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Abstract: In free‑space optical communication (FSOC) systems, atmospheric turbulence can bring
about power fluctuations in receiver ends, restricting channel capacity. Relay techniques can divide
a long FSOC link into several short links to mitigate the fading events caused by atmospheric turbu‑
lence. This paper proposes a Reinforcement Learning‑based Relay Selection (RLRS) method based
on Deep Q‑Network (DQN) in a FSOC system with multiple transceivers, whose aim is to enhance
the average channel capacity of the system. Malaga turbulence is studied in this paper. The presence
of handover loss is also considered. The relay nodes serve in decode‑and‑forward (DF). Simulation
results demonstrate that the RLRS algorithm outperforms the conventional greedy algorithm, which
implies that the RLRS algorithm may be utilized in practical FSOC systems.

Keywords: Malaga turbulence; free‑space optical communication; relay; decode‑and‑forward;
reinforcement learning

1. Introduction
Due to the advantages of high bandwidth, large capacity, and no frequency autho‑

rization, free‑space optical communication (FSOC) technology is highly favored by various
communication transmission systems [1–3]. However, in ground transmission scenarios, it
suffers from atmospheric turbulence fading. The atmospheric turbulence can introduce se‑
vere events including wavefront aberration, power scintillation, and beam wander, which
degrade the channel capacity of FSOC systems. To address this limitation, relay technol‑
ogy can be applied in FSOC systems, enhancing systemperformance by dividing long links
into several short links [4–6], where short links have gentler conditions. In addition, relay
technology can also eliminate the requirement for unobstructed transmission between the
transmitting and receiving nodes [7–9].

Ref. [10] proposes a relay selection algorithm thatminimizes the bit error rate (BER) of
the system and analyzes the performance of various strategies under different atmospheric
turbulence conditions, pointing errors, relay numbers, and distance configurations. Addi‑
tionally, Ref. [11] presents a link scheduling algorithm to improve bandwidth utilization
and reduce the number of idle FSOC links. Ref. [12] proposes a distributed relay selec‑
tion algorithm, where each relay node transmits data only if its signal‑to‑noise ratio (SNR)
exceeds a threshold value, thereby minimizing the system’s BER. In Ref. [13], a relay selec‑
tion scheme is proposed to improve diversity gain when the buffer data of the relay node
is limited. Reference [14] indicates that by optimally configuring the number and spatial
positioning of relay nodes, the bit error rate (BER) can be significantly reduced, thereby
enhancing communication efficiency and reliability in turbid water environments. How‑
ever, as the number of relays increases, traditional model‑based relay selection methods
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often lead to a significant increase in selection complexity and implementation delay. In
recent years, with the advancement of machine learning technologies, more researchers
have sought to optimize relay selection through machine learning approaches. For in‑
stance, references [15,16] applied deep learning to relay resource allocation in FSO systems,
successfully overcoming the reliance on system models inherent in traditional algorithms,
significantly reducing the complexity of channel capacity analysis, and maximizing ca‑
pacity. This demonstrates the substantial potential of deep learning in handling unknown
and complexmodels. Furthermore, references [17,18] proposed supervised learning‑based
methods for relay selection in complex network environments, offering new solutions suit‑
able for dense networks and latency‑sensitive scenarios. However, the performance of
supervised learning models is highly dependent on the quality and quantity of training
data; if the data quality is poor, the model’s performance may degrade significantly. Ref‑
erence [19] introduced a deep reinforcement learning (DRL)‑based method that does not
rely on any prior knowledge of channel statistical information, allowing for optimized
power allocation under unknown channel models and fading distributions. Similarly, ref‑
erences [20,21] also employed reinforcement learning, modeling the relay selection process
as aMarkovDecision Process (MDP), targeting outage probability andmutual information
as objective functions, and proposed a relay selection scheme based on deep Q networks
(DQNs). Ref. [22] considered the handover loss between different nodes and proposed a
DQN‑based relay selection algorithm to maximize the average channel capacity.

In summary, reinforcement learning maximizes cumulative rewards by optimizing
long‑term returns, whereas supervised learning focuses only on the optimal choice in the
current time slot, without considering the impact on future slots. In the context of relay
selection in this paper, the presence of switching losses means that the choice made in
each time slot will affect the channel capacity in subsequent slots. Therefore, we propose a
Reinforcement Learning‑based Relay Selection (RLRS) algorithm based on aDuelingDQN
structure, which aims to mitigate the harm on the channel capacity caused by turbulence
(the turbulence ismodeled asMalaga turbulence). The handover loss of switching between
different relay nodes is considered. Unlike Ref. [21], which models the channel as anMDP
process, meaning that the channel information at each moment is related to the previous,
this paper assumes that the channels in different time slots are independent, and the relay
node selected for each time slot is modeled as an MDP process. Different from Ref. [22],
which considers the scenario of a single transmitting node, this paper assumes multiple
transmitting nodes, which means that different transmitting nodes need to select different
relay nodes, thereby increasing the complexity of the relay selection algorithm. Therefore,
the main innovations of this paper are as follows:
1. Based on the Dueling DQN structure, the RLRS algorithm is proposed to maximize

the average channel capacity, thusmitigating the degradation caused by atmospheric
turbulence;

2. The average channel capacity expression of the decode‑and‑forward (DF) mode in an
FSOC relay system with multiple transceiver nodes is considered and the handover
loss is derived;

3. In the implementation of the RLRS algorithm, the actions are encoded in amulti‑digit
format, and a reward function with a penalty term is designed based on whether the
multi‑digit actions are repeated.
The structure of this paper is as follows. Section 2 describes the system model and

problem presentation. Section 3 details the specific process of the RLRS algorithm. In
Section 4, the simulation results of the RLRS algorithm are given and compared with the
conventional greedy algorithm. Conclusions are drawn in Section 5.
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2. SystemModel and Problem Formulation
2.1. System Model

The systemmodel of this paper is shown in Figure 1. In a multi‑transceiver FSOC sys‑
tem with relays, there are P transmitting terminals (TX‑1, …, TX‑P), P receiving terminals
(RX‑1, …, RX‑P), and N relay terminals (RLY‑1, …, RLY‑N). The red line represents the
laser link. At any time, all the transmitting terminals will choose a different relay terminal
as the relay node, which means that there are P parallel independent links in each time
slot. In this paper, it is assumed that the relay terminals employ the DF method, and that
all transmitting terminals and relay terminals adopt On–Off Keying (OOK) modulation in
the NRZ format, chosen for its simple transceiver structure and balanced 0/1 signal char‑
acteristic, which simplify clock data recovery at the receiver. The Gaussian noise power
between the transmit‑relay and relay‑receive terminals is σ2

r and σ2
s , respectively.
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Figure 1. Diagram of a multi‑transceiver FSOC system with relays.

2.2. Malaga Turbulence and Pointing Errors
Before analyzing the probability density function (PDF) of channel fluctuations, con‑

sidering pointing errors, it is essential to select an appropriate turbulence model. The
log‑normal, lognormal‑Rician, and gamma‑gamma models are among the most promi‑
nent [23]. However, the log‑normalmodel is limited to scenarioswithweak irradiance fluc‑
tuations. Although the lognormal‑Ricianmodel alignswellwith experimental data, it lacks
a closed‑form solution for its integral and has inherent convergence issues. Alternatively,
the gamma‑gamma model is proposed as a practical substitute for the lognormal‑Rician
model, owing to its more manageable mathematical formulation. It is worth noting that
Ref. [24] introduces the Malaga turbulence (M distribution), applicable to both plane and
spherical waves across all turbulence conditions, ranging fromweak to extremely strong in
the saturation regime. This distribution unifies the log‑normal and gamma‑gamma mod‑
els into a single closed‑form expression, encompassing various models proposed for atmo‑
spheric optical communications. Consequently, the gamma‑gamma and log‑normal distri‑
butions are special cases of the Malaga model under different turbulence conditions [25].
The Mdistribution PDF of irradiance is expressed as follows:

fh(h) = A
β

∑
k=1

akh
α+k

2 −1Kα−k

(
2

√
αβh

γβ + Ω′

)
(1)
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where α, β, γ, Ω′ are the Malaga channel parameters. In Equation (1), Kν(·) is the modified
Bessel function of the second kind and order ν.

Let hi,j
k represent the channel gain between the i‑th (1 ≤ i ≤ P) transmitting terminal

and the j‑th (1 ≤ j ≤ N) relay terminal in the k‑th time slot. Similarly, let gj,i
k represent

the channel gain between the j‑th (1 ≤ j ≤ N) relay terminal and the i‑th (1 ≤ i ≤ P)
receiving terminal in the k‑th time slot. In this paper, atmospheric attenuation, turbulence
fluctuation, and pointing errors are considered. Then, using the Malaga model, the PDF
of the channel fluctuation with pointing errors can be expressed as follows:

fh(h) =
ξ2 A
2h

β

∑
k=1

ak

(
αβ

γβ + Ω′

)−α + k
2
· G3,0

1,3

[
αβ

γβ + Ω′
h · hi,j

k gj,i
k

hl A0

∣∣∣∣ ξ2 + 1
ξ2, α, k

]
(3)

where G3,0
1,3 [ ·|] represents the Meijer’G function, hl is the path loss which obtains turbu‑

lence attenuation, geometric loss, and both transmission and reception losses. ξ2 and A0
represent the pointing error parameter.

2.3. Effect of Handoff Loss
Similarly to Ref. [21], τ is defined as the handoff loss during the handover of adjacent

nodes. However, Ref. [21] only considers the case of a single transmitting terminal, and
all relay nodes always point to the transmitting terminal and the receiving terminal, thus
eliminating the problem of relay node‑handover direction. In this paper, the issue of re‑
lay node‑pointing switches needs to be additionally considered. As mentioned above, in
the kth time slot, it is assumed that the relay node Rk

Ri
is selected for the i‑th transmitting

terminal to the i‑th receiving terminal. Similarly, in the (k + 1)‑th time slot, the relay node
RX‑i is selected for the i‑th transmitting terminal to the i‑th receiving terminal. Then, in the
(k + 1)‑th time slot, the handover loss τk+1

i from TX‑i to Rk+1
Ri

and then to RX‑i link should
be calculated as follows:

τk+1
i = max

{∣∣∣Rk+1
Ri
− Rk

Ri

∣∣∣τ,
∣∣∣Rk+1

Ri
− R

′k+1
Ri

∣∣∣τ} (4)

where R
′k+1
Ri

represents the direction of the Rk+1
Ri

relay node before the (k + 1)‑th time. There‑
fore, considering the handover loss, the channel capacity in the k‑th time slot should be
expressed as follows:
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where Ci
k is the channel capacity of the link from TX‑i to RX‑i through the relay node in

the k‑th time slot under the premise of considering the handover loss. C′ ik is the channel
capacity of the link from TX‑i to RX‑i through the relay node in the k‑th time slot without
considering the handover loss. The relationship between the two is Ci

k =
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1− τk
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The objective of this study is to maximize the average channel capacity in M time
slots, namely

max
{ΩM}

1
M

M−1

∑
k=0

Ck s.t.1 ≤
{

Rk
Ri

}
i = 1, . . . P
k = 0, . . . , M− 1

≤ N (7)

where ΩM represents the set of relay nodes selected in M time slots, that is, ΩM ={
Rk

Ri

}
i=1,...P;k=0,...,M−1

. From Equation (7), the system needs to carefully select relay nodes
in each time slot because each selection will affect the handover loss in subsequent time
slots, further impacting the final channel capacity. In the actual systems, the study cannot
predict the channel state of subsequent time slots, but fortunately, the study can leverage
reinforcement learning techniques to optimize the relay selection in each time slot by max‑
imizing the characteristics of long‑term cumulative reward functions.

As mentioned above, the primary objective of this paper is to maximize the average
channel capacity of M time slots. Therefore, the cumulative channel capacity with a dis‑
count factor starting from time k needs to be defined:

G(k) =
∞

∑
t=k

γt−kCk (8)

where γ represents the discount factor, which ranges between 0 and 1. Therefore, the
problem of maximizing the average channel capacity in M time slots can be transformed
into the form of Equation (9)

max
{ΩM}

E[G(k)] s.t.1 ≤
{
Rk

Ri

}
i = 1, . . . P
k = 0, . . . , M− 1

≤ N (9)

3. The RLRS Algorithm
In reinforcement learning, the problem to be solved is typically modeled as an MDP.

TheMDPgenerally consists of four elements (S, A, R, P): the state space S , the action space
A, the reward function at the current time R, and the transition probability P . The next
state is only determined by the current state and the current action and is independent of
previous states. In the relay selectionmodel of this paper, since the transition probability is
unknown, it can be modeled as an incomplete MDP, consisting of three elements (S, A, R).
Correspondingly, Sk,Ak,Rk are defined as the state, action, and immediate reward func‑
tions at the k‑th time slot, respectively. In the model of this paper, the specific contents of
Sk,Ak,Rk are as follows:

■ State Sk: In any k‑th time slot, state Sk includes two parts: the pointing Ik (including
2P + N elements) of all nodes in the (k‑1)th time slot and the channel gain of the S‑R
link and R‑D link in all current time slots (including 2PN elements).

■ Action Ak: In any k‑th time slot, action Ak represents the sequence number (includ‑
ing P elements) of the relay nodes selected for all transmitting nodes. There are
N!/(N − P)! possibilities in the action space. With N!/(N − P)! ≤ NP, we can write
any action Ak into the formof aP‑bitN‑ary number, that is, Ak =

[
A1

k , A2
k , . . . , AP

k
]
, Ai

k
∈ [0, N − 1].

■ Immediate reward function Rk: When action Ak is performedunder state Sk, an imme‑
diate reward function Rk will be obtained. This reward function is utilized to indicate
whether action Ak performed in the current state is beneficial.
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Since action Ak is written in the form of a P‑bit N‑ary number, the action space is
expanded from N!/(N − P)! dimension to NP dimension. In this case, there will be situa‑
tions where multiple transmitting nodes select the same relay. To avoid this, we define Rk
as follows:

Rk =

{
−1, i f there is the same element in Ak
Ck, else

(10)

In reinforcement learning, the agent maximizes the cumulative reward function with
a discount factor by learning the optimal strategy. In order to evaluate the performance of
the strategy, the Q‑value is typically introduced as a metric, defined as follows: Q(s, a) =
E[Gt | s = St, a = At].When the state and action spaces are small enough, the common re‑
inforcement learning approach is the Q‑table method. By listing all actions for each state,
the Q‑value table of each action—state pair is obtained, and the action with the largest
Q‑value is selected as the optimal strategy. However, in this paper, the state space is con‑
tinuous, and the action space is also very large, making it impossible to list all Q‑tables.
Therefore, a DQN is adopted. In a DQN, a neural network is used to simulate the action
value function, allowing it to handle each action value function in high‑dimensional state
space and output the maximum value function.

Inspired by Ref. [16], this paper also adopts a Dueling‑DQN network structure and
proposes an RLRS algorithm. However, the action space, state space, and reward function
in this paper differ from those in Ref. [16]. The overall structure of this paper’s RLRS
algorithm is shown in Figure 2. The RLRS algorithm includes two neural networks—one
is an online neural network, the other a target neural network, both with the same network
structure. The input layer, hidden layer, and output layer structures of the RLRS algorithm
differ slightly from those of conventional DQNs. In the RLRS structure, the layer before the
output layer is divided into two parts: the state value part V(s) and the action advantage
part A(s, a). They are expressed in Equation (11).

V(s) = V(s | ω, ϑ), A(s, a) = A(s, a | ω, ζ) (11)

where ω represents the weight threshold of the other layers except the last layer in the
online network. ϑ and ζ, respectively, represent the weight threshold of the state‑value
part and the action‑advantage‑value part in the online network. Since the target network
has the same structure as the online network, the corresponding parameters ω′, ζ ′, and ϑ′

in the target network can be defined. Similarly, the parameters of the online network can
be completely determined by ω, ζ, and ϑ.
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The input layer of the RLRS algorithmhas 2PN + 2P +N neurons, corresponding to the
dimensions of the state space, and the output layer has N elements, corresponding to the
dimensions of the expanded action space. As mentioned earlier, the output of the online
network represents the Q‑value of the optimal state–action pair in the current strategy,
which can be expressed as follows:

Q(s, a) = Q(s, a | ω, ζ, ϑ) = V(s | ω, ϑ) +

(
A(s, a | ω, ζ)− 1

|A|∑a′
A
(
s, a′ | ω, ζ

))
(12)

where |•| represents the number of elements in •. Similarly, Q′(s, a | ω′, ζ ′, ϑ′) represents
the output of the target network when the input is s and the selection action is a. In any
k‑th time slot, in the process of selecting an action Ak, a ε‑ greedy approach is adopted, that
is, the network will arbitrarily select an action in the state space with the probability of ε.
Otherwise, it will select the action with the maximum Q‑value, as shown in Equation (13).

Ak =

 argmax
Ak

Q(s, a | ω, ζ, ϑ)

∣∣∣∣∣
s=St ,a=Ak

, 1− ε probability

Ak ∈ S , ε probability

(13)

In the k‑th time slot, based on the state Sk, after selecting Ak, the immediate reward
Rk of k‑th time slot will be obtained, and then it enters the next state Sk+1. At this point,
it yields a set of empirical values (Sk, Ak, Rk, Sk+1), which can be put into experience pool
D. The experience pool has a first‑in, first‑out structure and can store |D| elements. If the
experience pool D is not full, the experience value (Sk, Ak, Rk, Sk+1)will be directly stored
in the experience pool; if the experience pool is already full, the earliest stored experience
will be removed, and the new experience value will be stored in the experience pool D.

L(ω, ζ, ϑ) ≈ 1
X ∑

l

(
rl + γmaxAl+1

Q′
(
Sl+1, Al+1 | ω′, ζ ′, ϑ′

)
−Q(Sl , Al | ω, ζ, ϑ))2 (14)

The online network is updated first,

ω ← ω− ς · ∇ωL
ζ ← ζ − ς · ∇ζL
ϑ← ϑ− ς · ∇ϑL

(15)

where ∇ω,∇ζ , and ∇ϑ represent the gradient values of the loss function L(ω, ζ, ϑ) with
respect to ω、ζ, and ϑ, respectively. ς represents the learning rate of the online network.
After updating the online network, the target network is subsequently updated. Assuming
the learning rate of the target network is λ, the network parameters are updated as follows:

ω′ ← λω + (1− λ)ω′

ζ ′ ← λζ + (1− λ)ζ ′

ϑ′ ← λϑ + (1− λ)ϑ′
(16)

The pseudocode diagram of the proposed RLRS algorithm is depicted in Algorithm 1.
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Algorithm 1. The pseudocode diagram of the proposed RLRS algorithm.

Input: The FSOC system simulator and its parameters.
Output: Optimal action Ak of each time slot.
1: Initialize experience replay memory D.
2: Initialize ω, ζ and ϑ with random weights and initialize ω′, ζ ′ and ϑ′.
3: Initialize the minibatch size with X.
4: FOR episode in {1, 2, 3, · · ·} DO
5:      Observe the environment initial state S0.
6:      FOR k= 1 to K DO
7:         Select a relay selection action Ak by Equation (11), and execute action Ak.
8:         IF there is same element in Ak
9:             Calculate immediate reward Rk = −1.
10:         ELSE
11:            Calculate immediate reward Rk = Ck.
12:         Obtain next state Sk+1 and store transition data (Sk, Ak, Rk, Sk+1) in replay memory D.
13:         IF D is full
14:           Sample a random minibatch of X sets of transition data from D.
15:          Update the online network by (13).
16:          Update the target network by (14).
17:      END FOR
18: END FOR

4. Simulation Results
In this section, the performance simulation of the RLRS algorithm is presented, and

the simulation parameters are shown in Table 1. As a comparison, a greedy algorithm is
utilized as a reference to demonstrate the advantages and effectiveness of the proposed
RLRS algorithm.

Table 1. Simulation parameters.

Parameter Name Value

Number of relay nodes N 4
Number of transmitting nodes P 2

Number of time slot M 5, 10, 50
Unit handover loss τ 0.05–0.25

Responsiveness of detector η 0.9
Channel parameters (α, β, ρ, Ω′, A0, ρ) 5.97, 4.39, 0.596, 1, 0.0032, 6.25

Normalized power Pt/σr, Pt/σs 10
Discount factor γ 0.9

Online learning rate ς 0.001

According to the above parameters and pseudo‑code, the following simulation is ob‑
tained. Figure 2a,b shows the cumulative reward curve and the loss function curve for a
time slot number of 10. Figure 2a shows the training results across different episodes. The
training process can be roughly divided into three parts: the experience pool storage part,
the parameter update part, and the training completion part. Before the experience pool is
full, the cumulative reward curve fluctuates without a clear upward trend. Once the expe‑
rience pool is full, the system extracts experiences from the pool and utilizes themini‑batch
method for parameter updates. At this point, the cumulative reward curve shows an over‑
all upward trend. After the 400th episode, the cumulative reward value tends to stabilize,
and the stable cumulative reward value is superior to the performance of the greedy algo‑
rithm. The loss function curve in Figure 2b shows a periodic trend of decline, indicating
the convergence of the algorithm.

Figure 3a,b shows the cumulative reward curve and the loss function curve for a time
slot number of 50. Overall, the curve trends in Figure 3 are almost identical to those in
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Figure 2. This also demonstrates that the proposed RLRS algorithm in this paper can con‑
verge under different time slot conditions and outperforms the greedy algorithm.
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Figure 4 presents the average channel capacity curves under different handover loss
conditions. Figure 4a,b describes the cases of 10 time slots and 50 time slots. As can be seen
from Figure 4a,b, the proposed RLRS algorithm in this paper consistently outperforms the
greedy algorithm under various handover loss conditions. Additionally, as the handover
loss increases, the gap between the two algorithms gradually widens, with the RLRS al‑
gorithm providing at least a 2.47% improvement in channel capacity. This is because the
conventional greedy algorithm only selects the relay node with the largest channel gain
without considering handover loss. As a result, when the handover loss increases, its ca‑
pacity decreases linearly. In contrast, the proposedRLRS algorithm in this paper takes both
handover loss and channel gain into account, so as to maximize the long‑term rewards of
relay selection in each time slot.
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Figure 5 shows the average capacity of the RLRS algorithm and the traditional greedy
algorithm when fog’s influence is considered. According to the Kruise formula, the atten‑
uation due to fog (dB/km) is defined as follows:

αatm(V) =
3.912

V

(
λ

550(nm)

)−q
(17)

where λ is the wavelength (in nm), V represents the visibility (in km). q is a parameter that
depends on the particle size distribution of scattering particles, given as follows:

q =


1.6 V ≥ 50km
1.3 6km < V < 50km
0.585V1/3 V < 6km;

(18)
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This paper selected the wavelength as 1550 nm. The visibility is set to 1 km, 2 km,
5 km, 10 km, 50 km, respectively. As shown in Figure 5a, which illustrates Malaga tur‑
bulence, the average capacity increases with visibility. This is due to the fact that greater
visibility results in reduced attenuation. Figure 5b illustrates Gamma‑Gamma turbulence
with α = 8.43, β = 6.92, where theMalaga turbulence can reduce toGamma‑Gamma turbu‑
lence with ρ→ 1 and Ω′ = 1. As can be seen from Figure 5a,b, the RLRS algorithm always
performs better than the traditional greedy algorithm. Besides the situation of weak turbu‑
lence, which has a larger average capacity in both the RLRS and greedy cases, Figure 5a,b
also show that the RLRS algorithm performs more effectively under strong turbulence.
This is because strong turbulence can cause significant variations in channel gains across
multiple potential links. Consequently, during relay selection, the difference in systemper‑
formance between high‑quality and low‑quality relays becomesmore pronounced, leading
to a more noticeable improvement in system performance with the RLRS algorithm.

5. Conclusions
This paper proposes a relay selection algorithm to mitigate the capacity degradation

caused by atmospheric turbulence, where there areN transmitting nodes (andN receiving
nodes) and P relay nodes. We also consider the handover loss caused by the handover pro‑
cess of different relay nodes. The RLRS algorithm is proposed based on a Dueling DQN
structure to maximize the average channel capacity. In the implementation of the RLRS
algorithm, the actions are encoded in a multi‑digit format, and a reward function with a
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penalty term is designed based on whether the multi‑digit actions are repeated. Finally,
through simulation comparison, the RLRS algorithm proposed in this paper is shown to
be superior to the greedy comparison algorithm, which can enhance the channel capac‑
ity by at least 2.47%, with the gap increasing as handover loss rises. Moreover, under
stronger turbulence, the RLRS algorithm demonstrates a noticeable improvement in chan‑
nel capacity, further validating its effectiveness in combating the capacity loss induced by
turbulence. Therefore, this study not only provides a reference design scheme for the re‑
lay FSOC system to further fight against turbulence, but also demonstrates the potential
of reinforcement learning in improving channel capacity, which offers new insights and
directions for future high‑performance communication system design.
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