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Abstract: This paper investigates the problem of coordinated resource allocation for multiple un-
manned aerial vehicles (UAVs) to address the scarcity of communication resources in disaster-affected
areas. UAVs carrying modules of free space optical (FSO) and radio frequency (RF) serve as relay
nodes and edge offloading nodes, presenting an FSO/RF dual-hop framework. Considering the
varying urgency levels of tasks, we assign task priorities and transform the proposed problem into
distributed collaborative optimization problem. Based on the K-means algorithm and the multi-agent
deep deterministic policy gradient (MADDPG) algorithm, we propose a UAV-coordinated K-means
MADDPG (KMADDPG) to maximize the number of completed tasks while prioritizing high-priority
tasks. Simulation results show that KMADDPG is 5% to 10% better than the benchmark DRL methods
in convergence performance.

Keywords: unmanned aerial vehicles; emergency communication; task priority; free space
optical/radio frequency; multi-agent DDPG

1. Introduction

Natural disasters often result in severe damage to ground communication infrastruc-
ture, such as base stations, leading to significant communication challenges and hindering
emergency response efforts. These events create a critical need for efficient and rapid
deployment of temporary communication networks to facilitate rescue operations and
mitigate losses [1]. Infrastructures in affected areas may be destroyed, causing traditional
communication networks to malfunction. A primary issue caused by natural disasters is
resource scarcity, which also applies to communication networks. The efficient utilization of
network resources is top priority. To prevent the losses from network collapse, researchers
are focusing on rapidly establishing temporary networks [2–4].

Due to their flexibility, low cost, and independence of ground conditions, UAVs are
widely used in smart city applications such as urban sensing and delivery [5,6]. UAV-
assisted communication networks do not rely on ground infrastructure and can be quickly
established as temporary networks using UAVs and FSO communication. FSO communi-
cation offers high bandwidth, high speed, and the advantage of no spectrum licensing by
transmitting data through the air using visible or infrared light [7]. Its immunity to elec-
tromagnetic interference and highly focused beam transmission ensures communication
security [8]. The rapid deployment capability as well as low installation and maintenance
costs of FSO systems make them perform excellently in emergency communication recovery
and complex geographical environments, particularly for urban network interconnection,
temporary communication facilities, military communication, and post-disaster emergency
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communication. Therefore, under bandwidth constraints, adopting FSO technology sig-
nificantly improves the resource utilization of communication systems [9]. It gradually
becomes indispensable in network construction.

However, under adverse weather conditions, the FSO backhaul will be severely af-
fected, reducing the reliability of FSO links [10]. In contrast, RF technology can be used in
various environments, unaffected by weather, and is suitable for both indoor and outdoor
communication scenarios [11]. To handle rare foggy conditions, it is imperative to quickly
build emergency temporary networks instead of constructing expensive permanent parallel
RF links [12]. Thus, UAVs can be employed to serve some users, reducing the load on
GBSs. We therefore considered a dual-hop FSO/RF model, constructing two channels:
from mobile users (MUs) to UAVs and from UAVs to GBSs.

When UAV-assisted communication networks operate in disaster areas, providing
equal service to all user devices is unreasonable [13]. When users make communication
requests and emergency rescue requests, their urgency levels are different. A more rea-
sonable strategy is for UAVs to prioritize higher-urgency tasks, so we need to incorporate
priority levels to distinguish different tasks [14].

To further address the limited terminal computing power and meet MU’s Quality-of-
Service (QoS) requirements, we consider using Mobile Edge Computing (MEC) technology
in emergency communication. In this mode, MUs can offload computationally intensive
tasks to nearby GBSs, reducing processing delays and saving the energy consumption of
user devices [15,16]. Specifically, to prevent the base station from being overloaded with
tasks, in proposed application scenarios, MUs can offload tasks to UAVs for computation,
leveraging UAVs’ mobility to mitigate GBS load [17].

Considering the implementation of UAVs autonomously performing edge offloading
and resource allocation, we introduce deep reinforcement learning (DRL) technology. Deep
multi-agent reinforcement learning has become a key role in the field of multi-UAV-assisted
communications [18,19]. With the increase in the number of UAV and task complexity,
traditional control and optimization methods struggle to cope with complex environments
and dynamic demands. DRL enables multiple UAVs to act as agents for collaborative
learning and decision-making, achieving adaptive and efficient communication network
management in dynamic and uncertain environments [20,21].

This study explores the challenges of edge offloading and resource allocation within
UAV-supported emergency communication systems. To enhance convergence speed, we
incorporate the K-means algorithm into multi-agent deep reinforcement learning. This
approach allows each agent to share locally observed user data during the training phase
of action neural networks, jointly processing it and moving to a better positiaon. The key
contributions of this research are outlined as follows:

(1) A mathematical model for emergency communication scenarios is formulated, where
several UAVs were used as offloading nodes for MEC or as access relays, facilitating
the connection between MUs and GBSs. Specifically, we described the scenario, RF
model, FSO model, and delay model of emergency communication.

(2) We propose a UAV-assisted resource allocation method known as K-means MADDPS
(KMADDPG), which aims to maximize the number of successful tasks while prioritiz-
ing high-priority ones. The proposed algorithm builds on the MADDPG algorithm,
integrating it with the K-means algorithm to handle the high data dimensionality in
the above-mentioned scenarios. For different tasks with different urgency levels, we
incorporate a priority mechanism for mobile users.

(3) We examine the time complexity of the proposed algorithm and assess its performance
in emergency communication settings through simulation studies. The results indicate
that the proposed KMADDPG effectively optimizes communication resource alloca-
tion in regions affected by disasters with compromised communication infrastructures.
Additionally, extensive simulations reveal that KMADDPG surpasses several baseline
methods regarding convergence speed and the number of successful tasks.
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The structure of the rest of this paper is as follows: Section 2 covers a review of related
work. Section 3 describes the system model. In Section 4, we introduce the KMADDPG for
resource allocation and edge offloading. Section 5 provides and discusses the simulation
results. Finally, conclusions are drawn in Section 6.

2. Related Work

The FSO/RF dual-hop model is a feasible approach to establishing a stable, cost-
effective, and rapid heterogeneous network. Known for its extensive transmission range
and high bandwidth, the FSO/RF dual-hop model has garnered significant research atten-
tion in recent years. For instance, Pang et al. [22] initially proposed an optical IRS-assisted
dual-hop hybrid FSO and RF system for cloud radio access networks (C-RANs). They
introduced polarization codes in the FSO link to mitigate signal fading and achieve optimal
data rates for the RF link. Wang et al. [23] employed gamma–gamma distribution to charac-
terize the atmospheric turbulence effects on the FSO link from UAV to HAP and proposed
a novel RIS-assisted UAV secure multi-user FSO/RF system. Lee et al. [24] explored the
forwarding of packets between ground terminals and backhaul through multi-HAPS relays
in a dual-hop FSO/RF network.

The allocation of scarce communication resources is a critical issue that merits dis-
cussion. Che et al. [25] enhanced system-level energy efficiency by jointly designing
FSO and RF links and optimizing UAV altitude using power allocation techniques. Qi
et al. [26] proposed a UAV-assisted vehicular communication network, utilizing DRL for
resource allocation to enhance UAV energy efficiency and ensure QoS. MEC significantly
enhances the computational performance of MUs with constrained resources. In the study
by Jiang et al. [27], a new distributed DRL framework utilizing multi-agent systems is
introduced to reduce latency and energy usage in solving optimization challenges within
large-scale MEC systems.

Most studies have explored mechanisms for task prioritization. For instance,
Qin et al. [28] addressed the issue of time-varying priorities for reconnaissance tasks, exam-
ining task selection and scheduling within UAV-enabled multi-access edge computing for
reconnaissance. Liu et al. [29] focused on prioritizing industrial equipment and developed
a dynamic priority multi-channel access algorithm using DRL. However, they have yet to
apply the integration of prioritization and DRL within the domain of UAV.

Researchers have introduced multi-agent reinforcement learning and integrated it with
UAV-assisted networks to enable UAV autonomous decision-making [30]. For instance, a
UAV-assisted communication network with edge offloading capabilities was developed,
and the MADDPG algorithm was proposed to minimize service delay in internet of vehicle
(IoV) task processing [31]. In contrast to previous optimization goals, a similar model
was constructed, and the MADDPG algorithm was utilized to optimize UAV trajectory
design and offloading strategy in a 3D environment [32]. Lee et al. [33] investigated the
use of deep reinforcement learning to maximize communication efficiency in the context of
hybrid FSO/RF communication models. Guan et al. [34] studied the cooperative trajectory
optimization of multiple UAVs in the hybrid FSO/RF communication model to maximize
the achievable rate for mobile users.

The above research has made significant contributions to the field of UAV-assisted
communication networks. Studies such as [22–24] primarily focus on constructing FSO/RF
models. We have incorporated reinforcement learning to train UAVs for autonomous
decision-making within the FSO/RF system model. In contrast to [25,26], our focus is on
resource allocation for bandwidth and CPU frequency. Our objective, distinct from the
aforementioned studies [31–34], is to maximize both the number of successful tasks and
the number of high-priority tasks. In this article, we apply a multi-agent reinforcement
learning scheme to achieve resource allocation, offloading control, and task prioritization
in MEC, enabling UAVs to learn cooperative behaviors.
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3. System Model
3.1. Scenario

This paper proposes an application scenario of a multi-UAV-assisted heterogeneous
wireless network. As shown in Figure 1, we define that there are J MUs scattered on
the plane, following a Poisson distribution, denoted by a set J = {1, · · · , J}. A fleet of
UAVs hover above the MUs, serving as aerial base stations for relay or as nodes for edge
computing, receiving data transmitted by MUs. The height of the UAVs is denoted by H
and the UAVs are represented by a set I = {1, · · · , I}. GBSs are located at the edges of
the plane, represented by a set G = {1, · · · , G}. The main notations are listed in Table 1.
This model can be considered as a two-layer model, since we considered the transmission
channel between the UAV and the MU is different from the transmission channel to the
GBSs. Communication between UAVs and MUs uses traditional RF communication, while
communication between UAVs and GBSs uses FSO communication. The positions of MUs
and UAVs are represented by QMU

j =
[
xj, yj, 0

]T and QUAV
i =

[
xj, yj, H

]T , respectively.

Table 1. List of main notations.

Notation Definition

i/I The index/set of UAVs
j/J The index/set of MUs
g/G The index/set of GBSs
dij Distance between UAV i and MU j

Qui /Qmj The position of UAV i / MU j
Γavg

ij Average path loss between UAV i and MU j
θRF

ij Transmission rate between UAV i and MU j
θFSO

i Backhaul rate between UAV i and its GBS
dig Distance between UAV i and GBS g
Rij Load rate between UAV i and MU j
Bij Bandwidth allocated to MU j by UAV i
fij CPU frequency allocated to MU j by UAV i

TRF
ij /TFSO

ig The RF/FSO transmit time between UAV i and GBS g
σ Additive white Gaussian noise

pri The weight of priority

S State space
A Action space

r(t) Reward
J(θi) Obeject function

Qµ(s, a) Value function

UAV1

UAV2

UAV3

GBS

RF

RF

RF

FSO
FSO

FSO

Priority 2 Task

Priority 1 Task

Priority 3 Task

Figure 1. The model of UAVs cooperate to connect GBSs and MUs for emergency communication.
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3.2. Air-to-Ground Channel

In the proposed channel model, due to the high complexity of urban environments and
dynamic environmental changes, UAVs cannot obtain sufficient information. Therefore, di-
rectly applying the ideal free space model is impractical. We introduce a probabilistic model
for light-of-sight (LoS) and non-light-of-sight (NLoS), which depends on environmental
parameters, elevation angle, and the positions of MUs and UAVs.

The 3D distance between the MU and UAV can be expressed as

dij =
√
(xi − xj)2 + (yi − yj)2 + H2. (1)

Similarly, according to [35], the probability of the channel being LoS can be considered as

pLoS
ij (φij) =

1
1 + C exp (−D(φij − C))

, (2)

where C and D are coefficients depending on environmental factors such as terrain, atmo-
spheric conditions, lighting conditions, etc. The elevation angle φij between UAV i and MU
j is given by

φij =
180◦

2π
arcsin(H/dij). (3)

According to [36], the LoS and NLoS path losses can be defined as

ΓLoS
ij = ηLoS + γLoS log dij + G, (4)

ΓNLoS
ij = ηNLoS + γNLoS log dij + G, (5)

where ηLoS and ηNLoS present the path losses when the reference distance dij is equal to
1 m. γLoS and γNLoS indicate the path loss exponents of the LoS and NLoS transmissions,
respectively; G represents a Gaussian random variable with standard deviation. The
average value of the path loss can be determined by

Γavg
ij = pLoS

ij ΓLoS
ij + (1− pLoS

ij )ΓNLoS
ij . (6)

Between the UAV and the MU, the Signal-to-Interference-plus-Noise Ratio (SINR) of
the RF channel can be expressed as

SINR =
Psignal

Pnoise + Pintf
, (7)

=
pRF

i 10
−Γ

avg
ij

10

σ2 +

( Φi
∑

a=j+1
pRF

a 10
−Γ

avg
ia

10

) , (8)

where Psignal is the transmission power; Pintf and Pnoise are the co-channel interference and
noise, respectively. The latter is modeled as additive white Gaussian noise (AWGN) σ. To
improve the communication quality, we employ Non-Orthogonal Multiple Access (NOMA)
technology to reduce co-channel interference among multiple devices served by the same
UAV. The set of tasks received by UAV Φi is defined and sorted in descending order of
signal strength. When a UAV processes offloading tasks, it prioritizes tasks with stronger
signals, reducing interference for subsequent tasks.
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The achievable rate can be defined by the SINR as

θRF = Bij ∗ log2

(
1 +

pRF
i 10

−Γ
avg
ij

10

σ2 + ∑Φi
a=j+1 pRF

a 10
−Γ

avg
ia

10

)
, (9)

where Bij is the bandwidth allocated by UAV i to MU j.

3.3. Air-to-Air Channel

We consider that the computing ability of the GBS, which is the endpoint of the FSO
channel for task offloading, is sufficiently abundant. Therefore, the computing time for
edge offloading tasks at the GBS can be neglected. We only need to focus on optimizing
the transmission rate of the FSO channel between the UAV and the GBS. Due to the typical
high-altitude operation range of UAVs, atmospheric conditions affecting the FSO channel
must be considered. According to [37], we introduce a size distribution of scattering
particles based on weather conditions, defined as

ξ =



1.6, ν > 50 km,
1.3, 6 km < ν < 50 km,
0.16ν + 0.34, 1 km < ν < 6 km,
ν− 0.5, 0.5 km < ν < 1 km,
0, ν < 0.5 km,

(10)

where ν is the atmospheric visibility per kilometer. The atmospheric attenuation coefficient
can be represented as [38]

ρ =
3.91

ν

(
λ

550× 10−9

)−ζ

, (11)

where λ is the transmission wavelength. Utilizing the atmospheric attenuation coefficient ρ
and the distance between the UAV and the GBS dig, the atmospheric transmittance at the
laser transmitter wavelength κatm can be expressed as [34]

κatm = 10
−ρdig

10 . (12)

The achievable rate of the FSO channel between the UAV and the GBS can be repre-
sented as [34]

θFSO
i =

pFSOκtκatmζ2

π(υt/2)2digEpNb
, (13)

where pFSO is the transmission power of the UAV on the FSO channel; κt is the optical
efficiency of the receiver and transmitter. ζ represents the free-space beam diameter at the
UAV receiver. υt denotes the divergence angle of the transmitter. Ep = hc/λc represents
the photon energy, where h denotes the constant of Planck, c is the speed of light, and
λc is the wavelength. Nb represents the average receiver sensitivity. Summarizing these
considerations, we establish the high-altitude FSO channel model.

3.4. Computing Delay Model

In the proposed system model, computational tasks of user devices can be processed
in three ways: local computing, partial offloading to UAVs via RF channels, and further
offloading from UAVs to the GBSs via FSO channels. These methods are detailed as follows:
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(1) Local Computing: When the computing power of the device of an MU can satisfy the
task requirements, the MU can choose local processing. The processing time of a task
can be expressed as Ttotal

ij = Tlocal
ij , where Tlocal

ij can be expressed as

Tlocal
j [l] =

(1− Rij[l])Dj[l]s
fmi [l]

, (14)

where l indicates the time slot, Rij[l] represents the pre-assigned offload ratio of UAVs
for the task of MU j. Dj is the size of the task submitted by user j. fmj is the CPU
frequency of the user’s device. s represents the CPU cycles required per bit.

(2) Offloading to UAVs: When the computing power of the device of an MU cannot meet
the task requirements, the MU can choose to offload part of the task to the UAVs for
concurrent execution. Ttotal

ij can be represented as

Ttotal
ij = max

(
Tlocal

ij , TRF
ij + Tcomp

ij

)
, (15)

where TRF
ij and Tcomp

ij represent the time of transmission and computing when the

user transmits data to UAV i by the RF channel, respectively. TRF
ij and Tcomp

ij can be
expressed as

TRF
ij [l] =

Rij[l]Dj[l]
θRF , (16)

and

Tcomp
ij [l] =

Rij[l]Dj[l]s
fui [l]

. (17)

(3) Offloading to BS via UAV: When the computing power of both the user’s device and
the UAV cannot meet the task requirements, the UAV will forward the received task
data to the GBS via the FSO channel. Ttotal

ij can be represented as

Ttotal
j = max(Tlocal

j , TRF
ij + TFSO

ig ), (18)

where TFSO
ig is the transmission time from UAV i to the GBS g via the FSO channel,

TFSO
ig can be expressed as

TFSO
ig [l] =

Rij[l]Dj[l]
θFSO . (19)

3.5. Problem Formulation
In scenarios with limited system resources and environmental obstructions, our objec-

tive is to maximize the completion rate of tasks, with a particular emphasis on prioritizing
high importance tasks. We introduce a binary parameter λij to represent the matching
relationship between user j and UAV i. If λij = 1, this indicates that user J is served by
UAV i, and vice versa. We can formalize the system optimization problem as

P1 : max
xi [l],yi [l],zi [l]

J

∑
j
I(Ttotal

ij ≤ tdelay
j ) · prj,

s.t.



C1 : ∑i λij ≤ 1, ∀i ∈ I , λ ∈ [0, 1]
C2 : SINR− δ ≤ 0,
C3 : ∑i λijBij < B, ∀i ∈ I , ∀j ∈ J ,
C4 : ∑i λij fij < F, ∀i ∈ I , ∀j ∈ J ,
C5 : 0 ≤ Rij ≤ 1, ∀i ∈ I , ∀j ∈ J ,
C6 : xi[l] ∈ [Xmin, Xmax], ∀i ∈ I ,
C7 : yi[l] ∈ [Ymin, Ymax], ∀i ∈ I ,
C8 : zi[l] ∈ [Zmin, Zmax], ∀i ∈ I .

(20)
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In this context, P1 presents the goal of formulating the proposed system model problem
prj, indicating the priority weights of tasks. I(Ttotal

ij ≤ tdelay
j ) is an indicator function, and

we have I(Ttotal
ij ≤ tdelay

j ) = 1 if Ttotal
ij ≤ tdelay

j , otherwise, I(Ttotal
ij ≤ tdelay

j ) = 0. C1
represents that for user device j, no more than one UAV can serve it. C2 specifies that when
users transmit data through the channel, if the SINR is below a certain threshold, it will
be deemed a failure, where δ is the minimum SINR threshold. C3 and C4 indicate that
the bandwidth and CPU frequency allocated by UAV i to user device j cannot exceed the
total resource of the UAV. C5 states that the offloading ratio cannot be negative and cannot
exceed 1. C6–8 specify that the coordinates of the UAV cannot exceed the scope of the
application scenario.

4. KMADDPG-Based UAV Resource Allocation
4.1. Overview

In multi-agent scenarios, traditional reinforcement learning algorithms such as Deep
Q-Network (DQN) face significant challenges. The primary issue is that during training,
each agent treats other agents as part of the environment. As other agents change, the
environment becomes unstable, violating the Markov assumption essential for Q-learning
algorithms. Consequently, DQN struggles to converge in multi-agent environments.

Conversely, the MADDPG algorithm employs centralized training and decentralized
execution strategies. This approach allows each agent to optimize its actions by considering
the strategies of other agents, leading to more stable convergence and significantly enhanc-
ing the overall performance of the multi-agent system. Thus, MADDPG exhibits greater
adaptability and efficiency in multi-agent contexts. Given the limited system resources,
UAVs functioning as edge offloading nodes must carefully allocate resources to users.

4.2. Markov Decision Analysis

The proposed multi-UAV environment is typically considered a discrete partially
observable Markov decision process (POMDP), as there are multiple interacting agents,
each with its local observations and decision space, and the agents’ partial observations of
the environment may be incomplete. The future state of a UAV depends only on the current
state and the actions of other UAVs, not on past states. They are regarded as distributed
agents capable of making resource allocation and task offloading decisions. The decisions
made by UAVs are decentralized, but their actions affect other agents, necessitating coordi-
nation with other UAVs to achieve the objectives. The observations, states, actions, and
rewards of distributed UAVs at time t are defined as o(t), s(t), a(t) and r(t):

(1) State s(t): In the proposed system model, the information obtained by agents through
observations at time slot t is defined as s(t). Due to each agent having its local obser-
vation and local decision space, s(t) is typically incomplete. It can be composed of
{si(t), sm0(t), · · · , smJ (t), sg(t)}, where sg(t) represents the state information of the GBS.
si(t) denotes the state information of UAV i at time slot t, which can be expressed as

si(t) = {xi, yi, zi, Bi, fi}, (21)

where Bi and fi represent the bandwidth and CPU computing power held by the
UAV, respectively. smJ (t) represents the state information of user equipment, and its
components are as

smj(t) = {xj, yj, tdelay
j , f j, Dj, prj}, (22)

where tdelay
j represents the delay requirement for the task delivered by user j; prj

indicates the priority weight of the current task.
(2) Observation o(t): At time slot t, all agents’ local observation information s(t) can be

combined to form a global observation o(t). It can be expressed as

o(t) = {s0(t), · · · , sI(t), sm0(t), · · · , smJ (t), sg(t)}. (23)
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(3) Action Space a(t): The action space of KMADDPG mainly consists of three parts:
decisions of task matching, edge offloading, and resource allocation. The components
of a(t) are as

ai(t) = {amat
i (t), aload

i (t), ares
i (t)}, (24)

where amat
i (t) denotes the decision of UAV matching with users, and amat

i (t) =

{λi0, · · · , λi J}. ao f f load
i (t) denotes the decision of task offloading rate, and ares

i (t)
indicates the actions of resource allocation.

(4) Reward Function r(t): r(t) is the sum of rewards completed by all UAVs. In the
proposed scenario, the priority weights of user requests differ; it should focus on
handling high-priority urgent requests. Therefore, the reward function is related to
priority weights and completion status, which can be expressed as

R(t) =
I

∑
i
{γij prjω + (1− γij)ξ}, (25)

where γij is a binary coefficient indicating the completion status of the task. If the
UAV can satisfy the user’s delay requirement, then γij = 1 and the task is considered
completed. The task reward can be expressed as R(t) = γij × prj × ω. Otherwise,
γij = 0 and the task reward can be expressed as R(t) = ξ, where ω is the reward
coefficient for task completion, and ξ is the penalty coefficient for task failure.

4.3. MADDPG-Based Resource Allocation and Task Offloading

In the proposed multi-agent algorithm, we adopt a centralized training and decen-
tralized execution (CTDE) strategy. This approach maximizes rewards while minimizing
interactions between agents to enhance convergence speed. As show in Figure 2, we pro-
pose to use reinforcement learning combined with the K-means algorithm to optimize the
initial positions of the agents, to achieve better optimization results.

environment

CriticTarget Critic

store

i(s , , , )i i ia r s−
i(s , , , )i i ia r s−

i(s , , , )i i ia r s−

Target Actor

Sample

Actor

StateAction

i −

Update

Update

Update

(s , , , )n n n na r s−

Replay Buffer

Calculate TD target

Calculate TD error

Minimize loss

Calculate

UAV1
UAV2

UAV3

GBS

RF

RF

RF

FSO
FSO

FSO

Priority 2 Task

Priority 1 Task

Priority 3 Task

CalculateCalculate

Parameter Parameter Parameter Parameteri −

ˆ ( )iq t−

i
i −i

â ( )i t−

( )mL 

( )
m mJ 

Figure 2. The KMADDPG algorithm in the UAV-assisted emergency communication network.

(1) Joint K-Means Algorithm: We propose a joint K-means algorithm for initializing
the positions of UAVs. According to the path loss formula, path loss is positively
correlated with the distance between UAVs and MUs. During centralized training,
the system obtains the positions of all agents. We define sets Q̂UAV and Q̂MU to
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represent the positions of UAVs and users, respectively. Here, Q̂ is different from the
Q mentioned earlier; it only represents the 2D coordinates of UAVs and users. The
purpose of the K-means algorithm is to set I cluster centers {C0, · · · , CI}, assign J user
devices to the nearest cluster centers Ci, and finally, the positions of the cluster centers
will be the target positions for the UAVs. The optimization objective function of the
K-means algorithm can be expressed as

arg min
C

I

∑
i=1

∑
j∈Ci

∥Q̂mu
j − Q̂UAV

i ∥2. (26)

The updating process of K-means can be expressed as

Q̂UAV
i (t + 1) =

1
|Cj(t)| ∑

i∈CI(t)
Q̂mu

j . (27)

(2) Deep Reinforcement Learning Algorithm: To avoid the additional load and delay
caused by information exchange between the central controller and UAVs, this paper
proposes a distributed joint resource management algorithm based on MADDPG. We
consider a centralized training decentralized execution DRL mechanism. In the CTDE
strategy, the collaborative operation of agents can be viewed as an optimization problem
that maximizes expected rewards. This optimization problem can be expressed as

J = arg max
µ

E
[
γt−1r(t)

]
, (28)

where µ = {µ0, · · · , µI} represents the policy network of the agent. γt−1 denotes
the discounted return at time slot t. We set the parameters of the policy network as
θ = {θ0, · · · , θI}, then the expected return gradient of the UAV can be written as

∇θi J(θi) = Es,a∼D

[
∇θi log µi(ai | oi)Q

µ
i (∗) | ai = µi(oi)

]
, (29)

where D is the experience replay buffer that stores experience tuples {S, a, r, S′}. Qµ
i (
∗) is

the value function. The loss function of the Critic network for UAV i can be expressed as

L(θi) = ES,a,r,S

[(
Qµ

i (S, a1, · · · , aI)− ŷ
)2

]
, (30)

where ŷ is the TD error, which can be expressed as

ŷ = ri + γQµ−

i (S, ȧ1, · · · , aI)
∣∣∣
ai=µ−(o−i )

, (31)

where Qµ−

i and µ−i (∗) are the target Critic network and target Actor network, respec-
tively. The specific neural network update process is shown in Algorithm 1.

(3) Complexity Analysis: The complexity analysis of the KMADDPG algorithm can be
divided into two main components: the K-means algorithm and the neural network.
For the K-means algorithm, each iteration requires the position coordinates of each
UAV and MU, resulting in a time complexity of O(I × J). The number of iteration is
denoted as Nk. After iterating, the total time complexity for the K-means algorithm is
given by

O(2× Nk × I × J). (32)

Since the dimensionality of the 2D coordinates and the number of iterations are
generally constants, this complexity simplifies to O(I × J). For the neural network
part, the efficiency of the proposed algorithm is further evaluated through its time
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complexity. Both offline training and online execution involve mapping states to
actions using deep neural networks. The computational complexity of the deep neural
network, denoted as O(NN), is expressed as follows [39]:

O(NN) = O(
Nlayer

∑
n

lnln+1), (33)

where Nlayer is the number of layers, and ln represents the number of neurons in the
n-th layer. The dimensions of input and output layers of the deep neural network
depends on the size of state space and action space. For Nep episodes, S steps, and
Nexp experiences, the algorithm’s time complexity is

O(
Nlayer

∑
n

lnln+1 × Nexp × NS
ep). (34)

Algorithm 1 KMADDPG Algorithm
Initialize: Max_episode, Max_ep_len;

1: for episode from 1 to Max_episode do
2: Initialize state: S; local observations: oi for any agent
3: i ∈ I ; cluster {C0, · · · , CI} centroids randomly;
4: for each MU Q̂mu

j do
5: Calculate the distance between UAV and MU;
6: Find the closest centroids Ĉi = arg mini d̂ij;
7: Assign Q̂mu

j to closet centroids Ci;

8: endfor
9: Update centroids position:

10: Q̂UAV
i = 1

|Cj(t)| ∑i∈CI(t) Q̂mu
j ;

11: for t = 1 to Max_ep_len do
12: For each UAV, move to QUAVfrom K-Means;
13: UAV select action ai;
14: Get the reward ri by environment;
15: Store (S, a, r, S′) in the replay buffer D;
16: S← S′

17: for agent i = 1 to I do
18: Sample randomly a batch of N samples
19:

(
Sj, aj, rj, S′j

)
sampled from D;

20: Calculate TD error according to (31);
21: Update critic network using minimizing loss L(ϑi);
22: Update actor network through gradient ∇ϑi J(µi);

23: endfor
24: Update the target network parameters for agent i;
25: ωi−

new ← τωi
new + (1− τ)ωi−

now;
26: ϑi−

new ← τϑi
new + (1− τ)ϑi−

now;
27: endfor
28: endfor

5. Experimental Design and Analysis
5.1. Simulation Parameters

In this section, we evaluate the proposed KMADDPG-based UAV resource allocation
and edge offloading optimization scheme. Specifically, we consider a disaster area of
200 m × 200 m. We consider a GBS set up at the center of the disaster area, establishing an
FSO communication link with the UAVs. Meanwhile, the UAVs serve as relay BS or edge
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offloading nodes, providing radio communication services or computational resources to
MUs. To simplify the system model, we set the penalty coefficient to −1 and the reward
coefficient to 1. The reward is the cumulative reward of tasks completed by all UAVs in
each time slot. We used 8 MUs, 3 UAVs, and 1 GBS as the experimental subjects. The
detailed parameters are listed in Table 2. The algorithms to be evaluated are as follows:

• MeanResource MADDPG (MeanRes): An algorithm where the neural network
selects the matching objects, but the offloading ratio and resource allocation ratio are
evenly distributed.

• NearbyMatch MADDPG (NearbyMatch): An algorithm where the neural network
selects the offloading and resource ratios, and the service objects are the nearest users.

• Base MADDPG (Base): An algorithm where the neural network selects the matching
objects, offloading, and resource ratios.

• Proposed KMADDPG (Proposed): An algorithm that integrates K-means into the
Base MADDPG algorithm.

Table 2. List of main simulations parameters.

Parameters Value

Learning rate of actor 2 × 10−5

Learning rate of Critic 5 × 10−4

The number of Episode 15,000
Episode length 10
Channel bandwidth (B) 50 MHz
Cpu frequency of UAV ( fij) 1.5× 109

Cpu frequency of MU ( flocal) 109

Size of task (Dij) 0.1 M–1.5 M

Requested delay of task (tdelay
j ) 12 ms–15 ms

LoS additional path loss
(
ηLoS) 1 dB

NLoS additional path loss for
(
ηNLoS) 20 dB

LoS path loss exponent
(

βLoS) 2.09
NLoS path loss exponent

(
βNLoS) 3.75

Noise power (σ) −95 dBm
Operating altitude of UAV (ht) 100 m
Transmit power of UAV i

(
pRF) 30 dBm

Transmission power of FSO
(

pFSO)
200 mW

Efficiencies of optic (κt) 0.8
Receiver diameter of FSO channel (ς) 0.06 m
Transmitter divergence of FSO channel (υt) 2.07× 10−4 rad
Wavelength of FSO channel (λ) 1550 mm
Sensitivity of receiver (Nb) 100 photons/bit

5.2. Convergence Analysis

Figure 3 illustrates the trend of average system rewards obtained by each UAV per
episode, and Figure 4 presents the tendency of total success rate obtained by each UAV
per episode. This experiment evaluates the convergence of the proposed algorithm in
comparison to other algorithms. It can be observed that the rewards for KMADDPG, Base,
NearbyMatch, and MeanResource decrease in that order. The MeanRes algorithm exhibits
significant fluctuations in performance, performs the worst, and fails to converge. This is
due to the algorithm’s inability to customize based on user demand differences, resulting
in a significant waste of computational resources.
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Figure 3. Convergence performance of reward under different algorithms.
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Figure 4. Convergence performance of total success rate under different algorithms.

The NearbyMatch algorithm performs somewhat better, with average rewards and
average total success rates of 5.8 and 78% converges when the episode is equal to 8000,
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as it devises strategies based on user demand. However, the limitation of NearbyMatch
algorithm often causes it to fall into local optima. This limitation is that during training,
MUs may cluster around a single UAV and offload task to it, leading to an inability of that
UAV to satisfy all demands of MUs while the remaining UAVs remain idle.

The Base algorithm demonstrates better performance, with average rewards and
average total success rates of 6.8 and 86% converges when the episode is equal to 10,000.
The proposed KMADDPG algorithm addresses these shortcomings by integrating the
KMeans algorithm to optimize UAV positioning, reducing path loss, and achieving better
convergence performance compared to Base MADDPG. Consequently, it achieved the best
results, with average rewards and average total success rates of 7.8 and 90% converges
when the episode is equal to 3000. The proposed algorithm is capable of converging under
minor constraints and has a faster convergence rate than the other algorithm.

5.3. Priority Analysis

Figures 5 and 6 depict the performance of various algorithms in terms of task completion
within a single episode and their ability to handle tasks of different priority levels, respectively.
Figure 5 shows the number of completed tasks within one episode. The KMADDPG algorithm
completed 719 tasks, which is 8%, 12%, and 41% more than those completed by Base, Nearby-
Match, and MeanResource, respectively. This indicates that the proposed algorithm exhibits
superior task scheduling and processing capabilities. Figure 6 illustrates the performance of
different algorithms in handling tasks with varying priorities, where P1, P2, and P3 represent
low-, medium-, and high-priority tasks, respectively. It is evident from Figure 6 that all four
algorithms perform better on higher-priority tasks, indicating that high-priority tasks receive
more resource allocation. The proposed algorithm outperforms the other three algorithms
across all three priority levels, with an increase in task completion by 12.5%, 5%, and 6% for
low, medium, and high priorities, respectively, compared to Base. This demonstrates that
the proposed algorithm not only maximizes the number of successful tasks but also exhibits
superior handling capabilities for high-priority tasks.
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Figure 5. The distribution of success tasks under different algorithms.
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5.4. Convergence under Different Proportions

Figures 7 and 8 illustrate the trends of the average system reward and total success rate,
respectively. In the proposed system model, as the number of UAVs and users increases,
resources increase proportionally, making the environment more complex. Particularly, the
increase in the number of agents means that each agent’s decision can more frequently affect
the states of other agents, making it harder for the results to converge. We compare different
combinations of ratios to demonstrate that the proposed algorithm can still perform well
even as the number of agents increases, though inevitably at a slower convergence rate. The
reason for increasing resources proportionally is to avoid task failures due to insufficient
resources. This experiment evaluated the convergence speed of various algorithms under
different ratios of UAV and mobile user (MU) combinations. With the increase in the number
of UAVs and users, resources increase proportionally, and the environment becomes more
complex. To verify that the proposed algorithm can achieve good convergence results in
complex situations, we used a UAV ratio and MU of 3:8 (simplified to (3, 8)) as the baseline,
adjusting their numbers proportionally. From Figure 7, it is evident that the convergence
rewards vary with different UAV combinations: the (2, 4) combination converges around
4, the (6, 16) combination converges around 15, and the (9, 24) combination converges
around 22. This variation is due to the different number of users each combination serves.
The convergence speed decreases sequentially because, as the number of agents and users
increases, the system environment becomes more complex, necessitating more training
for the neural network to achieve optimal results. However, as shown in Figure 8, even
as the environment complexity increases, the final convergence effect still reaches 90%,
demonstrating that the proposed algorithm performs well in more complex environments.
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6. Conclusions

To address the challenges faced by multi-UAV rescue systems utilizing a hybrid
FSO/RF dual-hop model, we introduce a priority-driven resource allocation strategy. This
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innovative approach is designed to optimize the completion rate of tasks, with a particular
emphasis on ensuring that high-priority tasks are efficiently managed and expedited. This
paper transforms the problem into a discrete partially observable Markov decision process
and develops a KMADDPG algorithm to improve convergence speed. Simulation results
indicate that the KMADDPG algorithm outperforms other DRL algorithms in enhancing
system performance. In future work, we will explore resource allocation strategies for
UAVs in terms of energy efficiency and transmission power, and incorporate dynamic
priority mechanisms.

Author Contributions: Conceptualization, Y.L., Y.A. and Z.X.; Data curation, Y.A., Z.X. and J.W.;
Formal analysis, Y.L., Y.A. and J.L.; Funding acquisition, Y.L., J.W. and J.L.; Investigation, Y.L., Y.A.,
Z.X. and J.W.; Methodology, Y.L., Z.X., J.W. and J.L.; Project administration, Y.L., Z.X., J.W. and J.L.;
Resources, Y.A., Z.X. and J.W.; Software, Y.L., Y.A. and Z.X.; Supervision, Z.X. and J.L.; Validation,
Y.A.; Visualization, J.W.; Writing—original draft, Y.L. and Y.A.; Writing—review and editing, Y.L.,
Y.A. and Z.X. All authors have read and agreed to the published version of the manuscript.

Funding: The research is supported by the National Natural Science Foundation of China (62171463,
62271502), Natural Science Foundation of Fujian Province, China (2021J011112), and Science and
Technology Bureau of Putian, Fujian Province, China (2022GZ2001ptxy11).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on reasonable request
from the corresponding authors.

Conflicts of Interest: The authors declare no conflicts of interest

References
1. Wang, D.; Cao, Y.; Lam, K.Y.; Hu, Y.; Kaiwartya, O. Authentication and Key Agreement Based On Three Factors and PUF for

UAVs-Assisted Post-Disaster Emergency Communication. IEEE Internet Things J. 2024, 11, 20457–20472. [CrossRef]
2. Yao, Z.; Cheng, W.; Zhang, W.; Zhang, H. Resource allocation for 5G-UAV-based emergency wireless communications. IEEE J.

Sel. Areas Commun. 2021, 39, 3395–3410. [CrossRef]
3. Wu, J.; Chen, Q.; Jiang, H.; Wang, H.; Xie, Y.; Xu, W.; Zhou, P.; Xu, Z.; Chen, L.; Li, B.; et al. Joint Power and Coverage Control of

Massive UAVs in Post-Disaster Emergency Networks: An Aggregative Game-Theoretic Learning Approach. IEEE Trans. Netw.
Sci. Eng. 2024, 11, 3782–3799. [CrossRef]

4. Tang, X.; Chen, F.; Wang, F.; Jia, Z. Disaster Resilient Emergency Communication With Intelligent Air-Ground Cooperation. IEEE
Internet Things J. 2023, 11, 5331–5346. [CrossRef]

5. Gao, J.; Wang, Q.; Li, Z.; Zhang, X.; Hu, Y.; Han, Q.; Pan, Y. Towards Efficient Urban Emergency Response Using UAVs Riding
Crowdsourced Buses. IEEE Internet Things J. 2024, 11, 22439–22455. [CrossRef]

6. Zhou, M.; Chen, H.; Shu, L.; Liu, Y. UAV-assisted sleep scheduling algorithm for energy-efficient data collection in agricultural
Internet of Things. IEEE Internet Things J. 2021, 9, 11043–11056. [CrossRef]

7. Bekkali, A.; Fujita, H.; Hattori, M. New generation free-space optical communication systems with advanced optical beam
stabilizer. J. Light. Technol. 2022, 40, 1509–1518. [CrossRef]

8. Bekkali, A.; Hattori, M.; Hara, Y.; Suga, Y. Free Space Optical Communication Systems FOR 6G: A Modular Transceiver Design.
IEEE Wirel. Commun. 2023, 30, 50–57. [CrossRef]

9. Guo, Z.; Gao, W.; Ye, H.; Wang, G. A location-aware resource optimization for maximizing throughput of emergency outdoor–
indoor UAV communication with FSO/RF. Sensors 2023, 23, 2541. [CrossRef] [PubMed]

10. Yahia, O.B.; Erdogan, E.; Kurt, G.K.; Altunbas, I.; Yanikomeroglu, H. A weather-dependent hybrid RF/FSO satellite communica-
tion for improved power efficiency. IEEE Wirel. Commun. Lett. 2021, 11, 573–577. [CrossRef]

11. Aboelala, O.; Lee, I.E.; Chung, G.C. A survey of hybrid free space optics (FSO) communication networks to achieve 5G connectivity
for backhauling. Entropy 2022, 24, 1573. [CrossRef] [PubMed]

12. Nafees, M.; Huang, S.; Thompson, J.; Safari, M. Backhaul-aware user association and throughput maximization in UAV-aided
hybrid FSO/RF network. Drones 2023, 7, 74. [CrossRef]

13. Li, Y.; Zhang, W.; Wang, C.X.; Sun, J.; Liu, Y. Deep reinforcement learning for dynamic spectrum sensing and aggregation in
multi-channel wireless networks. IEEE Trans. Cogn. Commun. Netw. 2020, 6, 464–475. [CrossRef]

14. Zhu, G.; Lyu, Z.; Jiao, X.; Liu, P.; Chen, M.; Xu, J.; Cui, S.; Zhang, P. Pushing AI to wireless network edge: An overview on
integrated sensing, communication, and computation towards 6G. Sci. China Inf. Sci. 2023, 66, 130301. [CrossRef]

http://doi.org/10.1109/JIOT.2024.3371101
http://dx.doi.org/10.1109/JSAC.2021.3088684
http://dx.doi.org/10.1109/TNSE.2024.3385797
http://dx.doi.org/10.1109/JIOT.2023.3305549
http://dx.doi.org/10.1109/JIOT.2024.3382120
http://dx.doi.org/10.1109/JIOT.2021.3125971
http://dx.doi.org/10.1109/JLT.2022.3146252
http://dx.doi.org/10.1109/MWC.006.2300118
http://dx.doi.org/10.3390/s23052541
http://www.ncbi.nlm.nih.gov/pubmed/36904746
http://dx.doi.org/10.1109/LWC.2021.3136444
http://dx.doi.org/10.3390/e24111573
http://www.ncbi.nlm.nih.gov/pubmed/36359661
http://dx.doi.org/10.3390/drones7020074
http://dx.doi.org/10.1109/TCCN.2020.2982895
http://dx.doi.org/10.1007/s11432-022-3652-2


Photonics 2024, 11, 754 18 of 18

15. Song, F.; Xing, H.; Wang, X.; Luo, S.; Dai, P.; Xiao, Z.; Zhao, B. Evolutionary multi-objective reinforcement learning based
trajectory control and task offloading in UAV-assisted mobile edge computing. IEEE Trans. Mob. Comput. 2022, 22, 7387–7405.
[CrossRef]

16. Yang, Y.; Song, T.; Yang, J.; Xu, H.; Xing, S. Joint Energy and AoI Optimization in UAV-Assisted MEC-WET Systems. IEEE Sensors
J. 2024, 24, 15110–15124. [CrossRef]

17. Guo, S.; Zhao, X. Multi-Agent Deep Reinforcement Learning Based Transmission Latency Minimization for Delay-Sensitive
Cognitive Satellite-UAV Networks. IEEE Trans. Commun. 2023, 71, 131–144. [CrossRef]

18. Xiong, Z.; Zhang, Y.; Lim, W.Y.B.; Kang, J.; Niyato, D.; Leung, C.; Miao, C. UAV-assisted wireless energy and data transfer with
deep reinforcement learning. IEEE Trans. Cogn. Commun. Netw. 2020, 7, 85–99. [CrossRef]

19. Qin, Z.; Liu, Z.; Han, G.; Lin, C.; Guo, L.; Xie, L. Distributed UAV-BSs Trajectory Optimization for User-Level Fair Communication
Service With Multi-Agent Deep Reinforcement Learning. IEEE Trans. Veh. Technol. 2021, 70, 12290–12301. [CrossRef]
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