurements based on a fiber Bragg grating and a Mach–Zehnder interferometer. Opt. Eng. 2018, 57, 20501. [Google Scholar] [CrossRef]
- Jiang, B.; Bai, Z.; Wang, C.; Zhao, Y.; Zhao, J.; Zhang, L.; Zhou, K. In-line Mach–Zehnder interferometer with D-shaped fiber grating for temperature-discriminated directional curvature measurement. J. Light. Technol. 2018, 36, 742–747. [Google Scholar] [CrossRef]
- Kong, Y.; Shu, X. In-Fiber Hybrid Cladding Waveguide by Femtosecond Inscription for Two-Dimensional Vector Bend Sensing. J. Light. Technol. 2021, 39, 2194–2204. [Google Scholar] [CrossRef]
The Spectrum Datum of Actual Measurement and Calculation | Dip1 (nm) | Dip2 (nm) | |
---|---|---|---|
R | C = 0°:0 m−1, T = 33 °C | ||
Experiment | 1386.28 | 1549.7 | |
Calculation | |||
Q1 | C = 0°:0.108 m−1, T = 43 °C | ||
Experiment | 1392.12 | 1549.92 | |
Calculation | 1391.92 | 1549.86 | |
Q2 | C = 0°:0.216 m−1, T = 53 °C | ||
Experiment | 1395.28 | 1550.06 | |
Calculation | 1394.96 | 1550.02 | |
Q3 | C = 0°:0.324 m−1, T = 63 °C | ||
Experiment | 1397.76 | 1550.22 | |
Calculation | 1397.1 | 1550.16 | |
Q4 | C = 0°:0.433 m−1, T = 73 °C | ||
Experiment | 1401.12 | 1550.40 | |
Calculation | 1400.06 | 1550.32 |
The Condition Datum of Calculation and Actual Measurement | ΔC | ΔT | |
---|---|---|---|
R | actual | 0 | 0 |
measured | |||
Q1 | actual | 0.108 m−1 | 10 °C |
measured | 0.116 m−1 | 11.5 °C | |
Q2 | actual | 0.216 m−1 | 20 °C |
measured | 0.231 m−1 | 21.7 °C | |
Q3 | actual | 0.324 m−1 | 30 °C |
measured | 0.337 m−1 | 31.2 °C | |
Q4 | actual | 0.433 m−1 | 40 °C |
measured | 0.479 m−1 | 42.1 °C |
Structure | Curvature Sensitivity | Curvature Detection Range | Temperature Crosstalk | Add. FBG | Vernier Effect |
---|---|---|---|---|---|
Tilted few-mode FBG [24] | −2.67 dB/m−1 | 4.883–7.625 m−1 | 5.618 × 10−4 m−1/°C | NO | NO |
SMF-PCF-SMF (air-holes) [25] | 4.06 nm/m−1 | 0–2.91 m−1 | 1.552 × 10−3 m−1/°C | YES | NO |
SMF-MMF-PCF-MMF-SMF [26] | −1.03 nm/m−1 | 10–22.4 m−1 | −5.85 × 10−2 m−1/°C | YES | NO |
SMF-DSHF-SMF [27] | 90°: −1.8 nm/m−1 270°: 1.49 nm/m−1 | 0–1 m−1 | −2.28 × 10−2 m−1/°C 2.752 × 10−2 m−1/°C | YES | NO |
Peanut-shaped structure [28] | −27.58 nm/m−1 | 0.299–0.733 m−1 | −1.41 × 10−3 m−1/°C | YES | NO |
SMF-D-shaped Fiber-SMF [29] | 87.7 nm/m−1 | 0–0.3 m−1 | 9.806 × 10−4 m−1/°C | YES | NO |
Fs-written-CWG-SMF [30] | 0°: −14.25 nm/m−1 90°: 1.012 nm/m−1 180°: 14.8 nm/m−1 270°: −1.013 nm/m−1 | 0–8 m−1 | 1.72 × 10−3 m−1/°C 24.27 × 10−3 m−1/°C −1.66 × 10−3 m−1/°C −24.24 × 10−3 m−1/°C | NO | NO |
SMF-ECF-DSHF-ECF- DSHF [17] | 0°: 86.2 pm/m−1 90°: 3.6 pm/m−1 180°: −88.15 nm/m−1 270°: −5.39 nm/m−1 | 0–4.75 m−1 | 0.6636 m−1/°C 15.89 m−1/°C −0.649 m−1/°C −10.61 m−1/°C | NO | YES |
This work: hybrid FP/MZI structure | 0°: 20.23 nm/m−1 90°: 10.87 nm/m−1 180°: −25.55 nm/m−1 270°: −6.425 nm/m−1 | 0–0.865 m−1 | 4.9 × 10−3 m−1/°C 9.2 × 10−3 m−1/°C −3.9 × 10−3 m−1/°C −1.55 × 10−2 m−1/°C | YES | YES |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Zhao, T.; Li, B.; Du, S.; Li, D.; Liu, D.; Wang, T. In-Fiber Hybrid Structure Sensor Based on the Vernier Effect for Vector Curvature and Temperature Measurement. Photonics 2024, 11, 703. https://doi.org/10.3390/photonics11080703
Wang S, Zhao T, Li B, Du S, Li D, Liu D, Wang T. In-Fiber Hybrid Structure Sensor Based on the Vernier Effect for Vector Curvature and Temperature Measurement. Photonics. 2024; 11(8):703. https://doi.org/10.3390/photonics11080703
Chicago/Turabian StyleWang, Sunde, Tiantong Zhao, Baoqun Li, Silun Du, Deqi Li, Dongmei Liu, and Tianshu Wang. 2024. "In-Fiber Hybrid Structure Sensor Based on the Vernier Effect for Vector Curvature and Temperature Measurement" Photonics 11, no. 8: 703. https://doi.org/10.3390/photonics11080703
APA StyleWang, S., Zhao, T., Li, B., Du, S., Li, D., Liu, D., & Wang, T. (2024). In-Fiber Hybrid Structure Sensor Based on the Vernier Effect for Vector Curvature and Temperature Measurement. Photonics, 11(8), 703. https://doi.org/10.3390/photonics11080703