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Abstract: We consider the problem of designing a diffractive neural network (DNN) consisting of
a set of sequentially placed phase diffractive optical elements (DOEs) and intended for the optical
solution of several given classification problems at different operating wavelengths, so that each
classification problem is solved at the corresponding wavelength. The problem of calculating the
DNN is formulated as the problem of minimizing a functional that depends on the functions of
the diffractive microrelief height of the DOEs constituting the DNN and represents the error in
solving the given classification problems at the operating wavelengths. We obtain explicit and
compact expressions for the derivatives of this functional, and using them, we formulate a gradient
method for the DNN calculation. Using this method, we design DNNs for solving the following
three classification problems at three different wavelengths: the problem of classifying handwritten
digits from the MNIST database, the problem of classifying fashion products from the Fashion
MNIST database, and the problem of classifying ten handwritten letters from the EMNIST database.
The presented simulation results of the designed DNNs demonstrate the high performance of the
proposed method.

Keywords: diffractive neural network; classification problem; cascaded diffractive optical element;
gradient method; scalar diffraction theory

1. Introduction

In recent years, the design of photonic structures for optical computing and optical
information processing has attracted significant interest. These structures are considered as a
promising platform for the further development of computing systems and are intended for
creating an alternative to electronic components or supplementing them [1–4]. Optical neural
networks [5–9], and, in particular, diffractive neural networks (DNNs), comprising a cascade
of sequentially placed phase diffractive optical elements (DOEs) [10–26], are considered as
one of the most promising and rapidly developing areas in the field of optical information
processing. It should be noted that DOEs (both single and cascaded) have a long history
and are widely used for solving a large class of problems of steering laser radiation [27–33].
At the same time, the use of cascaded DOEs for the optical solution of machine learning
problems was first demonstrated only in 2018 in ref. [10]. In this work, the authors pointed out
several analogies between a cascade of DOEs and “conventional” artificial neural networks
and introduced the term “diffractive deep neural network”. The possibility of the optical
solution of classification problems using cascaded DOEs was theoretically and experimentally
demonstrated in ref. [10]. Subsequent works considered the use of DNNs (cascaded DOEs) for
solving various classification problems [11–15,17,25,26], object and video recognition [13,15],
salient object detection [11], implementing multispectral imaging [22], and performing matrix
multiplication, as well as implementing other linear operators [12,18,20,21]. The main method
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for designing DNNs is the stochastic gradient descent method, as well as “improved” first-
order methods based on it [34]. These methods have become widely used and have shown
their high efficiency in beam shaping problems traditionally solved using DOEs [35,36].

In most works, DNNs are calculated to work with radiation of a single operating wave-
length. At the same time, the problem of calculating DNNs designed to work with radiation
of various wavelengths is of great scientific and practical interest. In the following text, we
will refer to such DNNs as spectral DNNs (or cascaded spectral DOEs). Spectral DNNs can
be used to process spectral data, carry out parallel computations by simultaneously solving
several machine learning problems at different wavelengths, change their functionality
(i.e., the problem being solved) depending on the wavelength of the incident radiation, etc.
In particular, references [23,24] considered the calculation of DNNs for spectral filtering
and spectral analysis of the incident radiation. In references [21,22], spectral DNNs were
considered for the optical implementation of various linear transformations at different
wavelengths (each transformation being carried out at its “own” wavelength), as well
as for multispectral imaging. One of the main problems, which can be efficiently solved
using DNNs, is the problem of optical image classification. However, to the best of our
knowledge, the relevant problem of calculating spectral DNNs for solving several different
classification problems at different wavelengths has not yet been studied. In particular,
although the solution of classification problems using the radiation of several different
wavelengths was considered in recent works [25,26], several wavelengths were used only
to improve the quality of the solution of a single fixed classification problem. Thus, the
solution of several different classification problems at different wavelengths has not been
considered in [25,26] (as well as in the other existing works).

In this work, we consider the design of spectral DNNs (cascaded spectral DOEs)
for solving several different classification problems at several different wavelengths. We
formulate the problem of calculating a spectral DNN as the problem of minimizing a func-
tional representing the error of solving the given classification problems at the operating
wavelengths. This functional depends on the functions defining the diffractive microrelief
height of the DOEs constituting the DNN. Explicit and compact expressions are obtained
for the derivatives of the error functional, and on this basis, a gradient method for the DNN
design is presented. Using the proposed gradient method, we calculate several examples of
spectral DNNs for solving the following three problems: classification of handwritten digits
from the MNIST database at a wavelength of 457 nm, classification of fashion products
from the Fashion MNIST database at 532 nm, and classification of ten handwritten letters
from A to J (lowercase and uppercase) from the EMNIST database at 633 nm. The presented
numerical simulation results demonstrate good classification accuracies provided by the
designed spectral DNNs.

2. Design of Spectral DNNs for Solving Several Classification Problems

Let us consider the problem of calculating a spectral DNN (a cascaded DOE) in-
tended for solving several classification problems Pq, q = 1, . . . , Q at different wavelengths
λq, q = 1, . . . , Q, so that each classification problem Pq is solved at the corresponding
wavelength λq. We assume that the cascaded DOE consists of n phase DOEs located in the
planes z = f1, . . . , z = fn (0 < f1 < · · · < fn) and defined by the functions of diffractive
microrelief height h1(u1), . . . , hn(un), where uj = (uj, vj) are Cartesian coordinates in the
planes z = f j (Figure 1).

Let us first describe the required operation of the DNN at a certain single wavelength λq.
We assume that in the input plane z = 0, amplitude images of objects from Nq different classes
corresponding to the classification problem Pq are sequentially generated. Each generated
image is illuminated by a plane wave with wavelength λq. Let us denote w0,q,j(u0) as the
complex amplitude of the light field generated in this way in the input plane. In the following,
the subscript of a certain complex amplitude of the field wm,q,j(um) contains the index m of
the plane in which this amplitude is defined, the wavelength index q (which is also the index
of the corresponding classification problem), and the class number j of the input image.
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Figure 1. Geometry of the problem of calculating a DNN for solving different classification problems
at different wavelengths.

The light field w0,q,j(u0) generated at z = 0 then propagates through the cascaded DOE
to the output plane z = fn+1. We assume that the light propagation in the free space (between
the planes in which the DOEs are located) is described by the Fresnel–Kirchhoff diffraction
integral, and that the transmission of the light field through a DOE can be described in the thin
optical element approximation as the multiplication of the beam complex amplitude by the
complex transmission function (CTF) of this DOE. The CTF of the m-th DOE is wavelength-
dependent, and for the wavelength λq, it has the following form:

Tm,q(um) = exp
{

iϕm,q(um)
}
= exp

{
i
2π

λq
[n(λq)− 1]hm(um)

}
, (1)

where ϕm,q(um) is the phase function of the DOE (the phase shift introduced by the DOE)
at the wavelength λq, and n(λq) is the refractive index of the DOE material. Under these
assumptions, the propagation of the input beam w0,q,j(u0) from the input plane z = 0
through the cascaded DOE to the output plane z = fn+1 is described by the following
recurrent formula:

w1,q,j(u1) = Cq,1

∫∫
w0,q,j(u0) exp

{
i

π

λqd1
(u1 − u0)

2
}

d2u0,

wm,q,j(um) = Cq,m

∫∫
wm−1,q,j(um−1)Tm−1,q(um−1) · exp

{
i

π

λqdm
(um − um−1)

2
}

d2um−1,

m = 2, . . . , n + 1,

(2)

where wm,q,j(um), m = 1, . . . , n are the complex amplitudes of the fields incident on the
corresponding (m-th) DOEs having the CTFs Tm,q(um), Cq,m = (iλqdm)−1 exp{i2πdm/λq},
and dm = fm − fm−1 are the distances between the adjacent planes.

We assume that in the output plane z = fn+1, Nq spatially separated target regions
Gq,k, k = 1, . . . , Nq are defined, which correspond to Nq different classes of the problem
Pq (see Figure 1). At each input image, a certain “energy” distribution Eq,k, k = 1, . . . , Nq is
generated in these regions, which corresponds to the integrals of the generated intensity
distribution In+1,q,j(un+1) =

∣∣wn+1,q,j(un+1)
∣∣2 over the following regions:

Eq,k =
∫∫

In+1,q,j(un+1)χq,k(un+1)d2un+1, k = 1, . . . , Nq, (3)

where χq,k(un+1) is the indicator function of the region Gq,k. For solving the classification problem
Pq, it is necessary for the cascaded DOE to generate such an intensity distribution in the output
plane for the “input signal” of the j-th class w0,q,j(u0), so that the maximum of the generated
energies Eq,k, k = 1, . . . , Nq is reached in the corresponding target region Gq,j [10,12].

Above, we described the required operation of the DNN at a single wavelength λq.
The problem of designing a DNN for solving several different classification problems
Pq, q = 1, . . . , Q at different wavelengths λq can also be formulated as the problem of
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calculating the functions of the diffractive microrelief height h1(u1), . . . , hn(un) of the
cascaded DOE. In this case, these functions have to be found in such a way, so that at each
wavelength λq, with an input signal being an image of a certain object of the problem Pq
solved at this wavelength, the DNN provides the maximum energy in the target region
corresponding to the class of the input image.

3. Gradient Method for Designing Spectral DNNs

For solving the described problem of calculating a spectral DNN, we will use a stochastic
gradient descent method as it is commonly applied for training artificial neural networks.
Let us first present a general description of the method. We assume that for the calculation
(training) of the DNN (cascaded DOE), a training set S = S1 ∪ · · · ∪ SQ is used, which consists
of training subsets Sq for the considered classification problems Pq, q = 1, . . . , Q. Each training
set Sq contains a number of input distributions (complex amplitudes of the fields) generated
from the images of the objects of the problem Pq at the wavelength λq. At each step of the
method, a set of distributions (referred to as a batch) is randomly chosen from the training
set S. For this batch, we calculate the derivatives of a certain error functional ε(h1, . . . , hn),
which depends on the functions of the diffractive microrelief height and evaluates the DNN
performance. Then, a step in the direction of the anti-gradient is performed, which gives the
updated microrelief heights. Since the mathematical expectations of the derivatives calculated
over a batch are proportional to the derivatives of the functional calculated for the whole
training set, such an approach corresponds to the stochastic gradient descent method. Let us
note that in contrast to the majority of the existing works on the spectral DNN design [21–23],
below, we will present a detailed derivation of explicit expressions for the derivatives of the
error functional.

Without losing generality, we will assume that the batch corresponds to the following
set of input distributions: w0,q,j(u0), q = 1, . . . , Q, j = 1, . . . , Nq. Thus, we assume that
the batch contains N1 + N2 + . . . + NQ input distributions, and for each q ∈ {1, . . . , Q}, it
includes Nq images of the objects of different classes from the training set Sq generated at
the corresponding wavelength λq. In order to describe the calculations carried out for the
batch, let us write the error functional in an explicit form. Let the classification error of
an incident beam w0,q,j(u0) representing an object from the j-th class from the problem Pq
be described by a certain error functional εq,j(h1, . . . , hn). Since the classification is carried
out by analyzing the energies Eq,k in the regions Gq,k [see Equation (3)], the functional
εq,j(h1, . . . , hn) in the general case has the following form:

εq,j(h1, . . . , hn) = Dq,j(Eq,1, . . . , Eq,Nq), (4)

where Dq,j is a certain function describing the deviation of the generated energy distribution (3)
from the required distribution, in which the energy is concentrated in the required j-th
target region. Then, the error functional for a batch containing the distributions w0,q,j(u0),
q = 1, . . . , Q, j = 1, . . . , Nq can be represented as a sum of the presented functionals:

ε(h1, . . . , hn) =
Q

∑
q=1

Nq

∑
j=1

εq,j(h1, . . . , hn). (5)

For the functional (5), it is easy to find the Fréchet derivatives δε/δhm. Indeed, since
the functional (5) is equal to the sum of functionals, its derivatives have the following form:

δε(h1, . . . , hn)

δhm
=

Q

∑
q=1

Nq

∑
j=1

δεq,j(h1, . . . , hn)

δhm
, m = 1, . . . , n. (6)
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Let us consider the calculation of the derivative δεq,j/δhm in Equation (6) with respect
to the function hm. To do this, let us first denote the increment of this functional caused by
an increment ∆hm of the microrelief height function hm as follows:

∆mεq,j(h1, . . . , hn) = εq,j(h1, . . . , hm + ∆hm, . . . , hn)− εq,j(h1, . . . , hm, . . . , hn) (7)

According to Equations (3) and (4), this increment reads as follows:

∆mεq,j(h1, . . . , hn) =
Nq

∑
k=1

∂Dq,j

∂Eq,k
(∆mEq,k)

=
Nq

∑
k=1

∂Dq,j

∂Eq,k

∫∫ [
∆m In+1,q,j(un+1)

]
· χq,k(un+1)d2un+1

=
Nq

∑
k=1

∂Dq,j

∂Eq,k

∫∫
∆m

[
wn+1,q,j(un+1)w∗n+1,q,j(un+1)

]
· χq,k(un+1)d2un+1

= 2 Re
∫∫ [

∆mwn+1,q,j(un+1)
]
· F∗n+1,q,j(un+1)d2un+1,

(8)

where ∆mEq,k, ∆m In+1,q,j(un+1), and ∆mwn+1,q,j(un+1) are the increments of the energy,
intensity distribution, and complex amplitude, respectively, caused by an increment of the
height ∆hm, and

Fn+1,q,j(un+1) = wn+1,q,j(un+1) ·
Nq

∑
k=1

χq,k(un+1)
∂Dq,j

∂Eq,k
. (9)

By denoting the scalar product of complex functions with angled brackets, we arrive at
the following:

∆mεq,j(h1, . . . , hn) = 2 Re
〈
∆mwn+1,q,j(un+1), Fn+1,q,j(un+1)

〉
. (10)

One can easily show that the operator describing the forward propagation of the light
field through a set of phase DOEs [see Equation (2)], as well as the operator of the backpropa-
gation of the field, are unitary and conserve the scalar product [16]. Using this conservation
property, we can represent the increment of the error functional (10) as follows:

∆mεq,j(ϕ1, . . . , ϕn) = 2 Re
〈

Pr fn+1→ f+m
(∆mwn+1,q,j), Pr fn+1→ f+m

(Fn+1,q,j)
〉

, (11)

where Pr fn+1→ f+m
is the backpropagation operator of the field from the output plane

z = fn+1 to the plane z = f+m located immediately after the plane of the m-th DOE
z = fm. Note that the backpropagation of the field in the free space is described by the
same Fresnel–Kirchhoff integral, where the propagation distance is taken with a minus
sign, in contrast to the forward propagation. The “backward propagation” of the beam
through a phase DOE is described by the multiplication of the complex amplitude of
the beam by the complex conjugate of the CTF of the DOE. Thus, at m = n, the field
Fm,q,j(un+1) = Pr fn+1→ f+m

(Fn+1,q,j) has the following form:

Fn,q,j(un) = C∗q,n+1

∫∫
Fn+1,q,j(un+1) exp

{
iπ

(un − un+1)
2

λq · (−dn+1)

}
d2un+1. (12)

Then, at m < n, the field Fm,q,j(un+1) is calculated recursively using the following formula:

Fl−1,q,j(ul−1) = C∗q,l

∫∫
Fl,q,j(ul)T∗q,j(ul) exp

{
iπ

(ul−1 − ul)
2

λq · (−dl)

}
d2ul ,

l = n, . . . , m + 1.
(13)
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Let us note that since Pr fn+1→ f+m
(∆mwn+1,q,j) = ∆m(wm,q,jTm,q), where wm,q,j(um)Tm,q(um)

is the complex amplitude of the field immediately after the plane of the m-th DOE upon the forward
propagation, the increment (11) can be transformed as follows:

∆mεq,j(h1, . . . , hn) = 2 Re
〈
∆m(wm,q,jTm,q), Fm,q,j

〉
= 2 Re

∫∫
wm,q,j(um)∆Tm,q(um)F∗m,q,j(um)d2um.

(14)

Since
∆Tm,q = exp{iγq(hm + ∆hm)} − exp{iγqhm}

= Tm,qiγq∆hm + o(∆hm),
(15)

where γq = 2π[n(λq)− 1]/λq, then the principal linear part of the increment (14) can be
written as the following scalar product:

δmεq,j(h1, . . . , hn) = −2γq

∫∫
∆hm(um) Im[wm,q,j(um)Tm,q(um)F∗m,q,j(um)]d2um

= −2γq

〈
∆hm, Im[wm,q,jTm,qF∗m,q,j]

〉
.

(16)

According to Equation (16), the Fréchet derivative of the functional (4) has the
following form:

δεq,j(h1, . . . , hn)

δhm
= −2γq Im[wm,q,j(um)Tm,q(um)F∗m,q,j(um)]. (17)

Thus, the calculation of the gradient of the functional for a batch can be performed
using Equations (6) and (17). It is worth noting that in the existing works on the design
of spectral DNNs (see, e.g., refs. [21–23]), explicit expressions for the gradient of the error
functionals are not presented, and their calculation is performed numerically using the
standard PyTorch and TensorFlow frameworks. In this regard, we consider the obtained
Equations (6) and (17) for the derivatives of the error functional as a new and important
theoretical results.

Above, the functional εq,j(h1, . . . , hn) describing the classification error of an object of
the j-th class in the problem Pq was written in a general form (4), where Dq,j(Eq,1, . . . , Eq,Nq)
is a certain error function depending on the energy distribution (3) generated at the func-
tions h1, . . . , hn. Let us consider a particular example of the functional. For correct classifica-
tion of an input image of the j-th class, it is necessary for the energy Eq,j in the corresponding
region Gq,j to have a “large” value Emax and for the energies in the other regions to be close
to zero. Accordingly, as an error functional for recognizing an input distribution of the j-th
class, one can, for example, use the following quadratic functional [19]:

εq,j(h1, . . . , hn) =
Nq

∑
k=1

(
Eq,k − Emaxδk,j

)2
, (18)

where δk,j is the Kronecker delta. The derivatives of the functional (18) are calculated
using the general Formula (17), where, according to Equation (9), the function Fm,q,j(um) is
calculated through the backpropagation of the field:

Fn+1,q,j(un+1) = 2wn+1,q,j(un+1)
Nq

∑
k=1

χq,k(un+1) · (Eq,k − Emaxδk,j). (19)

Let us note that in the design of a cascaded DOE, the functions of the diffractive
microrelief height h1(u1), . . . , hn(un) are usually assumed to be bounded and take values
from a certain interval [0, hmax], where hmax is the maximum microrelief height (the hmax
value is defined by the technology used for the DOE fabrication). The presence of con-
straints 0 6 hm(u1) 6 hmax, i = 1, . . . , n makes the problem of designing a cascaded DOE
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a conditional optimization problem. To take these constraints into account, it is necessary
to introduce the following projection operator on the set of bounded height functions into
the iterative calculation process:

P(h) =


0, h < 0,
h, h ∈ [0, hmax),
hmax, h > hmax.

(20)

In particular, the introduction of this operator to the gradient method for designing
cascaded DOEs leads to the gradient projection method, in which the height functions are
updated as follows:

hk
m(um) = P

[
hk−1

m (um)− t
δε

δhm
(um)

]
, m = 1, . . . , n, (21)

where the superscript k denotes the iteration number and t is the step of the gradient
method. Note that instead of the simplest version of the gradient method of Equation (21),
one can utilize its various extensions, e.g., the widely used Adam method [34].

4. Design Examples of Spectral DNNs

Let us consider the calculation of a spectral DNN for solving three different classifica-
tion problems Pq, q = 1, 2, 3 at the following three operating wavelengths: λ1 = 457 nm,
λ2 = 532 nm, and λ3 = 633 nm, which correspond to the solid-state lasers commonly
used in optical design. Let us choose the following problems to solve: the problem of
classifying handwritten digits from the MNIST dataset at the wavelength λ1 = 457 nm
(problem P1), the problem of classifying fashion products from the Fashion MNIST dataset
at λ2 = 532 nm (problem P2), and, finally, the problem of classifying handwritten letters
from A to J (lowercase and uppercase) from the EMNIST dataset at λ3 = 633 nm (problem
P3). Note that each of the chosen classification problems contains the objects of ten classes,
i.e., N1 = N2 = N3 = 10. Let us also note that it is these classification problems that are
solved (by separately designed networks operating at a single wavelength) in the vast
majority of the existing works on DNN design.

For the DNN design, let us use the following parameters. We assume the input
images for the classification problems Pq, q = 1, 2, 3 in the input plane to be defined on a
56× 56 square grid with a step size of d = 10 µm. The “interlayer” distances between the
input plane to the first DOE, between the DOEs, and from the last DOE to the output plane
are the same and equal ∆ f = 160 mm. The microrelief height functions in the DOE planes
are defined on 512× 512 square grids with a step size (pixel size) of 10 µm. In this case, the
side length of the DOE aperture amounts to 5.12 mm. We set the maximum height of the
diffractive microrelief to be hmax = 6 µm. Note that DOEs with such height and pixel size
have a moderate aspect ratio of hmax/d = 0.6 and thus can be fabricated using the standard
direct laser writing technique [37,38]. Let us also note that the chosen parameters are in
agreement with the results of ref. [17]. In that work, it was shown that a DNN operating at
a wavelength of λ behaves like a fully connected neural network and can achieve a good
performance if its Fresnel number, defined as d2/(λ∆ f ), lies in the range of [10−4, 10−2].
For our design parameters, the Fresnel numbers are of about 10−3 for all three operating
wavelengths and thus belong to this “optimal” range. In addition, we verified that at the
chosen parameters, the diffraction pattern from the input image formed on the first DOE
approximately covered the DOE aperture, i.e., it was neither “concentrated” in its central
part (which would make the peripheral parts of the DOE not operational) nor noticeably
exceeded the DOE boundaries (which would result in a loss of information). For the sake
of simplicity, as the refractive indices of the DOE material, we will use the same value
n(λ1) = n(λ2) = n(λ3) = 1.46, which, nevertheless, is quite close to the refractive index of
fused silica at the operating wavelengths.
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4.1. Sequential Solution of the Classification Problems

Let us first assume that the images of the objects from different classification problems
Pq, q = 1, 2, 3 are generated in the input plane z = 0 sequentially, and that each image from
the problem Pq is illuminated by a normally incident plane wave (propagating along the
z axis) with wavelength λq. Since each of the considered problems Pq contains the objects
of 10 classes, which, as we assumed, are generated in the input plane z = 0 in a sequential
way, it is sufficient to use a single set of 10 target regions Gk, k = 1, . . . , 10 in the output
plane for all three problems. In this case, the DNN will change the classification problem
being solved by changing the wavelength λq of the incident radiation. The target regions, in
which energy maxima have to be generated for different classes, are shown in Figure 2a and
have a square shape with sides of 0.25 mm. The classes numbered as 0, . . . , 9 in Figure 2a
correspond to the digits 0, . . . , 9 in problem P1, different fashion products (T-shirt/top,
trouser, pullover, dress, coat, sandal, shirt, sneaker, bag, ankle boot) in problem P2, and the
letters from A to J in problem P3.
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Figure 2. Target regions in the cases of sequential (a) and parallel (b) solution of the classification problems.

First, using the developed gradient method [Equations (5), (6), (17)–(21)], a DNN con-
sisting of a single DOE was calculated. Let us note that the calculations of the derivatives of
the error functionals were performed numerically using the angular spectrum method [39,40].
For the DOE calculation, we used a training set S containing 60,000 images of handwritten
digits from the MNIST dataset, 60,000 images of fashion products from the Fashion MNIST
dataset, and 48,000 images of handwritten letters from the EMNIST dataset. As the initial
function of the microrelief height, a realization of white noise with a uniform distribution of
values in the [0, hmax] range was used. Note that in addition to the random initial functions of
the microrelief height, we also used constant initial functions, which led to close but slightly
inferior results in terms of the DNN performance. The training, which was carried out until
reasonable convergence of the value of the error functional, took approximately 4 h using an
NVIDIA RTX 3060 12 Gb graphics card utilized for the computations. The obtained microrelief
height function of the designed DOE is shown in Figure 3a.

After the training, the performance of the calculated DOE was evaluated using a
test set containing 10,000 images for each of the problems P1 and P2 and 8000 images for
problem P3 (the images from the test set were not included in the training set). The obtained
values of the classification accuracies of the objects from different classes (such values are
often referred to as recall) for the three considered classification problems are shown with
circles in Figure 4a, which are connected with solid lines as a guide to the eye. The overall
classification accuracy (i.e., the ratio of the quantity of correctly recognized objects to the
size of the test set) amounts to 96.41% for problem P1, 84.11% for problem P2, and 90.87%
for problem P3. The full confusion matrices for the three considered classification problems
describing the obtained results in more detail are given in the supplementary materials
(see Figure S1). Let us note that a relatively low classification accuracy for the objects of
the 6-th class of problem P2 (shirt) in Figure 4a is caused by the fact that these objects
are visually close to the objects of the classes 0, 2, and 4 (T-shirt/top, pullover, coat)
(see Figure S1). This effect is also present for the latter classes, albeit in this case, it is not as
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pronounced (see Figures 4a and S1). Note that this feature is in agreement with the results
of other works in which the FMNIST classification problem was considered [10,17].
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(a) (b)

Figure 3. Microrelief height functions of the designed DNNs consisting of a single DOE (a) and a
cascade of two DOEs (b) for sequential solution of three classification problems at three wavelengths.
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in the case of sequential solution of three classification problems at three wavelengths. (b,c) Contrast
for single-DOE (b) and two-DOE (c) DNNs. The stars show the minimum contrast values.

In addition to the classification accuracy, another important parameter is the energy
distribution in the target regions generated by the DOE. Let us define Eq,j→k as the average
energy calculated for the test set, which is directed to the k-th target region for the input
objects of the j-th class from the problem Pq. These average energy values are shown in
Figure S1 in the supplementary material in the form of the so-called energy distribution
matrices. From a practical point of view, an important characteristic is the contrast value,
which shows how much the energy in the region of the class under consideration exceeds
the energy in the regions corresponding to the other classes. Let us introduce the contrast
for the objects of the j-th class in problem Pq as follows:

CRq,j =

Eq,j→j −max
k 6=j

Eq,j→k

Eq,j→j + max
k 6=j

Eq,j→k
. (22)

In the opinion of the authors, for robust identification of “true maxima” of the energy
in the experimental implementation of the DNN, it is necessary for the theoretical values of
CRq,j to exceed at least 0.1. The obtained contrast values for the three considered problems
are shown in Figure 4b. The minimum contrast values CRmin,q = minj CRq,j for problems
Pq, q = 1, 2, 3 amount to 0.17, 0.10, and 0.13, respectively, and are not less than the chosen
“critical” value of 0.1.
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It is worth benchmarking the performance of the designed spectral single-DOE DNN
solving three classification problems at three different wavelengths against separate DOEs,
each of which solves a single classification problem Pq at the corresponding operating
wavelength λq. These DOEs were calculated using the gradient method using the param-
eters given above. For the calculated DOEs (not shown here for the sake of brevity), the
values of the overall accuracy and minimum contrast obtained using the corresponding
test set amount to 96.88% and 0.19 (problem P1), 86.64% and 0.11 (problem P2), and 93.3%
and 0.13 (problem P3). As one would expect, the spectral DOE [Figure 3a], which enables
solving all three classification problems, provides lower classification accuracies compared
to “reference” DOEs designed separately for each of the problems. At the same time, the
decrease in accuracy is relatively small, and for the considered problems Pq, q = 1, 2, 3,
amounts to 0.47%, 2.53%, and 2.36%, respectively. The decrease in the minimum contrast
for the three classification problems is also rather small.

It is also interesting to compare the performance of the calculated spectral DOE of
Figure 3a with the performance of a DOE solving the same three classification problems,
but at a single operating wavelength. This DOE was calculated using the gradient method
for the wavelength λ1 = 457 nm using the parameters given above. For this DOE (not
presented for brevity), the overall accuracy and minimum contrast amount to 92.69% and
0.12 (problem P1), 81.96% and 0.07 (problem P2), and 84.9% and 0.10 (problem P3). One can
see that the single DOE solving three classification problems at the same wavelength exhibits
inferior performance compared to the spectral DOE. The decrease in the overall classification
accuracy occurring when a single operating wavelength is used instead of three different
wavelengths amounts to 3.72% (problem P1), 2.15% (problem P2), and 5.97% (problem P3).
The better performance of the spectral DOE operating at three different wavelengths can be
explained by the fact that the phase shifts introduced by the DOE at different wavelengths
are different [see Equation (1)]. In comparison with a DOE designed for a single working
wavelength, this provides additional degrees of freedom during the optimization.

Having discussed the properties of a single spectral DOE, let us now move to a
DNN comprising two DOEs. The microrelief height functions of the calculated DOEs
are shown in Figure 3b. The obtained values of the classification accuracy in the three
considered problems for this DNN are shown in Figure 4a with circles connected by dashed
lines. The corresponding contrast plots are shown in Figure 4c. The resulting values of the
overall classification accuracy and minimum contrast for the designed cascade of two DOEs
equal 97.86% and 0.16 (problem P1), 86.93% and 0.11 (problem P2), and 93.07% and 0.12
(problem P3). Full confusion matrices and energy distribution matrices for this structure are
given in the supplementary materials (Figure S2). It is evident that the cascade of two DOEs,
compared to the single DOE, provides a better performance. In particular, the increase
in the overall classification accuracy amounts to 1.45% (problem P1), 2.82% (problem P2),
and 2.2% (problem P3) at virtually the same contrast. In order to illustrate the operation
of a DNN consisting of two DOEs, in Figure 5, particular examples of input images from
the classification problems Pq, q = 1, 2, 3 are shown, as well as the corresponding energy
distributions generated by the DNN in the output plane.

In addition, we also designed a spectral DNN containing three DOEs (microrelief height
functions are not shown in the paper for the sake of brevity). For ease of comparison of the
designed DNNs, Table 1 presents the values of the overall classification accuracy and minimum
contrast for the single DOE and the cascades of two and three DOEs. One can see that the
values of the overall accuracy and minimum contrast for the cascade of three DOEs are 97.89%
and 0.20 (problem P1), 89.75% and 0.11 (problem P2), and 93.22% and 0.19 (problem P3). In
comparison with the cascade of two DOEs, the cascade of three DOEs provides better values
of the minimum contrast for problems P1 and P3 and a noticeably higher overall classification
accuracy for problem P2 (the classification accuracy increases by almost 3%). At the same time,
the classification accuracy values for problems P1 and P3 remain almost unchanged. Let us also
note that the addition of a fourth DOE to the cascade leads to only a marginal increase in the
classification accuracy and the contrast.
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Figure 5. Examples of input images: digit “3” (a), object “T-shirt/top” (b), and letter “B” (c) from the
classification problems Pq, q = 1, 2, 3 and generated energy distributions in the target regions for a
DNN consisting of two DOEs.

To conclude this subsection, let us note that the achieved classification accuracy
values are quite high, and even for the case of a single-DOE DNN, they exceed the values
obtained in the other works applying DNNs operating at a single wavelength. For example,
in refs. [10,12,14], the theoretical classification accuracies for the MNIST classification
problem achieved by DNNs consisting of at least five DOEs and working at a single
wavelength amounted to 91.75%, 92.28%, and 91.57%, respectively. These accuracy values
are significantly lower than the value of 96.41% achieved by the designed single-DOE
spectral DNN for the classification problem P1 (MNIST).

Table 1. Overall accuracy and minimum contrast provided by spectral DNNs consisting of one, two,
and three DOEs solving three classification problems in sequential and parallel regimes.

Number
of

DOEs

Classification
Problem

Wavelength
λ (nm)

Sequential Regime Parallel Regime

Overall
Accuracy (%)

Minimum
Contrast

Overall
Accuracy (%)

Minimum
Contrast

One
P1: MNIST 457 96.41 0.17 96.25 0.18
P2: FMNIST 532 84.11 0.10 83.71 0.11
P3: EMNIST 633 90.87 0.13 90.56 0.14

Two
P1: MNIST 457 97.86 0.16 97.38 0.19
P2: FMNIST 532 86.93 0.11 87.96 0.11
P3: EMNIST 633 93.07 0.12 92.93 0.16

Three
P1: MNIST 457 97.89 0.20 97.41 0.21
P2: FMNIST 532 89.75 0.11 89.10 0.13
P3: EMNIST 633 93.22 0.19 92.95 0.17

4.2. Parallel Solution of the Classification Problems

In the previous subsection, we assumed that the input fields corresponding to objects
from different classification problems Pq, q = 1, 2, 3 are generated in the input plane
z = 0 one after another, so that the DNN solves the corresponding classification problems
in a sequential way. In this case, it was sufficient to use one set of 10 target regions
Gk, k = 1, . . . , 10 for all three classification problems [Figure 2a]. Let us now consider
the case of parallel solution of the same classification problems Pq, q = 1, 2, 3. We will
assume that at each moment, three input fields with wavelengths λq are simultaneously
generated in the input plane. These fields correspond to certain objects from the considered
problems of classifying handwritten digits (problem P1), fashion products (problem P2), and
10 handwritten letters (problem P3). Since the problems Pq have to be solved simultaneously,
it is necessary to define three spatially separated sets of target regions Gq,k, k = 1, . . . , 10
corresponding to the problems being solved. The geometry of the target regions used in
the present example is shown in Figure 2b.

Let the images of the objects from the classification problems Pq in the input plane be
defined on 56× 56 grids with a pixel size of d = 10 µm, the centers of which for differ-
ent problems Pq are shifted along the u0 axis by different distances and are located at the



Photonics 2024, 11, 780 12 of 15

points s1 = (−2.56, 0) mm (problem P1), s2 = (0, 0) (problem P2), and s3 = (2.56, 0) mm
(problem P3). These input images are schematically shown in Figure 1. We will assume
that, in contrast to the previous case, the generated images are illuminated by obliquely
incident plane waves with wavelengths λq and the propagation directions “aimed” from
the points sq at the center of the first DOE. As before, in the considered DNN examples, the
distances between the adjacent planes involved in the DNN design problem are the same and
equal 160 mm.

For the considered geometry of parallel solution of the classification problems using
the developed gradient method given in Equations (5), (6), (17)–(21), spectral DNN were
calculated, consisting of a single DOE and cascades of two and three DOEs. As an example,
Figure 6 shows the microrelief height functions of the designed single DOE and cascade
of two DOEs. In Figure 7, the corresponding plots of the classification accuracy and
contrast are shown. The full confusion and energy distribution matrices are shown in the
supplementary materials in Figures S3 and S4. For ease of comparison of the performance
of the designed DNNs operating in the sequential and parallel regimes, the values of the
overall classification accuracy and minimum contrast for the parallel case are shown in the
right part of Table 1. By comparing Figures 4 and 7 and the left and right parts of Table 1,
one can see that the classification accuracy values in the sequential and parallel regimes
are approximately the same. The rate of accuracy increase with increases in the number of
DOEs constituting the DNN is also very similar for the sequential and parallel geometries.

Cascade of two DOEs
DOE 1 (z = 160 mm) DOE 2 (z = 320 mm)

1 mm1 mm

Single DOE
(z = 160 mm)

1 mm

6

3

0

1
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(a) (b)

Figure 6. Microrelief height functions of the designed DNNs consisting of a single DOE (a) and a
cascade of two DOEs (b) for parallel solution of three classification problems at three wavelengths.
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Figure 7. (a) Classification accuracy for single-DOE (solid lines) and two-DOE (dashed lines) DNNs
in the case of parallel solution of three classification problems at three wavelengths. (b,c) Contrast for
single-DOE (b) and two-DOE (c) DNNs. The stars show the minimum contrast values.

5. Discussion and Conclusions

We presented an approach for designing spectral DNNs (cascaded spectral DOEs)
intended for solving several given classification problems at several different wavelengths,
with each classification problem being solved at its “own” wavelength of the incident
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radiation. In this approach, the problem of calculating the spectral DNN was formulated
as the problem of minimizing a functional that depends on the functions of the diffrac-
tion microrelief height of the cascaded DOE, representing the error of solving the given
classification problems at the design wavelengths. Explicit and compact expressions were
obtained for the derivatives of the functional and were used for formulating a gradient
method for the DNN calculation.

Using the proposed method, spectral DNNs were designed for solving the following
three problems: the problem of classifying handwritten digits from the MNIST database at
a wavelength of 457 nm (problem P1), the problem of classifying fashion products from
the Fashion MNIST database at a wavelength of 532 nm (problem P2), and the problem
of classifying ten handwritten letters from A to J (lowercase and uppercase) from the
EMNIST database at a wavelength of 633 nm (problem P3). DNNs were designed for two
geometries, assuming sequential and parallel solution of different classification problems.
In the first (sequential) geometry, the input beams are normally incident, and a single
set of target regions is used for all the classification problems being solved. However,
this configuration can also be applied to the case of parallel processing. In this case,
similarly to ref. [21], it should be assumed that in the optical setup used to implement the
solution of the classification problems, in addition to the DNN, there are additional optical
elements that perform wavelength multiplexing of the incident beams in the input plane
and wavelength demultiplexing of the resulting field distributions in the output plane.
At the same time, the second (parallel) geometry does not require the use of additional
multiplexing and demultiplexing devices due to the spatial separation of input and output
fields with different wavelengths.

The presented numerical simulation results of the designed DNNs demonstrate the
high performance of the proposed approach. In particular, in the parallel regime of solving
the classification problems, a cascade of three DOEs provides the overall classification
accuracy values of 97.41%, 89.1%, and 92.95% for the P1 (MNIST), P2 (Fashion MNIST), and
P3 (EMNIST) problems, respectively. It is important to note that these classification accuracy
values (as well as the values achieved in the sequential regime) exceed the values obtained
in the other works for DNNs designed for a single operating wavelength. For example, in
refs. [10,12,14], the theoretical classification accuracies for the MNIST classification problem
achieved by “single-wavelength” DNNs consisting of at least five DOEs amounted to
91.75%, 92.28%, and 91.57%, respectively. The classification accuracy values obtained
in the seminal paper [10] for the Fashion MNIST classification problem were equal to
81.13% and 86.60% for DNNs consisting of five and ten DOEs, respectively. We do not
present a comparison for the third classification problem (EMNIST), since, to the best of our
knowledge, it has not been considered in the existing works dedicated to the DNN design.

An important problem, which is interesting from both theoretical and practical points
of view, is the investigation of the achievable number of operating wavelengths (spec-
tral channels) of the DNN and of the influence of this number on the DNN performance
(namely, the classification accuracy and contrast). In this regard, it is worth mentioning
recent work [21] in which the design of spectral DNNs was considered for the optical imple-
mentation of different linear transformations at different wavelengths. In the simulations,
the authors claimed to implement more than 180 transformations at different wavelengths;
however, their proof-of-concept experiment was carried out at two wavelengths only for
very simple linear transformations (permutations of 3× 3 matrices), which highlights the
complexity of this problem. Such an investigation for spectral DNNs solving different
classification problems will be the subject of further research.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/photonics11080780/s1, Figure S1: Confusion and energy
distribution matrices for the problems P1, P2, P3 for a single DOE in the sequential geometry.
Figure S2: Confusion and energy distribution matrices for the problems P1, P2, P3 for a cascade
of two DOEs in the sequential geometry. Figure S3: Confusion and energy distribution matrices for

https://www.mdpi.com/article/10.3390/photonics11080780/s1
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the problems P1, P2, P3 for a single DOE in the parallel geometry. Figure S4: Confusion and energy
distribution matrices for the problems P1, P2, P3 for a cascade of two DOEs in the parallel geometry.
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