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Abstract: Optical fiber sensors have been widely applied for their advantages such as small size,
lightweight, and strong electronic interference robustness. Compared with current electronic sensors,
optical fiber sensors perform better in measuring parameters in harsh environments, which makes
them suitable for more and more applications, such as target tracing and detection and monitoring of
health signs in medical services. However, due to fiber optic sensor failure, improper transmission
and storage, or other reasons, missing data occur from time to time. Therefore, effective missing
value processing methods are desirable as they can be used to facilitate data processing or analysis.
In the present study, gated recurrent unit (GRU) interpolation is performed by using the generative
adversarial network (GAN) model to process the irregular delay relationship between the data before
and after the collection of incomplete vital signs data. Furthermore, a data interpolation model
based on VS-E2E-GAN is proposed to reconstruct vital signs signals. The ROC curve (AUC), metrics
including mean squared error (MSE), and accuracy (ACC) of experiments reach 0.901, 0.777, and
0.908, respectively, which indicates that the proposed VS-E2E-GAN model performs well in terms of
vital signs data imputation and repairment, has strong robustness when compared with other works,
and has potential clinical application in health monitoring, smart home, and so on.

Keywords: vital signs monitoring; optical fiber sensor; missing data; repairment; generative adversarial
network; VS-E2E-GAN

1. Introduction

Recently, the optical fiber communication industry has experienced rapid development.
An optical fiber communication system is characterized by a larger channel bandwidth and
more reliable information service [1–5]. At the same time, there are also various applications
for optical fiber sensors, especially medical monitoring [6–9]. Currently, the incidence and
mortality of various high-risk diseases show an increasing trend. With the progress in
modern medicine and the shift of priority from treatment to prevention, daily assessment
and detection of human health have become requisite for preventing and controlling the
development of high-risk diseases [10]. For example, the vital signs of patients are an
important piece of data needed for the treatment and care of patients, especially when the
continuous monitoring of heart rate is required. Various vital signs, such as respiration,
body temperature, blood sugar, lipids heartbeat, pulse, and blood pressure (BP), are the
main health indicators of human physiological activities. Therefore, in addition to assisting
in the evaluation of daily health status for individuals, monitoring of vital signs can also
support the early of certain diseases like cardiovascular diseases [10,11]. Among them,
heartbeat and respiratory signals are the most common ones, which are closely related to
health status [12–15]. However, the method commonly used to monitor vital signs, namely,
five-lead detection, requires direct contact with the patient’s skin to collect vital signs data.
In different situations, this measurement causes inconvenience, and it performs poorly in
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efficiency and accuracy, thus causing disruption to timely and effective treatment. This is a
problem that can be effectively solved by using optical fiber sensors [15,16].

However, it is a common problem to encounter in practice that data missing and data
anomalies result from the use of optical fiber sensors to collect vital signs signals, which is due
to terminal data collectors, network communication failures, or other human factors, such as
subject body flipping [17–19]. There are different methods available to perform data repair
but they vary in the extent to which accuracy is improved. With regard to dealing with the
outliers and missing and error values in the existing literature, there are three main methods
used. The first one is the direct deletion method, which often ignores the important information
in the data, and a higher missing rate influences the subsequent data analysis more significantly.
The other one is the simple imputation method, which usually involves mean imputation,
median imputation, and other methods of mathematical imputation, focusing only on the
relationship between values. The last one includes various imputation methods based on
machine learning, such as the interpolation based on the interpolation method and the k-nearest
neighbors (KNN) based on matrix factorization. However, these methods focus narrowly on
the statistical characteristics of the data itself, thus ignoring the time-series signal characteristics.
Furthermore, the imputation accuracy is poor [20–24].

In an era of artificial intelligence, the technology of deep learning is being applied
widely to achieve data processing and pattern recognition. Generative adversarial network
(GAN) is a generative learning algorithm that has emerged in recent years [25–27]. Due
to the advantage of GAN in model-free reconstruction to perform data generation tasks,
it has been applied to deal with time series data generation. By following the adversarial
training process, the quality of samples generated via GAN is significantly improved
compared with traditional methods [28–32]. Moreover, the framework of GAN shows
flexibility. The generator or discriminator can be any differentiable function, which is
conducive to the further application of GAN. At present, recurrent neural networks (RNNs)
are being used widely for sequence learning, with excellent achievement in digital image
signal processing, video signal processing, and natural language processing (NLP) [33–39].
Some representative modules, such as gated recurrent unit (GRU) and long short-term
memory (LSTM), are applicable to alleviate the problem of gradient disappearance caused
by introducing gating units and applying information-locking strategies. Alternatively,
extra modules can be used to solve problems in LSTM [40,41].

In the present study, to improve the completeness of the acquired heart rate (HR) and
respiration rate (RR) data and the effectiveness of medical monitoring, a vital sign data imputa-
tion and end-to-end GAN-based data imputation model (VS-E2E-GAN) is proposed, which
relies on the new gated recurrent unit interpolation (GRUI) module to accurately fill the missing
values (missing values and outliers to be filled) in vital signs data, so as to improve the integrity
and quality of data, thus compensating for the missing and incomplete signals collected by
optical fiber sensors. The experimental results obtained on the real dataset demonstrate the
effectiveness of the missing value imputation model of vital signs data as proposed in this paper.
The main contributions of this study are summarized as follows:

(1) An optical fiber sensor based on a fiber interferometer is proposed to monitor the vital
signs effectively.

(2) To deal with the missing values of vital signs data, a novel deep learning model
(VS-E2E-GAN), which is based on de-noising autoencoder and GAN, is proposed
to extract the distribution features of the vital signs data obtained from the optical
fiber sensor.

(3) Multiple experiments are conducted by using three common evaluation metrics to
verify how well the model performs, with the experimental results obtained to confirm
its better imputation performance.

(4) In combination with the VS-E2E-GAN model, the optical fiber sensor is more effective
in non-intrusive physiological monitoring under clinical settings.

The content of this paper is structured as follows. The related works are introduced in
Section 2. In Section 3, a discussion is conducted about some methods and the proposed model
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structure. Section 4 elaborates on different experiments. Furthermore, we also compared the
performances between the proposed model and other models. The experimental results are
analyzed and researched. In Section 5, the conclusion is drawn and the outlook is outlined.

2. Related Works

In this section, a brief introduction is made to some related works, covering the optical fiber
sensor in measurement and time series data processing with some deep learning techniques.

2.1. Optical Fiber Sensing and Measurement

According to the specific application requirements, optical fiber sensors can be cat-
egorized into many types, including distributed sensors, bending vector sensors, liquid
level sensors, temperature sensors, pressure sensors, and so on. Based on the capability
for continuous monitoring over increasing sensing distances, they are further classified as
quasi-distributed (QD) optical fiber sensors and point-distributed optical fiber sensors [41].
Additionally, they can also be distinguished as interference and non-interference types
based on their susceptibility to interference. There are various advantages to optical fiber
sensors due to the unique properties of optical fibers compared to traditional metal wires.
These include small size, eco-friendly, safety, lightweight, and reliability; resistance to
electromagnetic interference and corrosion; wide applicability across different objects with
minimal impact; among others. As a result of these benefits, optical fiber sensors find
applications in many fields, such as industry, agriculture, aerospace, petroleum exploration,
aviation, medical and health, national defense, and security [42].

Simultaneously, it demonstrates substantial potential in augmenting capabilities for
micro-manufacturing, thereby finding wide-ranging applications in biomedical services
and the monitoring of vital signs, particularly in the development of minimally invasive
surgical instruments. Takeuchi et al. conducted a significant study in 2007 exploring the
application of optical fiber sensors in pharyngeal manometry [43]. The study employed
a pharynx pressure sensor based on Fabry–Perot interferometry technology (FOP-MIV,
FISO technology), which exhibited a strong correlation with conventional catheter-based
reference sensors (p37-4109c05, zinatics). The sensor has a compact 2.08 mm diameter
conduit, measuring pressures from −30 kPa to 30 kPa at 250 Hz sampling frequency. Fur-
thermore, its resistance to electromagnetic interference enhances its suitability for operation
in environments with significant electromagnetic challenges. For instance, microbend
optical fiber sensors can effectively operate in the presence of conditions such as nuclear
magnetic resonance, enabling the measurement of various vital signs including HR, blood
pressure (BP), and respiratory rate (RR), among others.

2.2. Time Series Data Processing

As a group of continuous series data with time tags, time series data usually reflect
the laws of development and characteristics of change to things over time. The typical
forms of time series data include commodity transaction prices, the temperature in a
specific region at a certain time, electrocardiogram (ECG) trends, house price trends, and
the solution concentration data in the process of chemical reaction. Time series prediction
aims to identify the pattern of changes in the time series data by analyzing the distribution
characteristics of historical time series data for quantitative prediction of the possible future
values of related variables in the time series.

At the same time, time series data loss is a common problem. In different contexts
of data collection, there are different causes for data loss, such as interference with data
collection equipment, the population lost in social surveys like population censuses, and
the limitations of existing technology like deoxyribonucleic acid (DNA) sequencing. With
respect to incomplete data analysis, the missing value imputation method can be used to
find a reasonable substitute value for each missing value by exploring the distribution law
of the remaining data, so as to obtain a dataset with the same size and dimension as the
original dataset. This method has attracted the attention of many researchers as it can not
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only maintain the size of the original dataset but also make reasonable inferences about
the missing values. In the course of scientific research or various industrial applications
such as machine learning and data mining, data preprocessing consumes more than 60%
of the time and energy for researchers. Therefore, incomplete data processing is the key
work to perform. For the analysis and prediction of time series, it is necessary to effectively
deal with the missing values of time series data. In general, data loss mechanisms are
divided into three categories, and different methods should be adopted for different loss
mechanisms. These three mechanisms are detailed as follows [44]:

(1) Missing completely at random (MCAR), which means the data may be lost in some
dimensions or completely. These deletions are completely random and irrelevant to
any other external factors.

(2) Missing at random (MAR), which means deletion of data is related to known variables
only and irrelevant to any unobservable variables.

(3) Missing not at random (MNAR), which means the missing value of the data is related to
both observable and unobservable variables if the missing data are neither MCAR nor MAR.

The incompleteness of time series tends to cause deviation in the modeling of time
series and even renders the results of subsequent time series data analysis incorrect. There-
fore, the primary emphasis in time series research revolves around effectively addressing
missing values within the data. Approaches to handling missing data are categorized
into two main methods based on their data processing techniques: direct deletion and
imputation. Imputation methods, in turn, branch into statistical imputation, machine
learning-based imputation, and deep neural network-based imputation techniques.

2.3. Generative Adversarial Network (GAN)

The Generative Adversarial Network (GAN), introduced by Ian et al. in 2014 [45],
between the generator and the discriminator is used to capture the distribution characteris-
tics of the original dataset. In recent years, GAN has achieved outstanding performance in
the field of computer vision and natural language processing, becoming a cornerstone in
generating sequential data. For instance, Mogren et al. employed a C-RNN-GAN model to
synthesize sequential melody data, utilizing an enhanced recurrent neural network within
the model to accurately replicate musical styles [46]. Similarly, Yoon et al. explored GANs
for generating time series data in 2019, focusing primarily on modeling historical trends
rather than predicting future data trajectories [47].

The idea of creating a confrontation network is inspired by the “two-person zero-sum
game” theory. In a space where the sum of interests is fixed, two people fight for their
own benefits. The increase in benefits received by one party must be accompanied by
the decrease in benefits received by the other party. The two parties constantly strive for
their own benefits through competition. The whole game process can be described as that
with one side’s strategy determined, the other side will make the decision that is most
favorable to its own side under the current conditions [48]. If both sides of the game choose
to be optimal when the other side’s strategy is determined, this group of strategic choices
will reach Nash equilibrium. The generator (G) and discriminator (D) in the generated
confrontation network represent the two sides of the game. Fighting for their own interests
through the game, they learn and progress together in the game process [49].

In practice, the mutual objective of the generator and discriminator is quantified by
the probability value outputted by the discriminator, which signifies the likelihood of the
discriminator classifying the current input as real data. In the network training process, the
generator will be interfered by the false but new samples similar to the real sample data,
which will be interfered with by the discriminator by constantly generating. When these
false samples are taken as the input, the discriminator should protect its own interests by
outputting a probability value that is as low as possible. In the process of confrontation
training between the two, the generator constantly improves its ability to generate false
samples, and the discriminator constantly improves its ability to identify them. Finally,
network training is completed when the “Nash equilibrium” similar to that in game theory
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is reached. There are no restrictions on the selection of the internal network structure of the
generator and discriminator. A fully connected network (FCN) and cyclic neural network
can all be treated as a generator and a discriminator, respectively.

3. Materials and Methods

This section proposes an optical fiber sensor and vital sign interpolation model. Specif-
ically, the fiber interferometer-based optical sensor is developed to monitor vital signs.
Furthermore, we construct a new model of deep learning (VS-E2E-GAN) in order to fill in
the missing values in vital sign data.

3.1. Proposed Optical Fiber Sensor

In this study, ballistocardiogram (BCG) monitoring is performed non-invasively using
a smart cushion. The monitoring system consists of a proportional–integral–derivative
(PID) controller, a phase shifter, as well as a Mach–Zehnder interferometer (MZI) BCG
monitor. The system for monitoring consists of a low-speed photodetector (PD), a DFB
laser, a phase shifter, as well as the MZI-based BCG monitor. Comprising two 3 dB couplers
that operate as optical splitters as well as couplers, correspondingly, the MZI is positioned
atop a plastic substrate to enable smart cushion packing. The MZI along with the phase
shifter have been parallelly fixed as well as located beyond the sensing area. The BCG
signal is transformed by the PD into an electrical signal that splits between the CH1 and
CH2 channels. The low-pass filter (LPF) processed data as an input for the PID controller
is included in CH2, whereas CH1 represents the raw data. To keep the system running at
a quadrature point, the controller adjusts for phase drift. A data acquisition (DAQ) card
(National Instrument, USB6001) records the unprocessed information from CH1.

The two arms of the MZI design employed in this investigation are roughly 40 cm long
and varied by 5 mm. Two bent arms that are placed together within a semicircle shape as
well as are not overlapping make up the integrated cushion made of plastic substrate. When
a subject sits upon the cushion, their body recoils from heartbeats, which causes a variation
in phase within the interferometer. Via the degree of variability, this phase variation may be
utilized to identify the BCG signal. Figure 1 shows the monitoring system that makes use of
the optical fiber sensor. Equation (1) represents the system’s optical fiber interferometer’s
mean output light intensity, where D is the mean output intensity of light, the interference
fringes peak intensity is denoted by I0, the total amount of output light routes is denoted by
k, the variation in the phase of the signal generated by the sensor is represented by φ(t), as
well as the variation in phase brought on by shifts in the environment is indicated by ψ(t).

Ik = D + I0cos[φ(t)− (k − 1)(2π/3)] (1)
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3.2. Data Acquisition and Processing

As an important vital sign, RR reflects the physiological function of the lung, oxygen
input, and carbon dioxide output. When abnormal RR is detected, it may be associated
with many symptoms such as asthma and anemia [8]. At present, it is widely used to
evaluate the physical and mental conditions of the human body, and the measurement
of this parameter is the focus of vital signs detection. HR is detected by examining the
characteristics of the BCG signal. The body will recoil when the heart pumps blood into
the vascular system. Such pressure changes and microchanges in the human body can
be detected simultaneously by using fiber-optic sensors embedded in the mattress for
non-invasive detection. The original signal filtered respiration signal and filtered BCG
signal as obtained by the fiber optic sensor are shown in Figure 2, in which HR and RR are
shown as typical time series signals.
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To extract HR and RR from the raw BCG signal, the RR is calculated as (60 × 6/12) = 30 rpm
when the raw BCG signal exhibits 6 distinct waveforms within a 12 s interval. Utilizing time-
domain data and the Fast Fourier Transform (FFT) algorithm facilitates noise mitigation in
the raw BCG signal through linear trend removal and filtering. Consequently, if the filtered
signal exhibits 9 clear waveforms over a 6 s span, the HR can be determined as 90 bpm.

3.3. Proposed Model (VS-E2E-GAN)

In practice, it is common that sensor failure or body turnover of the subject makes
the collection of vital sign signals incomplete and causes the loss of some key values.
There are two main problems with the current methods of time series data missing value
imputation. On the one hand, most data-imputation methods ignore the particularity of
time series. On the other hand, a complete dataset is required by the time series data
imputation method based on a recurrent neural network. In this paper, the VS-E2E-GAN
model is proposed which can directly interpolate missing time series data. The model
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relies on a bidirectional gated recurrent neural network to model the time series and
fully learn the implicit information contained in the remaining data. Vital signs data are
usually collected continuously by sensors and show significant temporality, while the time
series collected by the sensor can be lost due to the failure or interference of the sensor.
Therefore, it is necessary to prevent the missing part from affecting the subsequent data
analysis by processing the missing time series. Based on the observed characteristics of
missing time series data, the idea of auto-encoder is introduced to propose a filled recurrent
neural network model that can be applied to process time series data. However, the model
requires complete time series data during training, so that it is used as a generator network
to construct a GAN-based time series missing value imputation model called VS-E2E-GAN.
The model starts by learning the distribution law of time series on the missing dataset. After
the completion of network training, the new time series data conforming to the original
data distribution are generated. Also, the network-generated time series data are used to
impute missing values. The overall model structure is shown in Figure 3.

Photonics 2024, 11, x FOR PEER REVIEW 8 of 17 
 

 

 

Figure 3. Architecture of the VS-E2E-GAN model. 

For a given d-dimensional time series containing vacancies (x = [x0, x1, …, xn−1]) and 
corresponding time nodes (t = [t0, t1, …, tn−1]), the vacancies are filled in. Firstly, it is neces-
sary to obtain the specific position of the vacancy value in the time series. To achieve this 
purpose, and to define the position matrix of the vacancy value (S), the 0~1 variable is used 
to determine whether there is any vacancy in the observation value data at the time node. 
For a beĴer understanding, a three-dimensional time series with null values is assigned, 
with each row representing the observed value of each feature quantity at the time of 0, 1, 
2, and 3, as shown in Equation (2): 

⎩
⎪
⎨

⎪
⎧𝑥 = 

1,5, 𝑁𝑜𝑛𝑒, 8
𝑁𝑜𝑛𝑒, 7,6, 𝑁𝑜𝑛𝑒
4, 𝑁𝑜𝑛𝑒, 𝑁𝑜𝑛𝑒, 2

൩

𝑆 = 
1,1,0,1
0,1,1,0
1,0,0,1

൩

 (2)

where None represents the data vacancy value. It can be clearly seen from above that the 
time delay between two adjacent effective observations changes due to the existence of 
None, which also shows the distribution characteristics between vacancy values. At the 
same time, different time delays have different effects on subsequent observations. If an 
observation is missing for some time, its effect is supposed to diminish over time. To rec-
ord the time delay between two adjacent valid observations, a time delay matrix δ is in-
troduced to describe the change in time delay. Its elements are expressed as follows: 

𝛿௧,ೕ
= ቐ

𝑡 − 𝑡ିଵ, (𝑠௧షభ,ೕ
= 1, 𝑖 > 0)

𝛿௧షభ,ೕ
+ 𝑡 − 𝑡ିଵ, (𝑠௧షభ,ೕ

= 0, 𝑖 > 0)

0(𝑖 = 0)

 (3)

The delay matrix corresponding to the aforementioned three-dimensional time series 
with vacancies is as follows: 

𝛿 = 
0,1,2,1
0,1,1,2
0,1,2,1

൩ (4)

Since most GAN frameworks are intended mainly for image processing, they are not 
adaptive to time series imputation. Differently, RNN is a model applicable for processing 
time series, but the traditional RNN is prone to gradient explosion and gradient 

Figure 3. Architecture of the VS-E2E-GAN model.

For a given d-dimensional time series containing vacancies (x = [x0, x1, . . ., xn−1]) and
corresponding time nodes (t = [t0, t1, . . ., tn−1]), the vacancies are filled in. Firstly, it is
necessary to obtain the specific position of the vacancy value in the time series. To achieve
this purpose, and to define the position matrix of the vacancy value (S), the 0~1 variable
is used to determine whether there is any vacancy in the observation value data at the
time node. For a better understanding, a three-dimensional time series with null values is
assigned, with each row representing the observed value of each feature quantity at the
time of 0, 1, 2, and 3, as shown in Equation (2):

x =

 1, 5, None, 8
None, 7, 6, None
4, None, None, 2


S =

 1, 1, 0, 1
0, 1, 1, 0
1, 0, 0, 1

 (2)

where None represents the data vacancy value. It can be clearly seen from above that the
time delay between two adjacent effective observations changes due to the existence of
None, which also shows the distribution characteristics between vacancy values. At the
same time, different time delays have different effects on subsequent observations. If an
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observation is missing for some time, its effect is supposed to diminish over time. To record
the time delay between two adjacent valid observations, a time delay matrix δ is introduced
to describe the change in time delay. Its elements are expressed as follows:

δti,j =


ti − ti−1, (sti−1,j = 1, i > 0)
δti−1,j + ti − ti−1, (sti−1,j = 0, i > 0)
0(i = 0)

(3)

The delay matrix corresponding to the aforementioned three-dimensional time series
with vacancies is as follows:

δ =

0, 1, 2, 1
0, 1, 1, 2
0, 1, 2, 1

 (4)

Since most GAN frameworks are intended mainly for image processing, they are not
adaptive to time series imputation. Differently, RNN is a model applicable for processing
time series, but the traditional RNN is prone to gradient explosion and gradient disap-
pearance when a longer time series is processed. In recent years, many of its variants have
emerged, such as LSTM and GRU, all of which are effective in solving this problem. To
simplify the construction of GAN, it is proposed in this paper to construct the basic network
structure of the generator and discriminator by adopting the GRU with higher compu-
tational efficiency and scalability. Due to the incompleteness of data and the significant
variation in the time lag between two consecutive valid observations, the traditional GRU
structure is not applicable to data imputation. Therefore, a GRU-based GRUI is proposed
to deal with such irregular time delays more efficiently and learn implicit information from
the time delays; Figure 4 shows the basic structure of GRUI.
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In order to reflect the impact on the observed value, the time decay vector β is intro-
duced. The size of β is supposedly related to the delay matrix δ. If δ is large, β becomes
smaller. The elements in β are expressed as follows:

βti =
1

emax(0,Wβδti+bβ)
(5)

δti = (δti ,j)1×n (6)

where Wβ and bβ are the parameters that need to be learned.
To ensure β ∈ (0, 1], a negative exponential function is used as a constraint. Meanwhile,

Wβ is introduced as a full-weight matrix for the interaction of the δ matrix. After the
attenuation vector is obtained, the attenuation vector β is multiplied by elements to update
the hidden state of the GRU. Since data preprocessing is often conducted through the
normalization method, the hidden state is updated in this study by multiplying it with the
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attenuation vector. Therefore, the value of the updated hidden state is not overly small.
The formula used for GRUI is expressed as follows:

h′ti−1
= βti ⊙ hti−1 (7)

µti = σ
(

Wµ

[
h′ti−1

, xti

]
+ bµ

)
(8)

rti = σ
(

Wr

[
h′ti−1

, xti

]
+ br

)
(9)

h̃ti = tanh(Wh̃

[
rti ⊙ h′ti−1

, xti

]
+ bh̃) (10)

hti = (1 − uti )⊙ h′ti−1
+ uti ⊙ h̃ti (11)

Since the auto-encoder is designed to reconstruct the target samples, the auto-encoder
and GRUI structure in the generator are adopted in this paper. To make the auto-encoder
learn more useful information, this paper adopts the idea of denoising auto-encoders,
removing some original samples (destroying the original samples), and reconstructing the
original samples. However, considering the small amount of data available, removing
samples will further reduce the amount of data, which hinders the self-encoder from
learning more information. Therefore, it is proposed in this paper to introduce the random
noise η sampled from the normal distribution N (0, 0.01) into the original sample for
destroying the original sample. The generator function G (·) is expressed as follows:

G(x + η) = x′ (12)

where x represents the real data and x’ refers to the fake data.
To make the generator generate the complete time series x’, which is the closest to x,

the squared error loss function is incorporated into the loss function of the generator. The
loss function L2 (x) of the generator is expressed as follows:

L2(x) = ∥x ⊙ S − G(x + η)⊙ S∥2 (13)

LG = λL2(x)− D
(
x′
)

(14)

where λ represents a hyper-parameter, which is used to control the weight of the discrimi-
nator loss and variance loss, and D (·) refers to a function of the discriminator.

Functioning as a decoder, the network structure of the discriminator consists of a
completed connected layer and a GRUI layer. The discriminator is ordered to distinguish
the forged data x’ from the real data x, and its output indicates the probability that the
generated x’ is real data. Therefore, it is necessary to find a series of parameters such that
a higher probability is outputted when real data x is inputted and a lower probability is
outputted when false data x’ is inputted. In order to achieve this purpose, the loss function
LD of the discriminator can be defined as follows:

LD = −D(x) + D
(

x′
)

(15)

Both the discriminator and the generator are trained against the min–max game
according to Equation (14), which ends up leading to the equilibrium.

min
G

max
D

V(D, G) = Ex∼Px(x)(D(x))− Ex′∼Px′ (x′)
(

D
(

x′
))

(16)

where E (·) represents the mathematical expectation; Px (x) and Px
’ (x’) denote the probabil-

ity distributions of the real data x and the fake data x’, respectively.
In this paper, the following methods of data quality improvement are proposed. Firstly,

the −1 value is used to replace the vacancy value in the original data to obtain the marked
sequence x of the vacancy value, while the corresponding position matrix S and delay
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matrix δ are constructed according to the distribution of the −1 value. Secondly, in the
data-loading stage, the data are constructed into a three-dimensional array in various
forms (batch number of samples, sequence length, sequence feature number) and inputted
into the GRUI-GAN model after zero-mean normalization. Thirdly, in the generator, the
sequence x and its time-delay matrix δ that are labeled and added with noise η are inputted
into the cells of GRUI. After processing by the GRUI layer, a hidden state corresponding
to the input sequence is generated. The state is further fed into a fully connected layer to
generate a low-dimensional vector z. Then, z is sent to the next GRUI layer for processing
through another fully connected layer, with all the outputs of this GRUI layer combined
into a new full sequence x’. Fourthly, in the discriminator, the incomplete sequence x or the
complete sequence x’ and its corresponding delay matrix δ are also effectively processed by
the GRUI. The last hidden state of the GRUI layer in the discriminator is fed into a fully
connected layer, whose output is the probability of being discriminated as real data. Lastly,
after multiple rounds of adversarial training between the discriminator and the generator,
the generator can be used to get a new sequence x’ that is closest to x. Then, x’ is used to fill
in the vacancies in x. The equation is expressed as follows:

xim = x ⊙ S + (1 − S)⊙ x′ (17)

where xim is the x obtained after the imputation.
The imputation framework proposed in this thesis is shown in Figure 5. In order to

improve the performance of the generator in fitting the original sequence, the generator
is updated N times, and the discriminator is updated once in one iteration in the GAN
proposed in this paper.
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4. Experiments and Results

This section presents a series of experiments designed to validate the VS-E2E-GAN
model. It includes detailed descriptions of experimental parameters and various evaluation
metrics employed. In addition, baseline methods are utilized to assess the effectiveness
and performance of the proposed model.

4.1. Experiment Setup

During the experiment, the ADAM optimizer was employed with a batch size of 10
and 50 iterations. The experiments were conducted on a computational platform featuring
the high-performance NVIDIA GeForce GTX1080Ti graphics card and the formidable Intel
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i7-8700 CPU. The model was implemented utilizing the PyTorch framework and the Python
programming language.

The performance of the proposed model is assessed through the area under the ROC
curve (AUC), metrics including mean squared error (MSE), and accuracy (ACC). The MSE
can be defined as follows:

MSE =
1
n ∑n

i=1(ŷi − yi)
2 (18)

where yi denotes the observed value and ŷi signifies the predicted value.
Additionally, the proposed method is comparatively verified against several vacancy

value imputation methods commonly used in traditional load forecasting (mean value
imputation, piecewise linear interpolation, and KNN imputation). Given the incomplete
dataset, it is impossible to directly evaluate the gap imputation accuracy of different
algorithms. Also, it is inappropriate to train and test GAN models for experiments in
this paper by dividing training and testing sets. Therefore, all data are trained in the
proposed VS-E2E-GAN model. The training set is the entire dataset. As for the imputation
performance of the VS-E2E-GAN model on the dataset after training on the entire dataset,
it can be evaluated only by the subsequent prediction results. Therefore, to validate the
proposed method, the experiment conducted in this paper involves the following two parts:

(1) Part of the complete data is selected from the dataset (not including missing values
and not considering outliers), and the incomplete data with different proportions
of random missing data for experiments are constructed to verify the imputation
performance of the model trained with a complete dataset on small datasets.

(2) By using the above experimental methods, the complete incomplete dataset is obtained
again, and the different complete datasets obtained by different methods are used
for subsequent HR (RR) prediction. The final HR (RR) prediction results are used to
indirectly verify the proposed imputation method.

4.2. Results and Analysis

The experimental results are as follows. Firstly, among all the classification results
obtained by the simple binary classifier, the data filled by the proposed method lead to
the best classification performance, which indicates that this method achieves the best
results. Secondly, the classifier based on the simple recurrent neural network produces
the best outcome of classification on the dataset filled by various methods, which shows
that the recurrent neural network outperforms other networks in learning the distribution
characteristics of time series data, reflecting the advantages of recurrent neural network in
time series modeling. Thirdly, the GAN-based method performs better than other methods,
indicating that it is achievable to produce better results by training the data filled by the
GAN missing value imputation method. Furthermore, the effect of epoch and learning rate
(lr) on the model performance is verified. As shown in Figure 6, the model performs best
when the epoch is 30 and the lr is 0.012.

As for neural networks, the training time of neural networks is affected by the selection
of software and hardware configuration, dataset size, training rounds, network layers, and
other factors. For this reason, it is practically difficult to evaluate the training time. In the
comparative experiment, the time efficiency of various methods was compared by fixing
the hardware and software parameters, dataset size, training set, cross-validation method,
test set, and other factors. The experimental results are shown in Table 1. We can see
clearly from the table that the method (VS-E2E-GAN) proposed in this paper is applicable
to achieve optimal imputation accuracy, because the network model is more complicated
and the time cost is higher. In some tasks requiring high accuracy (such as vital signs signal
imputation), the proposed method is much more effective.
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Table 1. The average results of different methods.

Method MSE AUC ACC Time (min)

C-RNN-GAN [46] 0.801 0.833 0.840 17
KNN 0.835 0.799 0.832 19

TGAN [47] 0.924 0.707 0.802 18
GAN [48] 0.811 0.830 0.838 17

DU-GAN [49] 0.790 0.868 0.885 17
VS-E2E-GAN 0.777 0.901 0.908 10
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5. Discussion

As information science and technology advance, computer technology has played an
irreplaceable role in every aspect of life. With the popularization of global information,
the Internet has given rise to a large amount of data around the world, which makes
information highly valuable. However, these data suffer quality problems due to various
reasons, of which the incompleteness of data is a major one. Because of a large amount of
missing data, it is inevitable for incomplete data to have a negative impact on data mining
or other technical applications.

There is plenty of hidden information contained in a massive amount of data, which
requires the corresponding techniques for exploration, such as data mining technology.
However, most data mining algorithms are incapable of processing incomplete data because
the data are often incomplete in practice. Moreover, incomplete data also affect the quality
of the final results. Based on optical fiber sensors, vital signs measurement is an important
research topic, which is essential for the noninvasive monitoring of human health. However,
in the measurement process, the measured data are often lost due to various reasons. In
this paper, the imputation of incomplete data is studied for analysis, including data loss. By
analyzing the particularity of time series data, a countermeasure network and a de-noising
self-encoder are created. On this basis, an imputation model for the missing values of
time series data (VS-E2E-GAN) is constructed to directly fill the missing dataset. We use a
bidirectional gated recurrent neural network to capture the dependencies of time series data
from the past to the future and from the future to the past and to fully learn the distribution
patterns of time series data. Furthermore, a new generator loss function is proposed to
make the model perform better in accomplishing the missing value imputation task of the
time series. In case of a significant sample missing rate, the method can still get a better
achievement in imputation. In addition, multiple experiments are conducted to compare
them with other methods, which demonstrates that this method can achieve better results.

Vital signs signals are highly valuable for maintaining physical health. Despite some
remarkable results achieved by the time series prediction model based on GAN and the time
series data imputation model based on GAN as proposed in this paper, there are still some short-
comings. Therefore, improvement can be made in the future from the following perspectives:

(1) The time series prediction model proposed in this paper only considers the accuracy
of the design of the loss function. In the future, the loss function can be designed by
combining the downstream tasks to deal with specific problems.

(2) The time series data imputation model proposed in this paper incurs substantial time
costs. In the future, it is worthwhile to consider simplifying the network structure,
such as model distillation.

(3) In this paper, the accuracy of the model is verified by using the real vital signs data
collected by optical fiber sensors. In the future, new data can be used to validate the
proposed model.

6. Conclusions

In this paper, time series data are extensively distributed in the real world, of which heart
rate and respiration signals are two typical time series signals. The analysis and accurate
prediction of these time series data play an important impact in production and life for
people. Therefore, establishing an effective time-series signal processing model is necessary.
Meanwhile, missing time series is ubiquitous, and these missing data are related to the mining
of time series data. That is the reason why an urgent need to reasonably deal with the loss of
time series data. In this paper, a VS-E2E-GAN-based load data imputation method is proposed,
and the GRUI structure is built by introducing a time decay vector into the traditional GRU
structure to understand the impact of different time intervals on the measurement results.
After adversarial training, the GAN of this structure is capable to process incomplete time
series data and generate higher-precision data for interpolation. In this way, the quality of
data can be improved and the lack of optical fiber sensors can be solved to capture vital sign
signals, which is a convenient and efficient solution to medical monitoring.
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