
Citation: Liu, F.; Shi, Y.; Zhang, S.;

Wang, W. Study on the Detection of

Single and Dual Partial Discharge

Sources in Transformers Using

Fiber-Optic Ultrasonic Sensors.

Photonics 2024, 11, 815. https://

doi.org/10.3390/photonics11090815

Received: 12 July 2024

Revised: 21 August 2024

Accepted: 29 August 2024

Published: 29 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

photonics
hv

Article

Study on the Detection of Single and Dual Partial Discharge
Sources in Transformers Using Fiber-Optic Ultrasonic Sensors
Feng Liu *, Yansheng Shi, Shuainan Zhang and Wei Wang

School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China
* Correspondence: 1182101049@ncepu.edu.cn

Abstract: Partial discharge is a fault that occurs at the site of insulation defects within a transformer.
Dual instances of partial discharge origination discharging simultaneously embody a more intricate
form of discharge, where the interaction between the discharge sources leads to more intricate and
unpredictable insulation damage. Conventional piezoelectric transducers are magnetically affixed
to the exterior metal tank of transformers. The ultrasonic signals emanating from partial discharge
undergo deflection and reverberation upon traversing the windings, insulation paperboards, and
the outer shell, resulting in signal attenuation and thus making it difficult to detect such faults.
Furthermore, it is challenging to distinguish between simultaneous discharges from dual partial
discharge sources and continuous discharges from a single source, often leading to missed detection
and repairs of fault points, which increase the maintenance difficulty and cost of power equipment.
With the advancement of MEMS (Micro-Electro-Mechanical System) technology, fiber-optic ultrasonic
sensors have surfaced as an innovative technique for optically detecting partial discharges. These
sensors are distinguished by their minute dimensions, heightened sensitivity, and robust immunity
to electromagnetic disturbances. and excellent insulation properties, allowing for internal installation
within power equipment for partial discharge monitoring. In this study, we developed an EFPI
(Extrinsic Fabry Perot Interferometer) optical fiber ultrasonic sensor that can be installed inside
transformers. Based on this sensor array, we also created a partial discharge ultrasonic detection
system that estimates the directional information of single and dual partial discharge sources using
the received signals from the sensor array. By utilizing the DOA (Direction of Arrival) as a feature
recognition parameter, our system can effectively detect both simultaneous discharges from dual
partial discharge sources and continuous discharges from a single source within transformer oil
tanks, meeting practical application requirements. The detection methodology presented in this
paper introduces an original strategy and resolution for pinpointing the types of partial discharges
occurring under intricate conditions within power apparatus, effectively distinguishing between
discharges from single and dual partial discharge sources.

Keywords: fiber-optic ultrasonic sensors; transformer fault diagnosis; DOA estimation; single and
dual PD source detection

1. Introduction

In the field of high-voltage power equipment, partial discharge (PD) is often regarded
as a precursor or warning signal of declining insulation performance and impending failure.
This phenomenon indicates that the insulating material or structure inside the equipment
may have been damaged, leading to uneven distribution of electric fields and triggering
charge release in localized areas. Partial discharge can not only accelerate the aging process
of insulating materials, but also further deteriorate the operating condition of the equip-
ment, ultimately leading to equipment failure or even invalidation. Therefore, timely and
accurate monitoring and examination of PD within high-voltage power equipment is of
paramount importance for preventing equipment failures and ensuring the reliable func-
tioning of the power system [1]. Partial discharge frequently arises at imperfections such as
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fissures, voids, and metallic contaminants embedded within the insulating material. Partial
discharge not only produces a multitude of gaseous elements and chemical compounds,
but also causes adverse effects such as localized temperature rise and insulation corrosion.
These phenomena exacerbate the degradation of insulation flaws, potentially perpetuating
a vicious cycle that can severely compromise the integrity of the entire power equipment
and system [2]. Dual PD sources in power equipment represent a more complex scenario
of partial discharge faults. It is often difficult to distinguish simultaneous discharge from
two points from continuous discharge from a single source, which may lead to missed
inspections and ineffective maintenance during fault diagnosis [3]. Repeated inspections
can increase equipment maintenance costs. Accurate judgment of the number of fault
points and timely maintenance can avoid major accidents. Therefore, the multiple points of
measurement and classification of PD within power equipment hold paramount impor-
tance for ensuring safe operation and facilitating optimized maintenance strategies within
the power system [4]. Article [5] utilizes an F-P sensor to communicate through optical
signal transmission. The F-P sensor is installed inside the transformer oil tank, and optical
fibers are used to connect the sensor probe inside the transformer to the external detection
equipment. Optical signals do not interfere with the internal electric field of the transformer.
The built-in sensor probe can more directly capture the partial discharge signals inside
the transformer with higher sensitivity, so it can capture the discharge signals from dual
partial discharge sources. However, it does not distinguish between simultaneous dis-
charge from dual partial discharge sources and continuous discharge from a single partial
discharge source.

To overcome the aforementioned issues, this paper presents a design for an extrinsic
Fabry Perot interferometer (EFPI) ultrasonic sensor that can be installed inside transformer
oil tanks and adapt to changes in insulating oil pressure and temperature [6]. Through
simulation and comparative studies, this sensor is configured as a 4-element regular
tetrahedron array. The sensor array is utilized to estimate the Direction of Arrival (DOA) of
partial discharge ultrasonic signals, and the method of measuring the DOA of ultrasonic
signals from PD sources is employed to identify the discharge types of single and dual PD
sources [7]. Finally, experiments with single and dual PD sources are conducted within the
transformer’s insulating fluid. Based on the waveforms collected by the detection system
and the estimated DOA results of the ultrasonic signals, the effectiveness of the detection
system in distinguishing between single-point continuous discharge and simultaneous
discharge from dual partial discharge sources is verified.

2. Fiber-Optic Ultrasonic Sensor Array
2.1. The Fundamental Principle of Membrane-Type EFPI Fiber-Optic Sensor

The EFPI sensor probe is comprised of a single-mode fiber (SMF), a sillica tube, and a
sillica diaphragm coated with a Ta2O5 and SiO2 composite. The sillica tube is perforated to
allow transformer liquid insulation oil to enter, maintaining the pressure balance inside
and outside the sillica diaphragm. The terminal surface of the optical fiber and the sillica
diaphragm comprises the two reflective planes of the Fabry–Perot interferometer [8]. A
schematic diagram of the EFPI fiber-optic ultrasonic sensor structure is visualized in
Figure 1.
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Figure 1. Configuration of the EFPI sensor.

The light source used in this paper is the ASE light source produced by Tianjin Junfeng
Technology Co., Ltd. (Tianjin, China), which can provide laser light source with wavelength
band of 1510–1590 nm and central wavelength of 1550 nm. The light signal generated by
the light source arrives at the sensor probe via the optical path. At the interface between air
and glass situated at the termination of the fiber’s end surface, a tiny amount of the light is
reflected backwards and enters the SMF initially, while the preponderance of the remaining
light traverses the Fabry–Perot cavity, it undergoes a second reflection off the inner side of
the silica membrane [9]. Through coating technology, the reflectivity of the diaphragm is
adjusted to allow most light to be mirrored back towards the SMF again. The two reflected
light signals travel within the same fiber, leading to the phenomenon of interference. The
mathematical expression for the intensity of the light after interference is:

Ir(λ) =
R1 + R2 − 2

√
R1R2 cos φ

1 + R1R2 − 2
√

R1R2 cos φ
I0(λ) (1)

In the equation, I0(λ) denotes the intensity level of the incident light; λ is the wave-
length characteristic of the light emitter in the detection system; R1 is the reflection coef-
ficient of the SMF terminal surface; R2 is the reflectivity of the inner surface of the sillica
diaphragm; φ is the shift in phase angle existing between the two reflective interfaces,
where φ = 4π∆l/λ; ∆l indicates the path difference of the two interfering light beams re-
flected by the termination of the fiber and the interior boundary of the silica membrane [10].
As demonstrated by Equation (1), the strength of the light that is redirected back into the
SMF after interference is solely determined by changes in the cavity length [11–13]. The
ultrasonic waves emanating from PD induce the sillica membrane of the sensing probe
to vibrate and deform, subsequently affecting the Fabry–Perot cavity length, resulting
in a pattern of interference fringes. By quantifying the intensity of the light interference,
translating it into an electrical impulse, and enhancing it with a photodetector, the ul-
trasonic signal is transformed into a series of electrical pulses. The laser serves as the
intermediary for the exchange of these two signals, ensuring that the detection system does
not produce electromagnetic interference to the power equipment under test. Addition-
ally, the diminutive dimensions of the sensing probe allow for flexible placement inside
the transformer.

Affected by factors such as heat dissipation of power equipment, changes in day–
night power load, and changes in working environment temperature, the temperature of
transformer oil tanks varies within a range of 40◦ to 70◦. To avoid the impact of changing oil
temperature on the initial working point of the EFPI sensor and strengthen the steadfastness
of the detection apparatus, this article adopts a COHERENT DIAMONDC-70A carbon
dioxide laser, a customized beam expansion, collimation, and focusing optical path from
Nanjing Wavelength Photonics Technology Company (Nanjing, China), a six-dimensional
mobile platform, and a MICRON OPTICS sm125 fiber Bragg grating demodulator to form
an EFPI sensor manufacturing platform [14]. The structural diagram is shown in Figure 2,
and the physical hardware platform is shown in Figure 3. Laser welding is used to join the
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SMF and sillica capillary, replacing the traditional method of fixation using epoxy resin,
thereby minimizing the effect of temperature variations on the sensor cavity length due
to glue. However, the fiber core and sillica capillary will still expand and contract due to
temperature changes, affecting the F-P cavity length. Therefore, further improvements to
the materials and manufacturing processes of EFPI fiber-optic ultrasonic sensors suitable
for power transformer operating environments are needed [15].
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2.2. Design of Internal Type Ultrasonic Detection System for Partial Discharge

Typically, the ultrasonic signals emanating from partial discharges in transformers
span a frequency spectrum ranging from 20 kHz to 2 MHz. By investigating the influence
of the EFPI fiber-optic ultrasonic sensor’s probe diaphragm’s thickness and diameter on
its central frequency response, we meticulously crafted a sensor probe that operates at
a central frequency of 30 kHz, ensuring optimal signal clarity amidst background noise.
When tasked with capturing concurrent discharge signals originating from dual partial
discharge sources utilizing a solitary sensor probe, the resulting output waveform, as
captured by the photodetector, is depicted in Figure 4.
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Evidently showcased by the waveform diagram, our custom-designed sensor effec-
tively discerns concurrent discharge patterns emanating from dual PD sources. Beyond
validating the single EFPI sensor’s prowess, this paper advocates a sensor array strategy
aimed at pinpointing both single and dual partial discharge origins. Adhering to phased
array principles, we determined that maintaining element spacing at or below half the
wavelength of the targeted signal curtails energy capture by spurious lobes and boosts
the array’s overall signal reception capacity. Furthermore, to attain a substantial receptive
area and enhance the array’s directional precision, we opted for half-wavelength spacing.
Considering the experimental scenario, where ultrasonic waves traverse transformer in-
sulating oil at 1400 m/s with a central frequency of 30 kHz, we computed a wavelength
approximating 47 mm. To balance between an ample receptive area and signal coherence
across elements, thereby mitigating directional deviations stemming from inconsistent
responses, we refined the element spacing to 20 mm, as documented in [16]. To delve
into the influence of array geometry on partial discharge source localization accuracy, we
formulated two distinct array configurations: a square array and a regular tetrahedral array.
The layouts of these arrays, complete with illustrations of their plan views and spatial ar-
rangements (Figures 5 and 6), introduce θ and φ as placeholders for the azimuthal and polar
angles, respectively, characterizing the ultrasonic signal’s origin from the partial discharge
source. Moreover, the introduction of a three-dimensional rectangular coordinate system
tailored for the sensor array facilitates subsequent discourse and calculations pertinent to
pinpointing partial discharge sources in this paper.
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3. Identification Method for Discharge Types of Single and Dual PD Sources

Direction of Arrival (DOA) estimation involves processing received echo signals to
obtain directional information of signal sources, providing fundamental data support for
subsequent applications such as localization, tracking, etc. It is a crucial technology for
determining the direction of signal sources in research fields like electronics, communica-
tions, radar, sonar, etc. The principle of DOA estimation is primarily based on array signal
processing technology, utilizing arrays composed of multiple receiving antennas to receive
signals from different directions. The MUSIC algorithm constitutes an advanced spectral
estimation technique for signal processing and array analysis. Relying on the orthogonality
between the subspaces of signals and noise, it ascertains the orientation of signals by locat-
ing peaks across the spatial spectrum. For estimating parameters of multiple signal sources
amidst noise, it is especially well-suited. However, employing the MUSIC algorithm for
ultrasonic detection of PD encounters challenges. Primarily, the ultrasonic signal emanat-
ing from PD is a wideband phenomenon, comprising a spectrum of frequencies spanning
a defined range. Furthermore, conventional ultrasonic sensors utilized for partial dis-
charge detection, notably piezoelectric transducers, possess a frequency response range of
30–150 kHz, aligning with the broadband nature of the captured ultrasonic signals, which
similarly encompass a wide spectrum of frequencies. Considering the application of the
MUSIC algorithmic framework, the signal subspace at different frequencies for broadband
signals is different, so the MUSIC algorithm is not suitable for direct application with tradi-
tional piezoelectric transducers. In contrast, the EFPI fiber-optic ultrasonic sensor designed
in this study has an approximate primary frequency of 30 kHz with peak responsiveness,
measuring narrowband signals. It can directly cooperate with the MUSIC algorithm for
direction finding of PD sources. In conclusion, the designed EFPI fiber-optic ultrasonic
sensor has certain advantages in terms of design structure and principle compared to
traditional piezoelectric transducers for direction finding.
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3.1. Sensor Array Reception Model for Partial Discharge Ultrasonic Signals

Based on the statistical model of array signals, assuming that K partial discharge
ultrasonic signals arrive at a sensor array composed of M array elements, the total signal
received by the array sensor can be formulated as:

X(t) = A(θ, φ)S(t) + N(t) (2)

In the expression, X(t) represents the ultrasonic signals from M array elements cap-
tured by the oscilloscope:

X(t) = [x1(t)x2(t) . . . xM(t)]T (3)

S(t) is the signal vector:

S(t) = [s1(t)s2(t) . . . sM(t)]T (4)

N(t) is the interference noise vector:

N(t) = [n1(t)n2(t) . . . nM(t)]T (5)

The matrix A(θ, φ) represents the signal’s steering matrix, encompassing the DOA of
the sound source, where θ indicates the azimuth angle of the PD source, and φ represents
its pitch angle [17].

3.2. The Principle of DOA Estimation for PD Ultrasonic Signals

To compute the covariance matrix for the array-received signal X(t):

R = E
{

X(t)X(t)H
}
= ARSAH + RN (6)

where R embodies the covariance matrix of the array’s received signals, RS and RN rep-
resent the signal’s covariance matrix and the noise’s covariance matrix, individually. The
eigenvalue analysis of the array signal’s covariance matrix R can generate:

R = USΣSUS
H + UNΣNUN

H (7)

In the equation, US embodies the domain of significant signals, UN signifies the noise
subspace, and ΣS and ΣN are their corresponding diagonal arrays. Utilizing the inherent
characteristics of the signal’s dimensional space, it can be concluded that the signal direction
vector A(θ, φ) is orthogonal to the noise subspace UN, i.e.,

AH(θ, φ)UN = 0 (8)

Since the dimensionality of the arrayed signal is finite, the likelihood-based optimiza-
tion for parameter estimation is typically used for the covariance matrix R:

^
R =

1
L

L

∑
n=1

XXH (9)

where L is the sampled duration of the arrayed signal,
^
R represents the likelihood-optimized

estimate of the covariance matrix R, and n represents the acquisition points of the array

signal. Utilizing the spectral factorization of
^
R, the noise-dominated component

^
UN

is extracted. Given the ubiquitous presence of ambient noise, the signal direction vector
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A(θ, φ) and the noise subspace
^
UN are not completely orthogonal. For practical applications,

the DOA estimation relies on optimizing a minimization criterion, i.e.,

(φ, θ) = argminAH(φ, θ)
^
UN

^
U

H

NA(φ, θ) (10)

This is a formula for finding a minimum value, which can be transformed into a
problem of finding a maximum value function through an inverse relationship, i.e.,

SDOA =
1

AH(φ, θ)
^
UN

^
U

H

NA(φ, θ)

(11)

SDOA, standing for Spatial Spectrum Density of Arrival, is an energetic computation
rule. The ultrasonic energy at partial discharge locations significantly exceeds that at
non-discharge points, where only reflected and refracted acoustic waves are present When
it comes to a single PD source, after the algorithm searches through all spatial spectrum
values, it will locate the maximum energy peak [18]. The φ and θ values associated with
this peak signify the partial discharge source’s directional information, including azimuth
and pitch angles This serves as the foundation for DOA estimation [19]. Regardless of
continuous discharge from a single point, the spatial spectrum’s energy extreme point
remains fixed, with a single peak indicating the partial discharge source’s direction. In the
case of two partial discharge sources, the spatial spectrum function displays two energy
peaks. By scanning the directional information of both extreme points, we can obtain the
direction information of both partial discharge sources. Figure 7 provides a schematic
diagram of the DOA estimation process. Through this method, it is possible to effectively
distinguish between the fault types of continuous discharge from a single partial discharge
source and simultaneous discharge from two partial discharge sources.
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4. Experimental Validation and Comprehensive Data Analysis
4.1. Simulation Study on the Impact of Sensor Array Structure on DOA Estimation

In a finite element simulation software, the discharge of dual PD sources in a trans-
former oil tank is simulated. The dimensions of the transformer oil tank are 180 cm in
length, 100 cm in width, and 100 cm in height, filled with No. 25 transformer oil. The
tank material is selected as structural steel with a density of 7850 kg/m3, and the prop-
agation speed of ultrasonic waves in structural steel is set to 5100 m/s. The density of
transformer oil is set to 890 kg/m3, and the velocity at which ultrasonic waves traverse oil is
1400 m/s [20]. Since the ultrasonic signals mainly propagate in the transformer oil, during
the mesh generation, the maximum mesh size is set to one-fifth of the wavelength of the
ultrasonic wave in the oil, and the minimum size is set to one-tenth [21].

Based on the generation principle of PD ultrasonic signals, ignoring the oscillation
process of a single partial discharge, a single-exponential decay oscillation is adopted to
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establish a time-domain simulation model for the sound source. The bubble vibration that
generates the ultrasonic wave is an underdamped vibration, and its functional model is:

fpd = Ae− t/τ sin(2π f t) (12)

A represents the pulse amplitude of the ultrasonic signal, τ is the decay characteristic
time, and f is the frequency of signal fluctuations. Based on previous practical testing
experience, this paper selects an ultrasonic function model with an amplitude A of 1 V, a
central oscillation frequency f of 30 kHz, and a time constant τ of 1/(36,000). The waveform
of the single PD source function is exhibited in Figure 8.
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Two partial discharge points are set inside the oil tank, and the EFPI fiber-optic
ultrasonic sensor arrays adopt a square structure and a regular tetrahedron structure
respectively, as shown in Figure 9.
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Figure 9. Directional measurement layout diagrams of different array models (a) Square array;
(b) Regular tetrahedral array.

The DOA estimation results are shown in Table 1. Experiment 1 represents the
direction-finding results of the square array for the dual partial discharge sources, while
Experiment 2 represents the direction-finding results of the regular tetrahedral array. As
can be seen from the direction-finding angle errors, the regular tetrahedral array is slightly
better than the square array. This is because the four sensors of the regular tetrahedral
array are more evenly distributed in space, and the signal-receiving area is larger than the
square array, resulting in a more balanced coverage area. This uniformity helps reduce the
direction-finding error caused by uneven sensor layout. Additionally, due to the differences
in relative positions and angles between the sensors in the regular tetrahedral array, the
array can more precisely distinguish signals from different directions, leading to higher
angular resolution and improved direction-finding accuracy [22].
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Table 1. Simulation results of DOA estimation for square array and regular tetrahedral array.

Experiment PD
Coordinates/cm

Actual DOA
(θ, φ)/◦

DOA
Estimation

(θ, φ)/◦
Angle Error/◦

1
(−20, 15, −10) (102.6, 132.3) (103, 127) 5.3
(−45, 45, 13) (83.5, 146.4) (88, 141) 7.0

2
(−20, 15, −10) (102.6, 132.3) (103, 129) 5.2
(−45, 45, 13) (83.5, 146.4) (82, 152) 5.8

After determining the spatial structure of the sensor array through simulation experi-
ments, the next step will be to further investigate the actual effectiveness of the detection
system in determining the direction of dual PD sources in transformer oil.

4.2. Simultaneous Discharge Directional Measurement Experiment of Dual PD Sources

Based on the simulation analysis results from the previous section, an EFPI sensor array
with a regular tetrahedral structure was fabricated. Combining with the existing conditions
in the laboratory, a directional measurement study was conducted on the simultaneous
discharge of dual PD sources within a transformer oil tank. The experimental equipment
included an oil tank filled with No. 25 insulating oil, with a length dimension of 200 cm,
a width of 100 cm, and a height of 150 cm, an EFPI fiber-optic ultrasonic sensor array, a
Marx high-voltage generator, and needle-plate electrodes that generate partial discharges.
According to past experience, when the Marx generator produces a high-voltage pulse of
20 kV, it can cause two series-connected needle-plate electrodes to simultaneously break
down and discharge. The experimental setup is shown in Figure 10.
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Figure 10. Test setup of direction finding experiment for dual PD sources.

Taking the lower left corner of the oil tank as the origin of the coordinate system, a
spatial Cartesian coordinate system was established. During the initial experiment, the
two partial discharge sources were positioned at (14 cm, 11 cm, 17 cm) and (25 cm, 20 cm,
30 cm), with spatial angles of (27.8◦, 46.3◦) and (38.7◦, 46.9◦), respectively. After the two
partial discharge sources discharged simultaneously, the sensor array captured the signals.
Through the DOA estimation of the ultrasonic signals, the estimated spatial angles were
(32.6◦, 43.5◦) and (33.5◦, 42.5◦), with angle errors of 5.6◦ and 6.8◦, respectively. Subsequently,
after completing the initial experiment, the dual partial discharge sources were repositioned
at three varying locations within the oil tank, with the objective of assessing the consistency
of DOA estimation across these placements. The experimental results are shown in Table 2
(Data Groups 2–4). As can be seen from the data in the table, the partial discharge source
monitoring apparatus based on the EFPI fiber-optic ultrasonic sensor array proposed in
this paper has high accuracy, with a maximum angle error of 10◦. Considering that only
four sensor elements were used in the experiment, if more sensors are used to form a larger
array with a larger receiving area, the direction-finding accuracy will be further improved.
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Table 2. Experimental results of DOA for dual partial discharge sources in transformer oil.

Experiment PD
Coordinates/cm

Actual DOA
(θ, φ)/◦

DOA
Estimation

(θ, φ)/◦
Angle Error/◦

1
(14, 11, 17) (27.8, 46.3) (32.6, 43.5) 5.6
(25, 20, 30) (38.7, 46.9) (33.5, 42.5) 6.8

2
(34, 35, 13) (75.1, 45.8) (71, 43) 4.9

(20, 70, −17) (103.1, 74.1) (96, 71) 6.4

3
(−28, 80, −14) (99.4, 109.3) (94, 114) 7.2
(−13, 40, 34) (90.7, 74.2) (56, 116) 9.4

4
(22, 78, −1) (90.7, 74.2) (87, 78) 5.3
(−3, 45, 2) (87.5, 93.8) (95, 91) 8.0

4.3. Directional Measurement Experiment of Continuous Discharge from a Single PD Source

After verifying the effectiveness of the PD monitoring apparatus in identifying the
discharge types from dual PD sources, we further conducted an experiment for continuous
discharge detection using a single PD source: a discharge tube was connected to a Marx
generator. By controlling the switch on the low voltage terminal of the Marx generator, and
through multiple experimental trials and summing up experience, we achieved continuous
double discharges in the oil by observing the flash and listening to the sound of the
discharge tube. The arrangement of the experiment is illustrated in Figure 11. Similar
to the experiment with dual partial discharge sources, four different locations were also
selected to verify the overall stability of the EFPI fiber-optic ultrasonic array sensor in
direction finding.
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Figure 11. Test setup of direction finding experiment for continuous discharge of single PD source.

The sensor’s captured waveform is illustrated in Figure 12. Evidently, the EFPI fiber-
optic ultrasonic sensor has high detection sensitivity, and there is no significant overlapping
region between the two waveforms before and after the continuous discharge from a single
partial discharge source. The second waveform is affected by the first discharge waveform,
resulting in a mixed echo region. However, it is still possible to identify the continuous
discharge from a single point by simply examining the detected waveforms. The results of
continuous discharge of single PD source direction finding test are shown in Table 3.
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Table 3. Experimental results of DOA for continuous discharge of single PD Source.

Experiment PD
Coordinates/cm

Actual DOA
(θ, φ)/◦

DOA
Estimation

(θ, φ)/◦
Angle Error/◦

1 (26, 40, 10) (56.9, 78.2)
(52.4, 72.6) 7.2
(52.9, 71.5) 7.8

2 (11, 15, 23) (53.7, 39.0)
(48.5, 42.6) 6.3
(47.3, 43.8) 8.0

3 (28, 39, 8) (54.3, 80.5)
(49.5, 83.9) 5.9
(48.1, 84.7) 7.5

4 (17, 32, 21) (62.0, 59.9)
(58.1, 63.7) 5.4
(57.6, 62.1) 4.9

Upon reviewing the experimental data, it is evident that for the discharge source at
the same location, the DOA angles are similar. This is due to the fact that the sensor array
used in the experiment was manually assembled, and due to the limitations of laboratory
conditions, there may be certain errors. In addition, when estimating the DOA by searching
for the extreme value point in the spatial spectrum, there may also be cases where the peak
is flat, which can lead to certain errors. Overall, for the continuous discharge type from a
single point, the first and second extreme values of the search spatial spectrum have similar
DOA estimation results, close to the same direction. Based on this feature, it is possible to
distinguish between the dual PD source discharge and the continuous discharge type from
a single partial discharge source occurring inside electrical equipment.

5. Conclusions

This paper designs an EFPI fiber-optic sensor array with a regular tetrahedron struc-
ture and develops a partial discharge detection system capable of distinguishing between
single and dual partial discharge sources inside transformers. Compared with traditional
piezoelectric transducers, the EFPI fiber-optic ultrasonic sensor has a compact structure,
high insulation level, and strong resistance to electromagnetic interference in the field. It
can be flexibly arranged inside power transformers, thus having higher sensitivity and
detection accuracy. The array can capture simultaneous discharge phenomena from dual
partial discharge sources, which is a discharge type difficult to detect with traditional
piezoelectric transducers. Combining the DOA estimation results, the system can accu-
rately distinguish between single and dual partial discharge sources, meeting the needs of
engineering applications. This detection system allows equipment maintenance personnel
to arrange precise maintenance plans, avoiding potential safety hazards caused by missed
inspections and repairs. Power equipment manufacturers can also utilize this maintenance
information to optimize product design. In summary, the detection system and discharge
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type identification method proposed in this paper provide a novel approach for online
monitoring of PD activity in transformer systems, especially for the effective identification
of simultaneous discharge faults from dual partial discharge sources that are difficult to de-
tect inside transformers. This method offers a new solution for detecting partial discharge
types under complex conditions.
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