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Abstract: With the continuous development of science and technology, laser ranging technology
will become more efficient, convenient, and widespread, and it has been widely used in the fields of
medicine, engineering, video games, and three-dimensional imaging. A time-of-flight (ToF) camera is
a three-dimensional stereo imaging device with the advantages of small size, small measurement
error, and strong anti-interference ability. However, compared to traditional sensors, ToF cameras
typically exhibit lower resolution and signal-to-noise ratio due to inevitable noise from multipath
interference and mixed pixels during usage. Additionally, in environments with scattering media,
the information about objects gets scattered multiple times, making it challenging for ToF cameras to
obtain effective object information. To address these issues, we propose a solution that combines ToF
cameras with single-pixel imaging theory. Leveraging intensity information acquired by ToF cameras,
we apply various reconstruction algorithms to reconstruct the object’s image. Under undersampling
conditions, our reconstruction approach yields higher peak signal-to-noise ratio compared to the
raw camera image, significantly improving the quality of the target object’s image. Furthermore,
when ToF cameras fail in environments with scattering media, our proposed approach successfully
reconstructs the object’s image when the camera is imaging through the scattering medium. This
experimental demonstration effectively reduces the noise and direct ambient light generated by
the ToF camera itself, while opening up the potential application of ToF cameras in challenging
environments, such as scattering media or underwater.

Keywords: time-of-flight; computational correlation imaging; scattering media; compressed sensing;
untrained neural network

1. Introduction

Three-dimensional (3D) imaging and multi-pixel range-finding constitute some of the
most important and innovative fields in the science and engineering of image sensors in
the past decades [1], where the time-of-flight (ToF) camera is one of most-used 3D imag-
ing techniques, due to its characteristics of a miniaturized structure, low cost, and direct
readout of depth images [2]. Though the principle of the ToF has been proposed by Galileo
since the 17th century, the first generation of ToF cameras was invented after the important
parameters for the cameras’ performance were precisely defined in the early 1990s [3]. With
the development of various supporting techniques, many cost-efficient solutions to the
ToF cameras have been implemented, and some limitations have been resolved in different
imaging scenarios, such as transient imaging [4–6], multi-view stereo methods [7], calcula-
tion of the 3D motion speed of an object [8], and the transient capture of light [6,9]. In recent
years, some new methods were proposed to acquire 3D images by combining the ToF meth-
ods with single-pixel imaging [10–12]. Generally, the ToF measurement techniques can be
mainly classified in two categories, i.e., so-called direct-ToF (D-ToF) and indirect-ToF (I-ToF),
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according to the measurement methods of the round-trip time of optical signals [13,14],
where both pulsed and continuous wave modulated light sources in each technique are
most commonly used [15]. For example, Jeremias and Brockherde’s pioneering work on
electronics-based sensors for 3D imaging is a pulsed I-ToF technique [16], while Buttgen’s
group gave a solution for high-precision 3D imaging in real-time used a continuous wave
modulated I-ToF technique [17]. Additionally, single photon avalanche diodes (SPADs)
are detectors capable of capturing individual photons with very high time-of-arrival res-
olution, in the order of a few tens of picoseconds. By reason of their picoseconds timing
resolution, SPADs have become a natural candidate for D-ToF techniques [18–21] since
it was first proposed by Albota and Entwistle in 2002 [22]. Compared with the other 3D
imaging methods, such as structured light 3D imaging [23–27] and the binocular vision
3D imaging [28], ToF cameras can acquire both the depth and intensity information of a
scene in real time [29], which greatly enhance its application prospects. Therefore, several
ToF cameras have been widely applied in both some commercial and research fields, such
as multi-media, consumer electronics, security/surveillance [30], super-resolution imag-
ing [31,32], non-line-of-sight imaging [33], and autonomous driving [34]. However, though
great progress has been made for ToF cameras, the low pixel resolution and signal-to-noise
ratio (SNR) in these applications are still bottlenecks that have not been broken through so
far [35].

Computational ghost imaging (CGI), which was theoretically proposed by Sharpio [36]
more than a decade ago, is based on ghost imaging (GI) modality [37,38], where only a
detection beam actually exists and is captured by a single-pixel bucket detector in the de-
tection plane, while the optical intensity distribution in the reference beam can be obtained
by data processing. Therefore, a ghost image of a target object can be reconstructed by
the intensity (fluctuation) correlation between the bucket and reference signals, just like a
traditional GI does, which is even also available in harsh environments such as atmospheric
turbulence [39] or scattering media [40], where traditional imaging methods do not work.
Fortunately, given the success of the compressed sensing (CS) [31,41–43] algorithm in GI,
CS is a naturally suitable algorithm for computational ghost image reconstructions for
sparse targets, because CGI has the same core mechanics with GI [44–51]. Due to the
sparsity and noise in the intensity and depth maps acquired by the ToF sensor, we choose
to use CS algorithms to process these maps for their good denoising performance and high
resolution at low sampling rates. Though CS provides an alternative choice for improving
the performance of CGI by its various modified image reconstruction algorithms, its appli-
cation is more or less limited by the assumption of strong sparsity and the reconstruction
process [52–54]. The emergence of deep learning (DL) [33,55–58] provides an opportunity
to eliminate the constraint of sparsity to recover the images by data trained and untrained
strategies at an ultralow sampling rate (SR) [58–62]. Meanwhile, a variety of novel com-
putational 3D imaging techniques, including those based on the ToF and SPI, all gave a
promising potential applications in different imaging fields [12,63–68].

In this paper, in a single-pixel imaging (SPI) experiment based on structure detection,
a ToF camera is used as a bucket detector, and different algorithms are used to reconstruct
the likeness of the target object based on the intensity information from the ToF sensor, and
compare it with the original image output from the ToF camera (ToF image). It is found
that the scheme based on TVAL3 algorithm and untrained DL can obtain higher quality
images at a very low sampling rate. In addition, we have experimented with ToF cameras
by scattering media, and the SPI-based CS and DL methods can recover images clearly,
while the normal ToF methods cannot. We believe that the ToF camera may be suitable
for multi-noise and complex environments, such as scattering media or underwater in
similar schemes.



Photonics 2024, 11, 821 3 of 16

2. Basic Theories and Principles
2.1. Ranging Principle of ToF Cameras

The time-of-flight camera is a 3D imaging technology that uses the time difference of
light beam reflection from the surface of objects to measure distances. It has advantages
over traditional cameras in terms of measuring object distances because it can perform
measurements regardless of lighting conditions. The modulation of the light source in
time-of-flight cameras can be categorized into pulse modulation and continuous wave
(CW) modulation. Pulse modulation is a technique that converts analog signals into digital
signals, while continuous wave modulation is a modulation technique that adjusts the am-
plitude, frequency, phase, and other characteristics of the carrier signal using the frequency
of the modulation signal, thereby enabling the process of information transmission.

The schematic diagram in Figure 1 illustrates the working principle of CW modulation.
When using the continuous wave measurement method, it is necessary to utilize phase de-
modulation to accurately calculate the flight time of photons in space. Phase demodulation
involves the emission of modulated continuous wave signals by the illumination module.
These signals reach the object being measured and reflect back to the receiving module.
The receiving module utilizes a demodulation signal identical to the modulation signal
from the light source to complete the demodulation process, thereby extracting the phase
variations of the light signal. We use the most commonly used continuous sinusoidal wave
modulation, as shown in Figure 1, to derive the measurement principle of the continuous
wave modulation mode.

Figure 1. Flight time measurement in continuous sinusoidal wave modulation mode.

Let us assume that the emitted sinusoidal signal s(t) can be represented by Equation (1),

s(t) = a · (1 + sin(2π f t)), (1)

In Equation (1), where a represents the amplitude of the transmitted signal and f is
the frequency, after a time period ∆t, the received signal has an amplitude of A. Taking
into account that the majority of received photon signals are superimposed on the image,
we need to introduce an offset value B to obtain the actual measurement value. r(t) can be
represented by Equation (2),

r(t) = A · (1 + sin(2π f (t − ∆t))) + B,
= A · (1 + sin(2π f t − ∆ϕ)) + B.

(2)

In Figure 1, the four sampling time intervals are equal, all denoted as T
4 . Let us

assume that t1 = 0, t2 = T
4 , t3 = T

2 , t4 = 3T
4 . Based on these four sampling times, we can

establish four sets of equations: r1, r2, r3, and r4. By performing calculations on these four
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sets of equations, we can determine the amplitude A and phase delay ∆ϕ of the received
sinusoidal signal,

∆ϕ = arctan
(

r3 − r4

r1 − r2

)
, (3)

A =
1
2

√
(r1 − r2)

2 + (r3 − r4)
2. (4)

Using the four integral time accumulated charges S1, S2, S3 and S4 to denote ∆ϕ and A,

∆ϕ = arctan
(

S3 − S4

S1 − S2

)
, (5)

A =
1
2

√
(S1 − S2)

2 + (S3 − S4)
2. (6)

The offset B can be expressed as

B =
1
4
(S1 + S2 + S3 + S4), (7)

Based on the calculated phase values ∆ϕ, the distance information can be expressed in
Equation (8),

d =
c

4π f
∆ϕ. (8)

The amplitude A and offset B of the modulated light in a ToF camera measurement
system affects the accuracy of the measurement, and the values of A and B indirectly
reflect the accuracy of the depth measurement, so the accuracy of the measurement can be
approximated as Equation (9),

σd =
c

4
√

2π f
·
√

A + B
cd · A

, (9)

Here, cd is the modulation contrast. It can be seen from the principle that the measure-
ment accuracy of the time-of-flight camera does not change with the measurement distance,
so the ToF depth camera is also more resistant to interference.

2.2. Untrained Neural Network Architecture

In the field of single-pixel imaging (SPI), correlation algorithms or compressed sens-
ing (CS) algorithms are typically used to reconstruct images of target objects. However,
traditional methods often struggle to achieve high-quality reconstruction at low sampling
rates, and the numerous iterative operations significantly increase both imaging time and
computational cost. Data-driven deep learning (DL) algorithms have shown promise
in addressing these challenges. Unfortunately, issues such as the difficulty of obtaining
sufficient training data, limited model generalization, and lengthy training times remain
significant hurdles. To overcome these challenges, computational imaging schemes based
on the concept of deep image prior (DIP) have been proposed. These schemes integrate
the physical processes of SPI into untrained neural networks to generate images of target
objects, offering notable advantages in terms of generalizability and interpretability. In
this approach, only the detected one-dimensional barrel signals are fed into the neural
network, which then outputs optimal reconstruction results. This process adheres to the
strict constraints imposed by the interactions between the neural network and the physical
processes of SPI during image reconstruction. The image reconstruction process can be
represented by Equation (10),

Rθ∗ = arg min
θ

∥PiRθ(z)− yi∥2, (10)
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Here, Pi is the modulation mask pattern, yi is the measured one-dimensional bucket
signal, T̂ = Rθ(z) is the output of the neural network, and ∥PiRθ(z)− yi∥2 denotes the
error (loss function) between the actual measured and bucket signals estimated by the
network. In addition, a physically enhanced DL framework for SPI is proposed to combine
data-driven DL-based and physical model-driven untrained neural networks in order to
further improve the generalization of the network to solve the computational imaging
inverse problem.

Compared with traditional iterative algorithms, data-driven DL-based reconstruction
methods have been proven to be effective in avoiding huge computational burden and
obtaining high-quality reconstruction results. Unfortunately, however, it is usually difficult
to obtain sufficient training data in many tasks, and the limited generalization ability of the
model and the long time for model training become a lingering haze. Recently, untrained
convolutional neural network schemes based on DIP have attracted great attention in
computational imaging, which is able to make an appropriate compromise between image
quality and computational cost. DIP states that by stopping the network optimization in
advance, the neural network can use its structure to solve the imaging inverse problem
without the need of a large amount of data used to train the neural network. This feature
compensates for the shortcomings of existing data-driven DL.The reconstruction process of
DIP can be expressed as the function shown in Equation (11),

Rθ∗ = arg min
θ

∥∥Rθ(z)− O′∥∥2, Õ = Rθ∗(z), (11)

In Equation (11), O′ is the degraded model of the target object, Õ is the image recovered
by the untrained neural network, and z is a fixed random vector, arg min

θ
represents the

process of solving the minimization problem. Rθ is a convolutional neural network defined
by a set of weights and a bias parameter Θ. Specifically, suppose that given a randomly
initialized convolutional neural network, a function space is also defined. Assuming that
the image of the object we are looking for is in this space, the process of reconstructing the
image through the network is the process of updating the weights in the neural network
and finding the appropriate parameter θ∗ ∈ Θ.

Inspired by the DIP and SPI approaches, we integrate the imaging physics model of
ToF into a randomly initialized untrained convolutional neural network to obtain high-
quality reconstructed images by interacting with the imaging physics process during
network optimization, which allows for low time consumption in data preparation and
image reconstruction. In our approach, the reconstruction formula of the target image can
be represented by Equation (12),

Rθ∗ = arg min
θ

∥∥∥HjRθ(z)− y
′t
j

∥∥∥2
+ ξT[Rθ(z)]. (12)

As we mentioned, the input z to the neural network can be a blurred image obtained us-
ing conventional reconstruction methods, and HjRθ(z) denotes the inner product between
each modulation mask and the target object image. During the network iteration process,
the network will find the appropriate parameter θ∗ to optimize its network structure.
ξT[Rθ(z)] is the TV regularization constraint that improves the quality of the reconstructed

image, and ξ is the intensity. In Equation (12),
∥∥∥HjRθ(z)− y

′t
j

∥∥∥2
denotes the error between

the experimentally measured bucket signals and the bucket signals estimated by the un-
trained neural network, which we use as the loss function of the network. According to
Equation (12), the neural network weights are continuously updated during the iterative
operation to minimize the error between the bucket signals. When the error is smaller, the
estimated bucket signal is closer to the real bucket signal, and the network output is closer
to the target object image.

The image reconstruction process of our proposed method is shown in Figure 2a,
where the input image we use is the result of TVAL3 reconstruction. This is because
the TVAL3 reconstructed image introduces the physical prior of the target object image,
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which will accelerate the convergence of the network. When the input image does not
have physical prior information, the best reconstructed image can be obtained with the
minimum number of iterations. Figure 2b shows the reconstructed image during iterations
of the network for different sampling rates and learning rates.

Figure 2. Schematic diagram of the image reconstruction using a neural network. (a) Schematic dia-
gram of network operation, (b) images reconstructed by the neural network with different sampling
rates and different number of iterations.

3. Experimental Scheme and Analysis of Results
3.1. Introduction to the Experimental Setup and Experimental Principles

The SPI imaging scheme is shown in Figure 3, in which a target object illuminated by
a light beam is imaged on a DMD, and then one of the light beams reflected from the DMD
is captured by a barrel detector through a collection lens. As an indirect imaging method,
the image can be retrieved by a correlation calculation between the modulation matrix and
the actual captured single-pixel optical signal carrying information about the target object.
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Figure 3. The schematic diagrams of SPI.

We assume that the pixelated target object image is T(x, y), which contains a total of
N = x · y pixel points. In SPI, a series of modulation patterns Pi(x, y) are usually loaded
onto the DMD used to spatially modulate the beam carrying the object information, where
i = 1, 2, ..., N represents the number of modulation patterns. The DMD-modulated one-
dimensional light intensity signal collected by the barrel detector can be denoted as yi,
which corresponds to the result of the object image being modulated by a certain pair of
scattering patterns, a process that can be mathematically represented as

yi =
∫
x

∫
y

Pi(x, y) · T(x, y)dxdy, (13)

The barrel signal for all submeasurements can be expressed as

S = PT. (14)

We can use the known modulation pattern P and the detected barrel signal S to solve
for the image of the target object. The signal can be expressed in terms of normalized
intensity correlation as

g(2)(x, y) =
(1/N)

N
∑

i=1
SiPi(x, y)

(1/N)
N
∑

i=1
Si(1/N)

N
∑

i=1
Pi(x, y)

, (15)

Here, S is the ith(i = 1, 2, · · · , N) single-pixel signal, Pi(x, y) is the ith modulation
scatter, and x and y are the row pixel coordinates and column pixel coordinates of each
modulation base of the DMD.

It is well known that ToF cameras can simultaneously output intensity and depth data
carrying information about the target object, both of which are derived from the number of
photons received by the ToF sensor in a certain period of time. Their difference is that the
intensity information can be obtained as directly as by using a detector, while the depth
map is obtained by calculating the phase difference of different phase signals through a
complex mathematical operation in Equation (8). However, they are essentially determined
by the statistics of the number of photons. Therefore, when the ToF camera is used as a
barrel detector, both intensity information and depth information can be used in the SPI
system of Figure 3. That is, by replacing the barrel signal intensity information with depth
information, Equation (15) still holds, and we have published this result in [69].

In order to verify the feasibility of the proposed scheme, based on the experimental
setup in Figure 3, a ToF camera was used for the SPI experiments; we used a 320 × 240 pixel
ToF camera (OPT8241, Texas Instruments, Dallas, TX, USA) instead of a barrel detector, and
inserted a total reflective prism (TRP) between the DMD and the detector to regulate the
optical path, and the rest of the experimental setup was similar to that of the conventional
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SPI in Figure 3. In Figure 4, a flat object with an infrared light source at a wavelength
of 850 nm is imaged with an imaging lens with a focal length of 50 mm on the surface
of the optical unit of a DMD (DLP LightCrafter 4500, Texas Instruments), in which an
all-reflecting prism is inserted in the optical path to accommodate the adjustment of the
detection system. One of the DMD reflected beams carrying the coded pattern information
is captured by a ToF sensor, which is designed to be synchronized with the light source
of the ToF camera. The intensity information and depth information output from the ToF
camera are calculated inside the camera.

Figure 4. The schematic diagrams of SPI based on a ToF camera.

3.2. Experimental Results and Cause Analysis

Our experiments are conducted under indoor conditions with ambient light to recover
the target object to be measured, using the scheme shown in Figure 4 for the acquired
ToF intensity information. The reconstructed target shown in Figure 5a is an object with a
pixel value of 32 × 32 size. In order to highlight the superiority of our proposed method,
Figure 5b shows the ToF intensity map obtained directly with the utilized ToF camera,
which has a noticeable background noise and lower contrast compared to the original
image in Figure 5a. In our experiments, whichever algorithm is used, the bucket signal is
obtained by summing the intensities of all pixels in the region of interest of the ToF sensor
and synchronizing them with the Hadamard base projected onto the DMD. Four commonly
used image reconstruction algorithms are selected including CGl algorithm, Base Tracking
(BP) algorithm, Total Variation Augmented Lagrangian Alternating Direction (TVAL3)
algorithm and DL algorithm for recovering the images in the following experiments. As
shown in Figure 5, the images are reconstructed at sampling rates of 6.25%, 12.5%, 18.75%,
25%, 31.25% and 37.5%.

Figure 5. Experimental results of imaging reconstruction using intensity images at different SRs.
(a) Target object, (b) ToF image, (c–f) the recovered images by CGI, BP, TVAL3, and DL. The SRs from
left to right is 6.25%, 12.5%, 18.75%, 25%, 31.25% and 37.5%.
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In Figure 5, When the sampling rate is 6.25%, BP reconstructs the image of the object,
which can hardly be seen, only some streaks can be seen, while CGI, and TVAL3 algorithms
can see the outline of the object image vaguely, and the untrained DL reconstruction based
method can see the outline information of the object, and the reconstruction effect is better than
the other three algorithms. When the sampling rate is 12.5%, the CGI and TVAL3 algorithms
can see the more blurred contour information, and the background noise is reduced, and the
BP algorithm appears to have blurred contours, but the background noise is still large, which
affects the object information. The untrained DL reconstruction-based method was able to
reconstruct a clearer image of the object with less background noise. When the sampling rate
is 18.75, the CGI, BP, and TVAL3 can all see a clearer image of the object to be measured, but
it is clear that the image quality obtained using CGI and TVAL3 is higher than that of BP,
and the effect of untrained DL is higher than that of the other three algorithms. When the
sampling rate is 25%, the background noise of the images obtained by CGI, BP, and TVAL3
algorithms still exist, but it is obvious that the reconstruction of the object becomes clearer,
and it can be seen that the reconstruction effect of CGI and TVAL3 is still better than that of
BP, and the reconstruction results from the DL are clearer than the object’s image. When the
sampling rate is 37.5%, the CGI, BP, and TVAL3 are also able to obtain the reconstructed object
image clearly, and the background noise information is greatly reduced, and the reconstructed
image results become better with the increase in the sampling rate.

In order to quantitatively assess the effectiveness of different methods for reconstruct-
ing images, we calculated the peak signal-to-noise ratio (PSNR) of each reconstructed image
with respect to the original image, which is a commonly used metric for evaluating the
quality of retrieved images, and is given by the following equation:

PSNR = 10 × log10(
(2n − 1)2

MSE
), (16)

MSE =
1

mn

m−1

∑
i=1

n−1

∑
j=0

(T̃(i, j)− T(i, j))2, (17)

Here, T̃ is the reconstructed image and T is the original image. According to Equation (16),
Figure 6 shows the quantitative analysis of the PSNR of the reconstructed images using the
four methods at different sampling rates. Similar to the results observed by the naked eye, the
untrained neural network method shows the best performance at all sampling rates, especially
at low sampling rates, and is also robust to noise, which helps to reduce the number of samples
required for actual imaging in order to reduce the memory footprint, as well as possible
damage to the optics.

Comparison of PSNR values of images reconstructed by different reconstruction
algorithms with respect to sampling rate is shown in Figure 6. It is clear that the PSNR
value of each reconstruction algorithm increases with the increase in the sampling rate, and
the DL reconstructed image has the highest PSNR value at the same sampling rate. We
calculate the PSNR value of the original intensity image of the camera to be 8.51 dB, and
when the sampling rate is 6.25%, the PSNR values of CGI and BP are smaller than those of
the original intensity image, and the PSNR value of TVAL3 is 10.81 dB, which is 1.27 times
that of the original map, while the PSNR value of DL is 11.42 dB, which is 1.34 times that of
the original intensity image. When the sampling rate is 12.5%, the PSNR value of CGI is
9.26 dB, which is 1.09 times that of the original map, the PSNR value of TVAL3 is 10.99 dB,
which is 1.29 times that of the original map, and the PSNR value of DL is 12.55 dB, which is
1.48 times that of the original intensity image. When the sampling rate is 25%, the PSNR
value of TVAL3 is 11.74 dB, which is 1.38 times that of the original map, and the PSNR
value of DL is 12.99 dB, which is 1.53 times that of the original intensity image. Thus, by
combining the SPI-based scheme with a ToF camera, the noise, which has a large impact on
image quality due to ambient light and detector defects, can be suppressed, resulting in
higher quality intensity image.
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Figure 6. Plots of the PSNRs of the reconstructed intensity images versus the SRs by different
algorithms. The black, red, blue, and green lines denote the PSNRs by CGI, BP, TVAL3, and DL.

Because the ToF camera will be affected by the scattering medium when imaging
through the scattering medium, resulting in a degradation of image quality, it cannot
work properly under conditions with scattering medium such as underwater and haze.
According to the SPI, it has the advantages of strong anti-interference ability, which can
well resist the influence of atmospheric turbulence and scattering medium on the imaging
quality. When the ToF camera fails in the environment with scattering medium, in order
to improve the quality of the ToF camera in imaging through scattering medium, our
proposed scheme of combining the ToF camera and SPI is applied to the camera imaging
through scattering medium. In order to test whether the proposed scheme can image
an object through a scattering medium, we inserted a 0.5 mm opaque plastic sheet as a
scattering medium in the optical path between the ToF camera and the TRP in Figure 4, so
that the light beam illuminated on it is scattered, and other experimental conditions remain
unchanged. The data collected by the ToF camera can be divided into the information
about the object affected by the scattering medium and the information about the object
not affected by the scattering medium. The imaging of the target object information in the
ToF camera can be expressed as

S(x) = αS(x) + SD(x), (18)

Here, αS(x) is the information distribution of the reflected light of the object, SD(x)
is the information distribution of the transmitted light of the object, α(0 < α < 1) is
the transmittance ratio of the scattering medium, and other experimental conditions
remain unchanged.

Figure 7a is the intensity image of the target object obtained directly by using the ToF
camera through the scattering medium, and we cannot see the outline information of the
object at all. Figure 7b–e shows the images recovered by using the four algorithms of CGI,
BP, TVAL3, and DL with intensity information through the scattering medium at different
sampling rates. When the sampling rate is 6.25%, the CGI, BP, and TVAL3 algorithms that
reconstruct the image of the object can only see some fuzzy streaky blocks, but compared
with the intensity image directly obtained by using the ToF camera through the scattering
medium, the three algorithms of CGI, BP, and TVAL3 improve the quality of the image
through the scattering medium, whereas the untrained DL-based method is able to see the
contours of the object and can recover better target images than the other three methods.

When the sampling rate is 18.75, CGI, BP, and TVAL3 are able to see a clearer image
of the object to be measured, but it is clear that the quality of the images obtained using
CGI and TVAL3 is higher than that of BP, and the untrained DL is more effective than
the other three algorithms. When the sampling rate is 25%, the background noise of the
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images obtained by CGI, BP, and TVAL3 algorithms still exists, but it is obvious that the
reconstruction of the object becomes clearer, and it can be seen that the reconstruction effect
of CGI and TVAL3 is still superior to that of BP, the reconstruction result from DL is more
clearer than the object, and the quality of the image becomes better with the increase in the
sampling rate. When the sampling rate is 37.5%, CGI, BP, and TVAL3 are also able to obtain
the reconstructed object’s image clearly, although the effect of BP is still not as good as that
of CHI and TVAL3, but the background noise information is reduced significantly. The
reconstructed image effect of the untrained DL is intuitively much larger than the other
three algorithms, and the reconstructed image quality is better.

Figure 7. Experimental results of reconstruction using the intensity images through the scattering
media at different SRs. (a) ToF image, (b–e) the recovered images by CGI, BP, TVAL3, and DL. The
SRs from left to right are 6.25%, 12.5%, 18.75%, 25%, 31.25%, and 37.5%.

Figure 8 shows a comparison of the PSNR of the four methods for reconstructing an
image through a scattering medium using intensity information at different sampling rates.
According to our proposed scheme, when the sampling rate is 12.5%, the PSNR of the
reconstructed image using PSNR value of the reconstructed image by CGI algorithm is
8.21 dB, the PSNR value of the reconstructed image by BP algorithm is 8.22 dB, the PSNR
value of the reconstructed image by TVAL3 algorithm is 10.31 dB, and the PSNR value of
the reconstructed image by DL algorithm is 12.14 dB. When the sampling rate is 37.5%, the
PSNR value of the reconstructed image using CGI algorithm is 9.67dB, the PSNR value of
the reconstructed image using BP algorithm is 9.06dB, the PSNR value of the reconstructed
image using TVAL3 algorithm is 12.28dB, and the PSNR value of the reconstructed image
using DL algorithm is 14.35dB. Overall, as the sampling rate increases, the PSNR also
increases, and our proposed method of combining SPI and ToF can effectively suppress the
interference of the scattering medium on the target object and realize the reconstruction of
the target object image.

Gaussian noise is a random noise whose distribution follows a normal distribution
(Gaussian distribution). In image processing, we can add Gaussian noise to an image
to simulate a real-world noise situation. Gaussian noise is commonly used to test and
evaluate the robustness of image processing algorithms. By adding noise to an image, we
can check the algorithm’s tolerance to noise and its effect on image quality. In order to
highlight the ability of our proposed method to improve the resolution and image quality
of the ToF camera, and also to demonstrate that our proposed method is also robust to
the internal noise of the ToF camera and the environmental noise, we add Gaussian noise
to the intensity information acquired by the ToF camera and process the image using our
proposed scheme.
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Figure 8. Plots comparing the PSNR and SRs for the reconstruction of intensity images through
scattering media using different algorithms.

The experimental results of adding Gaussian noise are depicted in Figure 9, where we
continue to employ four algorithms for image reconstruction at sampling rates of 6.25%,
12.5%, 18.75%, 25%, 31.25%, and 37.5%, respectively. Figure 9a displays the original inten-
sity image acquired directly from the ToF camera without the addition of Gaussian noise,
while Figure 9b exhibits the intensity image captured with Gaussian noise incorporated.
Observing Figure 9c–f, it becomes apparent that CGI, BP, and TVAL3 only discern a blurred
representation of the object when the sampling rate is below 12.5%. However, the untrained
DL algorithm adeptly restores the object’s image, even at substantially lower sampling
rates, surpassing the image quality of the Gaussian noise-introduced Figure 9. At a 25%
sampling rate, CGI, BP, and TVAL3 successfully reconstruct the object’s image, although the
DL algorithm outperforms them, albeit not to the same extent as at lower sampling rates.
Nonetheless, compared to the Gaussian noise-inflicted image, the object’s image is clearly
discernible. Figure 10 presents the PSNR values of the reconstructed object images utilizing
the four different algorithms after Gaussian noise addition. The PSNR values indicate
an increase with higher sampling rates, with the untrained DL algorithm consistently ex-
hibiting superior performance at equivalent sampling rates. The introduction of Gaussian
noise further substantiates the efficacy of our proposed approach. By amalgamating the
SPI-based scheme with a ToF camera, we mitigate noise’s substantial impact on image
quality, thereby yielding higher-quality images.



Photonics 2024, 11, 821 13 of 16

Figure 9. Experimental results of reconstruction using the intensity images through the scattering
media at different SRs. (a) ToF image, (b) ToF image with added Gaussian noise. (c–f) the recovered
images by CGI, BP, TVAL3, and DL. The SRs from left to right are 6.25%, 12.5%, 18.75%, 25%, 31.25%,
and 37.5%.

Figure 10. Plots comparing the PSNR and SRs for the reconstruction of intensity images through
scattering media using different algorithms.

4. Conclusions

In conclusion, we have successfully demonstrated a new application of ToF cameras as
SPI bucket detectors in the presence of ambient light and scattering media. Our approach
leverages the intensity information from ToF cameras, and applies four different algorithms
to reconstruct images of target objects. Our findings show that this intensity information
can be effectively used in ToF-based SPI systems. Specifically, CGI, BP, and CS algorithms
have proven effective in reconstructing images of test objects. Additionally, untrained
deep learning networks show significant advantages in ultra-low sampling conditions,
achieving an image recovery success rate of 6.25%, well below the Nyquist limit. This
proof-of-concept demonstration highlights the potential of ToF cameras in challenging
environments such as haze, rain, snow, and underwater conditions. Our study not only
expands the applications of ToF cameras, but also explores the potential for integrating
them into other imaging systems.
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