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Abstract: The accurate transformation of multi-camera 2D coordinates into 3D coordinates is crit-
ical for applications like animation, gaming, and medical rehabilitation. This study unveils an
enhanced multi-camera calibration method that alleviates the shortcomings of existing approaches
by incorporating a comprehensive cost function and Adaptive Iteratively Reweighted Least Squares
(AIRLS) optimization. By integrating static error components (3D coordinate, distance, angle, and
reprojection errors) with dynamic wand distance errors, the proposed comprehensive cost function
facilitates precise multi-camera parameter calculations. The AIRLS optimization effectively balances
the optimization of both static and dynamic error elements, enhancing the calibration’s robustness
and efficiency. Comparative validation against advanced multi-camera calibration methods shows
this method’s superior accuracy (average error 0.27 ± 0.22 mm) and robustness. Evaluation metrics
including average distance error, standard deviation, and range (minimum and maximum) of errors,
complemented by statistical analysis using ANOVA and post-hoc tests, underscore its efficacy. The
method markedly enhances the accuracy of calculating intrinsic, extrinsic, and distortion parameters,
proving highly effective for precise 3D reconstruction in diverse applications. This study represents
substantial progression in multi-camera calibration, offering a dependable and efficient solution for
intricate calibration challenges.

Keywords: multi-camera calibration; comprehensive cost function; camera parameters optimization;
adaptive iteratively reweighted least squares; motion capture

1. Introduction

The transformation of multi-camera 2D coordinates into accurate 3D coordinates is
fundamental for applications in computer vision such as animation, gaming, sports analysis,
and medical rehabilitation [1–4]. Optical motion capture systems, which depend on this
transformation for precise movement capture and reconstruction, require accurate camera
calibration. This involves determining the cameras’ intrinsic and extrinsic parameters,
which are crucial for forming projection matrices that convert 2D image coordinates into
precise 3D world coordinates [5]. Despite extensive research, achieving high accuracy and
user convenience in multi-camera calibration continue to pose substantial challenges [4,6].

Traditional multi-camera calibration methods are generally divided into two types:
static, which uses a fixed object proportional to the 3D tracking space, and dynamic, which
employs a moving object. Static methods, such as the Direct Linear Transformation (DLT)
proposed by Abdel-Aziz et al. [7], calculate camera parameters by extracting optimal
transformation matrices between the 3D coordinates of markers on the calibration object
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and their corresponding 2D coordinates in each camera’s image plane. The primary
advantage of static calibration is its ability to provide robust and accurate calculations
of intrinsic and extrinsic camera parameters within the 3D tracking space fully covered
by the calibration object. This accuracy is achieved because precise spatial information
and constraints allow for the derivation of exact transformation matrices describing the
2D-to-3D transformations within the limits of the available spatial data. However, a key
drawback is the strong dependence on the scale and intricacy of the 3D tracking space,
necessitating a calibration object of proportional size and complexity [8]. Consequently,
static calibration methods cannot guarantee accuracy outside the area covered by the
object. To achieve a large 3D tracking space using a multi-camera system, a larger object
with a substantial number of optical markers is required [4,8], making the setup process
labor-intensive and time-consuming.

Dynamic calibration methods address the primary limitation of static calibration by
eliminating the need for a calibration object that matches the size and complexity of the
desired 3D tracking space. These methods use a moving calibration object, enabling the
quicker and easier adjustment of the 3D tracking space without the need to develop a
specialized static object for each required 3D tracking area. Commonly used moving
calibration objects include rigid bars or T-wands, typically equipped with a smaller number
of markers (usually two [2,3,9–11]) with a known distance between them. Using moving
calibration object data eliminates the need for extensive calibration setup, significantly
reducing the overall calibration time and labor required. This leads to a more rapid and
convenient calibration process. For example, Borghese et al. [12] introduced a method
using a rigid bar for dynamic calibration, leveraging the motion of the bar to optimize
camera parameters. Similarly, Mitchelson et al. [9] proposed a T-wand-based calibration
method, particularly suited for multiple camera studios, which simplifies the setup process
and reduces the overall calibration time to approximately 5 min, compared to several hours
for static calibration. However, dynamic methods face significant limitations, including
reduced accuracy and consistency [3]. These methods typically rely on a geometrically
simple moving calibration object, with the distance between markers serving as the primary
spatial constraint. Due to the simplicity of using a rigid bar or T-wand with fewer markers,
the initial estimation of camera parameters may lack precision, as it heavily depends only
on the multi-view geometry of marker image locations and the known marker distance.
This can make it difficult to effectively minimize the distance error between markers during
iterative multi-camera parameter refinement, potentially leading to a local minimum and
resulting in a loss of overall calibration accuracy [3,10].

The combination of the limitations and advantages in static and dynamic calibration
methods has led to the development of hybrid approaches that aim to leverage the strengths
of both while mitigating their respective drawbacks. Hybrid methods use a simpler, easy-to-
install static calibration object, such as an L-frame or a three-axis frame, to calculate accurate
initial multi-camera parameters using known spatial constraints like the 3D coordinates of
optical markers on the static calibration frame. Combining this with movements within
the desired calibration area using a moving calibration object, such as a calibration wand,
allows for the expansion of the tracking area to the desired size. The further optimization
of multi-camera parameters with a combination of clear spatial constraints from the static
calibration object and tracking data within the tracking area using the moving calibration
object helps avoid the local minimum problem of the dynamic calibration method. This
is achieved by using accurate initial parameters calculated during the static calibration
process with a static calibration object with known spatial constraints. Ultimately, this
method enables the more precise calculation of multi-camera parameters within the desired
tracking area by effectively reducing both static errors (through spatial constraints of the
static calibration object) and dynamic errors (through tracking data from the dynamic object
with simple constraints). For example, Uematsu et al. [13] utilized an L-frame for static
calibration and combined static reprojection error with dynamic distance errors between
wand markers for optimization. Pribanić et al. [10] used an orthogonal wand triad for
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static calibration and a wand for dynamic calibration, improving calibration accuracy by
calculating fundamental and essential matrices for each camera. Similarly, Shin et al. [3]
employed a three-axis frame and wand, considering both the 3D coordinate errors of
spherical markers for static error and the distance errors between spherical markers during
wanding for dynamic error. These methods optimize camera parameters using a combined
cost function, thereby enhancing user convenience and accuracy.

Despite advancements, existing hybrid methods combining static and dynamic cal-
ibration have notable limitations. A significant drawback is the limited use of multiple
error components in static calibration, typically focusing only on 3D coordinates or re-
projection errors while neglecting crucial factors like distance and angular errors [14,15].
Incorporating 3D coordinate errors ensures precise spatial localization, reducing deviations
in reconstructed 3D marker positions and enhancing the accuracy of multi-view triangula-
tion [3]. Distance errors maintain correct scaling in the 3D space by enforcing consistency
in known distances between markers, preventing distortions [10]. Angle errors preserve
geometric relationships among markers, essential for maintaining the structural integrity
of the setup [16]. Reprojection errors correct discrepancies between observed image points
and their projections, crucial for addressing lens distortions and quantification inaccuracies,
thus preventing these errors from affecting 3D reconstructions [13,17]. The integration
of these components forms a comprehensive constraint system, minimizing biases in the
calibration process and mitigating calibration and 3D reconstruction errors [3,14,16]. The
addition of dynamic error through wand distance error further refines this framework,
accommodating temporal variations and improving tracking accuracy during dynamic
calibration, ultimately reducing 3D triangulation errors [3,10,13,18]. Existing hybrid meth-
ods often excluded multiple error components in static calibration due to several factors.
The complexity of simultaneously optimizing diverse error components posed significant
computational challenges, risking overfitting to specific errors, particularly in systems
with limited computational resources [16]. Furthermore, the theoretical frameworks and
software tools available at the time were typically tailored to specific error metrics, making
it challenging to integrate a comprehensive cost function covering all error types [13].
As a result, many methods favored simplified calibration approaches [10,14–19], which,
while sufficient for certain applications, did not fully leverage the potential of all error
components, limiting their overall calibration accuracy [3,10,14]. Additionally, hybrid
methods often encountered issues due to the unequal data representation between static
and dynamic errors, leading to a tendency towards overfitting to dynamic errors, which
increased static errors and resulted in suboptimal calibration [14,15].

Therefore, this study aims to overcome the limitations, such as the limited use of error
components and the overfitting risk of previous hybrid calibration methods, by developing
a comprehensive cost function and employing a balanced optimization approach. The
proposed method integrates 3D coordinate, distance, angle, and reprojection errors in static
calibration, alongside dynamic wand distance error, to provide a holistic framework for
minimizing calibration errors. The optimization is conducted using the adaptive itera-
tively reweighted least squares (AIRLS) method proposed in this research, which assigns
differential weights to static and dynamic errors, ensuring that neither dominates the opti-
mization process, thereby preventing overfitting and achieving a more accurate calibration.
This optimization method’s effectiveness was compared with those of previously devel-
oped optimization techniques, such as Sparse Bundle Adjustment (SBA) [20,21] and the
Levenberg–Marquardt (LM) method [22,23]. In addition, the effectiveness of the proposed
method was validated against leading-edge and high-precision multi-camera calibration
techniques, including normalized DLT [24,25] and hybrid methods from related research,
using commercial calibration wands with marker distances of 390 mm and 500 mm. The
evaluation included metrics such as average distance error, standard deviation, minimum
and maximum errors, and statistical significance assessed through ANOVA and post-hoc
tests. The proposed method retains the simplicity of the calibration process and the rapid
setup characteristic of combined methods while significantly enhancing accuracy in 3D
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reconstruction. These advantages make the proposed method particularly suitable for opti-
cal motion capture systems, robotics, surgical navigation systems and other applications
requiring precise 3D reconstruction and tracking.

2. Materials and Methods

The proposed multi-camera calibration method integrates static and dynamic pro-
cesses, enhancing both accuracy and usability. Initially, images of a three-axis calibration
frame are synchronously acquired from all cameras. These images undergo binary conver-
sion; markers are identified, matched, and labeled in accordance with the structure of the
three-axis frame. Using normalized DLT, initial camera matrices are derived. Subsequently,
a calibration wand is employed to gather approximately 1000 frames of data, which are
then binarized; markers are detected and matched utilizing a proposed modified algorithm.
A comprehensive cost function is formulated, incorporating static errors (3D coordinate,
distance, angle, and reprojection errors) and dynamic errors (distance errors from wanding
data). The AIRLS method optimizes the camera matrices, ensuring a balance between static
and dynamic errors. The final intrinsic, extrinsic, and distortion parameters for each camera
are extracted from the optimized matrices, facilitating precise multi-view triangulation and
tracking. By integrating multiple error components, balanced optimization, and a robust
matching algorithm, this method significantly enhances both accuracy and robustness.
Figure 1 illustrates the detailed workflow of the proposed method.
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Figure 1. Workflow of the proposed optimized multi-camera calibration process.

2.1. Experiments

In this experiment, we utilized four CMOS cameras (OptiTrack FLEX 13; Natural Point,
Corvallis, OR, USA) synchronized using a synchronization module (OptiHub2; Natural
Point, Corvallis, OR, USA). The cameras were mounted on a custom-built multi-camera
stand in a cross-axis configuration, with each camera positioned approximately 1 m apart
to ensure a sufficient field of view for object tracking. Each camera featured a resolution of
1280 × 1024 pixels and operated at a frame rate of 120 Hz. The activities of multi-camera
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calibration and object tracking were conducted approximately 2 m from the center of the
multi-camera stand, as depicted in Figure 2.
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Figure 2. Experimental setup.

For the static calibration process, a three-axis calibration frame was used to estimate the
initial multi-camera parameters. This frame, depicted in Figure 3a, included seven spherical
optical markers with accurately measured 3D coordinates relative to the origin. These
measurements were obtained using a 3D coordinate measuring machine (VICTOR101208;
Dukin, Daejeon, Korea) with an average measurement error of 3.2 µm. The coordinates of
the markers were as follows: two markers along the X-axis at (261.0510, −0.0730, 8.9900)
and (511.0730, −0.1100, 8.7910); three markers along the Y-axis at (−0.0340, 210.9900,
9.0550), (0.1910, 411.0360, 9.0240), and (0.1210, 610.9330, 9.2030); and two markers along
the Z-axis at (11.7680, 12.2170, 249.0830) and (11.5120, 12.7440, 499.1100). Each camera
in the multi-camera system synchronously captured a frame of this calibration frame,
ensuring all seven markers were within view. The Z-axis of the calibration frame featured a
locking mechanism, allowing its detachment and use as a calibration wand. Approximately
1000 frames of wanding data were collected using this wand during dynamic calibration.
These data were utilized to optimize the initial multi-camera parameters through the
proposed optimization method, leveraging the known real-world distance between the
centers of the two spherical markers on the wand.

For further evaluation and validation of the proposed algorithm, tracking data were
gathered using commercial motion capture system wands, such as the 390 mm commercial
calibration wand (Vicon Motion Systems, Oxford, UK), illustrated in Figure 3b, with a
marker center distance of 390 mm, and the 500 mm commercial calibration wand (Natural
Point, Corvallis, OR, USA), illustrated in Figure 3c, with a marker center distance of 500 mm.
The validation data consisted of approximately 1000 frames, with each trial being repeated
five times to confirm the robustness of the results.

2.2. Estimation of Initial Multi-Camera Parameters

The process of estimating the initial camera parameters for each camera in the multi-
camera system involved several detailed steps, utilizing a variety of computer vision and
mathematical techniques as outlined below.
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The initial step involves the binarization and detection of the u, v coordinates of
markers on the three-axis calibration frame. This process includes converting the images
to grayscale and applying Gaussian blurring [26] to reduce noise. A global thresholding
method using Otsu’s method [27] is applied to create a binary image. Morphological
operations such as closing are then performed to close gaps and remove small blobs using
a (3 × 3) kernel. The contours within the binary image are detected using the Suzuki-
Abe method [28]. The centroids of these contours are calculated using image moments,
specifically the spatial moments M00, M10, and M01, with the centroid coordinates cX, cY
defined by cX = M10

M00
and cY = M01

M00
. These centroid positions are then refined with sub-

pixel accuracy using an iterative corner refinement algorithm based on minimizing the
intensity variance within a window around each centroid.

Markers were automatically matched and labeled using the structural features of the
three-axis calibration frame. This was achieved by sorting the detected markers based
on their vertical positions (u-coordinates) to identify markers along the Z-axis. The two
markers with the highest u-values were identified as the Z-axis markers. If u1 > u2, then
Marker 6 is the lower marker and Marker 7 is the upper marker. The remaining markers
were sorted based on their horizontal positions (v-coordinates) to differentiate markers
along the X and Y axes. For the markers along the X-axis, these were Marker 1 and Marker
2; for the markers along the Y-axis, they were Marker 3, Marker 4, and Marker 5. This
methodical sorting and labeling guaranteed the accurate identification of all markers in
accordance with the known geometric configuration of the calibration frame.

To perform the initial multi-camera calibration and compute the camera matrices,
the normalized DLT method was employed. The procedure involved normalizing the 2D
image points and 3D world points to enhance numerical stability. This was achieved by
applying transformations that relocated the centroid of the points to the origin and scaled
them so that the average distance from the origin was

√
2 for 2D points and

√
3 for 3D

points [24,25]. The normalization transformations for the 2D points T and for the 3D points
Tw are presented as follows:

T =

s 0 −s · x
0 s −s · y
0 0 1

, Tw =


s 0 0 −s · X
0 s 0 −s · Y
0 0 s −s · Z
0 0 0 1

 (1)

where s is the scaling factor, and x, y and X, Y, Z are the coordinates of the centroids.
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For each point correspondence, matrix A is constructed using the normalized image
and world points as follows:

A =

[
−X −Y −Z −1 0 0 0 0 uX uY uZ u

0 0 0 0 −X −Y −Z −1 vX vY vZ v

]
(2)

Singular Value Decomposition (SVD) is performed on matrix A to determine the
projection matrix P. The projection matrix P is reshaped from the last column of V obtained
through SVD. The projection matrix P is denormalized by applying inverse transformations
to convert it back to the original scale.

The camera matrices obtained were decomposed to extract the intrinsic, extrinsic, and
distortion parameters for each camera. The intrinsic matrix K and the rotation matrix R
were derived using RQ decomposition of the left 3 × 3 sub-matrix of the projection matrix
P. The translation vector T was computed as:

T = K−1Pcolumn 4 (3)

where Pcolumn 4 represents the fourth column of the projection matrix P. The intrinsic matrix
K was normalized such that K[2, 2] = 1.

Distortion coefficients were calculated to correct lens distortion using the radial and
decentering distortion model. The distortion coefficients k1, k2, k3, p1, p2 were obtained by
solving the following equations:

∆u = Xi

(
k1r2 + k2r4 + k3r6

)
+ p1

(
r2 + 2X2

i

)
+ 2p2XiYi (4)

∆v = Yi

(
k1r2 + k2r4 + k3r6

)
+ p2

(
r2 + 2Y2

i

)
+ 2p1XiYi (5)

where Xi, Yi represent the normalized image coordinates, r is the radial distance from the
principal point, and ∆u, ∆v are the corrections applied to the image coordinates.

The multi-view triangulation of 3D points was conducted using the DLT method,
which involves constructing and solving a linear system for each marker in the frame. The
equations are as follows:

u1P31X + u1P32Y + u1P33Z + u1P34 − P11X − P12Y − P13Z − P14 = 0
v1P31X + v1P32Y + v1P33Z + v1P34 − P21X − P22Y − P23Z − P24 = 0

...
unP31X + unP32Y + unP33Z + unP34 − P11X − P12Y − P13Z − P14 = 0
vnP31X + vnP32Y + vnP33Z + vnP34 − P21X − P22Y − P23Z − P24 = 0

(6)

where ui, vi represent the image coordinates from each camera, and P is the projection
matrix for each camera.

The comprehensive approach outlined above ensures a precise and reliable estimation
of initial camera parameters, laying the groundwork for the subsequent optimization stage
in the proposed multi-camera calibration method.

2.3. Fine-Tuning of Multi-Camera Parameters Using Optimization Technique
2.3.1. Collection and Preprocessing of Wanding Data

The optimization of initial multi-camera parameters involves collecting dynamic
calibration data using a wand. In this experiment, the Z-axis of the three-axis calibration
frame, containing two optical markers with a known real distance between their centers
(250.03 mm), serves as the calibration wand. The data collection and preprocessing steps
are described below.

Data on wand movements are captured over roughly 1000 frames. Each frame includes
the u, v coordinates of two markers, as observed by the four cameras in the multi-camera
setup. The data are structured such that marker coordinates for each camera are contained
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within each frame. The image data undergo processing to detect the u, v coordinates of the
markers. This process involves applying Gaussian blurring to diminish noise, followed by
the use of Otsu’s method for global thresholding to generate a binary image. Subsequently,
morphological closing is applied to seal gaps and eliminate small blobs. Contours are
identified using the Suzuki–Abe method, and centroids of these contours are calculated
through image moments. The centroid positions are precisely refined to sub-pixel accuracy
via an iterative corner refinement algorithm. Markers are then matched and identified
using the structural features of the three-axis calibration frame. Fundamental matrices
F between pairs of cameras are computed using the projection matrices P1 and P2. The
following formula calculates the fundamental matrix F:

F =

 f11 f12 f13
f21 f22 f23
f31 f32 f33

 (7)

Each element fij is computed using determinants of submatrices formed from the
rows of P1 and P2.

The epipolar distance between corresponding points across different camera views
is calculated to ensure consistent matching. The epipolar distance d for points u1, v1 and
u2, v2 is calculated as:

d =

∣∣(u2, v2, 1)F
(
u1, v1, 1)T

∣∣√
f 2
11 + f 2

21

(8)

where F represents the fundamental matrix and u, v denotes the homogeneous coordinates
of the points.

For each camera pair, a cost matrix is constructed based on the epipolar and spatial
distances between markers. The cost matrix C is formed as follows:

Cij = dij + ∥(ui, vi)−
(
uj, vj

)
∥ (9)

where dij represents the epipolar distance and (|·|) indicates the Euclidean distance between
points ui, vi and uj, vj.

Cost matrices are utilized to identify unique marker matches across different camera
views, employing the Hungarian algorithm for optimal assignment. The Hungarian algo-
rithm [29] aims to minimize the total cost, thereby finding the optimal assignment of points
between cameras. The algorithm is executed as follows:

1. Construct a cost matrix where each element Cij represents the cost of assigning marker
i from one camera to marker j in another camera;

2. Subtract the minimum value in each row from all elements within that row for the
entire cost matrix;

3. Subtract the minimum value in each column from all elements within that column for
the entire cost matrix;

4. Cover all zeros in the resulting matrix using a minimum number of horizontal and
vertical lines;

5. If the minimum number of covering lines equals the number of rows (or columns),
an optimal assignment can be made among the covered zeros. If not, the matrix is
adjusted, and the process repeated.

The matched points are reordered according to the matches found, ensuring consistent
labeling across all frames. This reordering aligns the detected points with a reference set
from one of the cameras, typically the first camera.

The algorithm detects frames with lost data, identifying specific markers and the
cameras where the data loss occurred. If the data for a specific marker in a given frame
were to be lost in multiple cameras but remain visible in more than two cameras, and if
there was data loss in a previous reference camera, another reference camera with available
marker data is selected. Epipolar constraint-based matching is then performed on the
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available data. However, if the data for a specific marker are available in fewer than two
cameras (only one), the available data are matched within this camera using frame-to-
frame matching.

Frame-to-frame matching involves comparing the detected marker positions in the
current frame to those in the previous frame. The distance between each pair of points is
calculated, and matching is based on the minimum distance.

6. Let Pt represent the detected points at time t and Pt−1 represent the detected points at
time t − 1;

7. For each point pt ∈ Pt and point pt−1 ∈ Pt−1, calculate the Euclidean distance
d(pt, pt−1);

8. Identify the pair pt, pt−1 such that the distance d(pt, pt−1) is minimized. This is
typically achieved using the Hungarian algorithm to ensure an optimal assignment;

9. Update the matches and proceed to the next frame.

Upon completing multi-camera matching, the algorithm restores the lost multi-camera
tracking data of the tracking objects using a method developed in our previous research [2].
After restoration, additional control multi-camera matching is performed to verify the
correctness of the matched recovered data. The resulting output of this process is a set of
matched and labeled u, v coordinates for each marker in each frame, subsequently used
to triangulate the 3D coordinates of the markers. By following these steps, we ensure
the accurate and reliable matching and labeling of markers, crucial for the subsequent
optimization of multi-camera parameters.

2.3.2. Proposed Cost Function and Optimization Method

The optimization of initial multi-camera parameters involves defining a comprehen-
sive cost function and utilizing an iterative optimization method. The objective is to refine
the projection matrices of each camera to minimize various errors in a balanced manner,
ultimately enhancing the accuracy of the intrinsic, extrinsic, and distortion parameters. The
proposed cost function includes both static and dynamic error components.

Static 3D coordinate errors quantify the discrepancy between the reconstructed 3D
coordinates and the known true 3D coordinates of the calibration markers. This error is
evaluated for all seven optical markers on the three-axis calibration frame, as follows:

Error3D = ∥Xtrue − Xreconstructed∥ (10)

where Xtrue represents the true 3D coordinates, and Xreconstructed represents the reconstructed
3D coordinates.

Static distance errors ensure that the distances between reconstructed markers corre-
spond to the known distances between the actual marker positions. The distances between
all unique pairs of spherical markers (21 unique pairs, considering seven markers) are
determined using their 3D coordinates,

Errordistance =
∣∣∥Xi − Xj∥ − ∥Xtrue,i − Xtrue,j∥

∣∣ (11)

Static angle errors ensure that the angles between vectors formed by reconstructed
markers correspond to the angles between the corresponding actual vectors. For each pair
of axes, vectors are formed using the 3D coordinates of the markers on those axes. The
angles between these vectors are then calculated. For instance, for the X and Y axes, we use
the vectors formed by the markers on these axes, as follows:

Errorangle =
∣∣θreconstructed − θtrue

∣∣ (12)

where θ indicates the angle between vectors. Specifically, the angle between vectors A and
B formed by the 3D coordinates of the markers is computed as
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θ = cos−1
(

A · B
∥A∥∥B∥

)
(13)

Here, A = Xreconstructed,1 − Xreconstructed,2 and B = Xreconstructed,3 − Xreconstructed,4.
Static reprojection errors measure the discrepancy between the observed 2D marker

positions and their projected positions based on the current projection matrices,

Errorreprojection = ∥uobserved − uprojected∥ (14)

where uobserved is the observed 2D coordinates, and uprojected is the projected 2D coordinates.
Dynamic distance errors evaluate the difference between the distances of the dynamic

wand markers in each frame and the known actual distance between them,

Errordynamic distance =
∣∣∥X1 − X2∥ − dreal

∣∣ (15)

where dreal is the known distance between the wand markers.
The total cost function combines these static and dynamic errors as follows:

Total Error = ∑
(
Error3D + Errordistance + Errorangle + Errorreprojection

)
+ ∑ Errordynamic distance (16)

The optimization method employed is the AIRLS method, which is based on the LM
algorithm. The LM algorithm was chosen as the foundation due to its well-established ad-
vantages in nonlinear least squares optimization, particularly its ability to switch between
gradient descent and the Gauss–Newton method, making it robust for solving complex cal-
ibration problems [30]. However, one of the limitations of LM is that it does not inherently
handle the imbalance between different types of errors, such as static and dynamic errors,
which is critical in multi-camera calibration [31]. To address this limitation, the proposed
AIRLS method introduces an adaptive weighting mechanism that assigns varying weights
to static and dynamic error components, ensuring a balanced contribution throughout
the optimization process. Additionally, the optimization process incorporates Tikhonov
regularization (Ridge regularization), which mitigates the risk of overfitting by constraining
the magnitude of the model parameters. This regularization approach enhances stability
and reduces sensitivity to minor variations in the data, improving the robustness of the
solution [32]. In the AIRLS method, the projection matrices are initially flattened, and equal
weights are assigned to static and dynamic errors. Bounds for optimization are defined as
the initial projection matrices adjusted by plus or minus 10. During each iteration, the mean
static and dynamic errors are computed to adjust the weights and balance the optimization,
as follows:

Balancing Factor =
Mean Dynamic Error

Mean Static Error
(17)

A weighted error function is defined, incorporating the balancing factor.

Weighted Error =
√

Weightsstatic · Static Errors +
√

Weightsdynamic

·Dynamic Errors · Balancing Factor
(18)

The least squares optimization method is employed to minimize the weighted error
function, as follows:

Optimization Problem = min ∑ Weighted Error (19)

Weights are updated for the next iteration,

Weightsstatic =
1

Static Errors + tol
(20)

Weightsdynamic =
1

Dynamic Errors + tol
(21)
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where tol is a small tolerance value to prevent division by zero. Convergence is evaluated
by monitoring changes in the error across successive iterations.

The optimized projection matrices are decomposed to extract both the intrinsic and
extrinsic parameters for each camera using RQ decomposition, while the distortion parame-
ters are derived from the previously described distortion model. By adhering to these steps,
we ensure a precise and dependable optimization of parameters across multiple cameras,
resulting in enhanced intrinsic, extrinsic, and distortion parameters. This holistic approach
ensures a holistic and precise calibration by harnessing both static and dynamic data for
superior performance.

2.4. Comparative Validation and Performance Evaluation of the Proposed Multi-Camera
Calibration Method

To accurately assess the performance of the proposed multi-camera calibration algo-
rithm, we will utilize various evaluation criteria that comprehensively gauge the accuracy
and efficiency of the calibration method. Static error will be assessed to gauge the accuracy
of 3D reconstruction through the parameters of each camera in the system. This includes
3D coordinate error, distance error among all unique pairs of markers on the static frame,
and angle errors computed from vectors based on the 3D coordinates of the marker centers
on each axis of the three-axis frame. Dynamic error will be analyzed by observing the
variance between known and reconstructed distances of the centers of two optical markers
on the calibration wand, calculated from the 3D coordinates of their centroids. Total error,
encompassing both static and dynamic errors, provides a thorough measure of the overall
accuracy of the calibration method. Evaluation metrics include average error, SD, minimum
error, and maximum error.

A detailed sensitivity analysis of the proposed cost function will be conducted to
understand its robustness and responsiveness to variations in data and parameters. This
analysis systematically varies one parameter at a time and observes the changes in output
errors, helping identify which parameters significantly impact calibration accuracy and
allowing the fine-tuning of the cost function for enhanced performance. As part of this
sensitivity analysis, the proposed cost function will be compared against variations of
cost functions from related works using identical tracking data. These variations include
static error-based functions, such as those using only reprojection error for each optical
marker on the three-axis calibration frame, paired with dynamic error from wand distance
discrepancies. Another variation incorporates 3D reconstruction error based on inaccuracies
in the 3D coordinates of the markers, alongside dynamic error. The traditional bundle
adjustment method with default parameters [3,33] will be employed for optimizing these
cost function variations. The same evaluation metrics—average error, SD, minimum error,
and maximum error—will be utilized.

The efficacy of the proposed optimization method is assessed through a comparative
analysis with advanced optimization techniques from the related literature, including
SBA and the LM method. Additionally, the performance of the proposed method is
compared to that of normalized DLT, the orthogonal wand triad multi-camera calibration
method [10,11] and three-axis frame and wand multi-camera calibration [2,3]. To our
knowledge, these methods are considered the most advanced multi-camera calibration
techniques using a three-axis frame and dynamic wanding [2,11]. The validation process
used consistent camera arrangements, models, settings, and calibration spaces. The multi-
camera calibration process adhered to proper methods and utilized all known parameters.
To validate the effectiveness of the proposed optimization method, objects not traditionally
used for camera calibration, such as the 390 mm and 500 mm commercial calibration
wands with known distances between marker centroids, were employed. Each method
was evaluated based on the average values from five trials for average error, SD, minimum
error, and maximum error. Statistical significance was assessed using ANOVA followed by
Tukey’s HSD (Honestly Significant Difference) post-hoc test, with a p-value threshold set at
0.05. The entire methodology was implemented using Python 3.10.14, with performance
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evaluation and statistical analysis conducted using IBM SPSS Statistics (SPSS 29.0, IBM
Corporation, Armonk, NY, USA). All calculations were performed on a computer with an
8-core AMD Ryzen 7 3700X processor at 3.60 GHz, an NVIDIA GeForce RTX 2080 Ti 11 GB
GPU, and 48 GB of RAM, running on the Windows 10 system.

3. Results and Discussion
3.1. Sensitivity Analysis of the Proposed Cost Function

Sensitivity analysis was conducted to evaluate the influence of each error component
in the proposed cost function on the final results, focusing on static error statistics, dynamic
error statistics, and total error statistics. First, only static error components such as 3D
coordinate errors, distance errors, angle errors, and reprojection errors, and their unique
combinations without dynamic error components, were analyzed, and the results for static
error statistics, dynamic error statistics, and total error statistics are shown in Figure S1.
Then, all static error components, dynamic error components, and all their unique combi-
nations were analyzed, and the results for static error statistics, dynamic error statistics,
and total error statistics are shown in Figure 4.
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Among the static error components and their combinations, the combinations of 3D
coordinate errors, distance errors and reprojection errors and of 3D coordinate errors,
distance errors, angle errors, and reprojection errors produced the best results for static
error statistics (Figure S1a). Both combinations resulted in a mean static error of 0.18 mm.
However, 3D coordinate errors, distance errors, angle errors, and reprojection errors showed
slightly better performance in terms of variability, with a standard deviation of 0.10 mm
compared to 0.11 mm for 3D coordinate errors, distance errors, and reprojection errors.
Additionally, 3D coordinate errors, distance errors, angle errors, and reprojection errors had
a smaller minimum static error of 0.01 mm and a lower maximum static error of 0.41 mm,
indicating more consistent accuracy across different test cases. While combinations such as
distance errors and reprojection errors (mean: 0.23 mm, std: 0.16 mm) and distance errors
and angle errors (mean: 0.32 mm, std: 0.27 mm) also showed relatively low static errors,
3D coordinate errors, distance errors, angle errors, and reprojection errors demonstrated
the best overall performance in terms of both low mean error and low error spread.

When evaluating dynamic error statistics (Figure S1b), the best performance was
achieved by the distance errors and angle errors combination, which produced a mean
dynamic error of 2.12 mm, with a standard deviation of 1.53 mm and a maximum error of
5.34 mm. This was the lowest dynamic error among all combinations, suggesting that this
combination effectively reduced discrepancies in wand distance measurements, which are
critical for dynamic accuracy. However, the relatively high dynamic error across all other
combinations, such as 3D coordinate errors, distance errors and reprojection errors and 3D
coordinate errors, distance errors, angle errors and reprojection errors, highlights that static
error components alone do not fully address dynamic tracking accuracy. To achieve more
robustness and accuracy in tracking within the desired area outside the static frame, it is
essential to incorporate dynamic error components into the cost function.

For total error statistics (Figure S1c), the distance errors and angle errors combina-
tion also yielded the best overall result, with a mean total error of 2.07 mm, a standard
deviation of 1.54 mm, and a maximum error of 5.34 mm. This highlights the strength
of this combination in balancing both static and dynamic error components. In contrast,
while 3D coordinate errors, distance errors, and reprojection errors had lower static error,
the higher dynamic error contributed to a higher total error of 2.60 mm. Similarly, 3D
coordinate errors, distance errors, angle errors, and reprojection errors exhibited a total
error of 2.61 mm, indicating that while these combinations excel in static error, they are
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less effective in achieving robust performance in dynamic error. For improved tracking
accuracy across the entire target area, it is crucial to integrate dynamic error components
into the optimization process.

Following the analysis of the static error components and their combinations, the next
stage of the sensitivity analysis incorporates both static and dynamic error components.
The inclusion of dynamic error components, such as wand distance errors, is crucial for
improving tracking results across the desired area outside the static frame. The results
for the sensitivity analysis, considering all static and dynamic error components and their
unique combinations, are presented in Figure 4.

For the static error statistics (Figure 4a), the proposed cost function achieved the lowest
mean static error of 0.46 mm with an SD of 0.26 mm, a minimum error of 0.01 mm, and
a maximum error of 1.12 mm. This indicates that, although integrating both static and
dynamic errors results in slightly higher static error compared to the optimal combinations
in Figure 4 (which focused solely on static errors), the performance remains strong. By
contrast, the cost function utilizing only reprojection errors [11,12] resulted in a mean static
error of 2.10 mm, and the one using only 3D reconstruction errors [3] resulted in a mean
static error of 2.52 mm. The integration of 3D coordinates and reprojection errors improved
performance, with a mean static error of 0.66 mm. This demonstrates that while using
individual error components like reprojection or 3D reconstruction alone can achieve some
accuracy, integrating multiple error types significantly enhances calibration accuracy.

For dynamic error statistics (Figure 4b), the proposed cost function again demonstrated
superior performance, recording a mean dynamic error of 0.23 mm, an SD of 0.16 mm, a
minimum error of 0.00 mm, and a maximum error of 0.85 mm. The reprojection-only error
component led to a mean dynamic error of 0.26 mm, while the 3D reconstruction-only
component recorded a mean dynamic error of 0.80 mm. The combination of 3D coordinates
and reprojection errors achieved a mean dynamic error of 0.24 mm. This consistency in re-
ducing dynamic error across different static error combinations underscores the robustness
of the proposed method.

For the total error statistics (Figure 4c), the proposed cost function achieved the lowest
mean total error of 0.23 mm, an SD of 0.17 mm, a minimum error of 0.00 mm, and a
maximum error of 1.12 mm, demonstrating the robustness of the proposed method. In
contrast, the reprojection-only cost function resulted in a mean total error of 0.32 mm,
while the 3D reconstruction-only cost function yielded a mean total error of 0.85 mm. The
combination of 3D coordinates and reprojection errors resulted in a mean total error of
0.25 mm.

The sensitivity analysis reveals that while individual error components contribute to
calibration accuracy, their combination in the proposed cost function results in superior
performance. Specifically, 3D coordinate errors are crucial for accurate marker position
reconstruction, but relying solely on them results in higher errors. Ensuring that distances
between markers match known true distances is important, yet distance errors alone are
inadequate. Maintaining geometric relationships between markers enhances structural
integrity, although angle errors also need to be complemented by other error types. Directly
minimizing discrepancies between observed and projected points significantly enhances
accuracy, as demonstrated by the standalone reprojection error component. The best results
were achieved when all static error components were combined with dynamic errors.
This comprehensive approach ensures that all critical aspects of calibration accuracy are
addressed, leading to the most accurate and robust calibration results. The proposed cost
function, integrating 3D coordinate errors, distance errors, angle errors, and reprojection
errors, significantly outperforms methods that use only reprojection or 3D reconstruction
errors combined with dynamic errors. This underscores the importance of a holistic
approach to error minimization in multi-camera calibration systems.
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3.2. Comparative Analysis of the Proposed AIRLS Optimization Method

The performance of the proposed AIRLS optimization method was compared with
those of advanced optimization techniques, specifically SBA and the LM method. The
evaluation criteria included the average static error (encompassing 3D coordinates error,
distance error, angle error), average dynamic error (wand distance error), and combined
average error. All optimization methods were applied with default parameters and a
tolerance of 1 × 10−6 to terminate the optimization process. The results are summarized in
Table 1.

Table 1. Comparison of the proposed AIRLS optimization method with advanced optimization techniques.

Initial Error SBA Optimization [20,21] LM Optimization [22,23] Proposed AIRLS

Static
Error

Dynamic
Error

Average
Error

Static
Error

Dynamic
Error

Average
Error

Static
Error

Dynamic
Error

Total
Error

Static
Error

Dynamic
Error

Total
Error

Average error
(mm) 0.36 2.47 1.42 0.59 0.25 0.42 0.48 0.23 0.36 0.28 0.25 0.27

SD (mm) 0.30 1.73 1.02 0.35 0.18 0.27 0.28 0.15 0.22 0.19 0.25 0.22

Min error (mm) 0.03 0.00 0.02 0.10 0.00 0.05 0.03 0.00 0.02 0.00 0.00 0.00

Max error (mm) 1.43 6.37 3.90 1.26 0.96 1.11 1.05 0.78 0.92 0.74 1.07 0.91

The initial errors, before any optimization, exhibited an average static error of 0.36 mm,
a dynamic error of 2.47 mm, and a total average error of 1.42 mm. Following the application
of SBA optimization, the results indicated an average static error of 0.59 mm, a dynamic
error of 0.25 mm, and a total average error of 0.42 mm. This method exhibited an SD of
0.35 mm for static error and 0.18 mm for dynamic error, with a minimum error of 0.10 mm
and a maximum error of 1.26 mm for static error, and 0.00 mm and 0.96 mm for dynamic
error, respectively. The LM optimization showed improvement, recording an average
static error of 0.48 mm, a dynamic error of 0.23 mm, and a total average error of 0.36 mm.
The SDs for static and dynamic errors were 0.28 mm and 0.15 mm, respectively. The
minimum and maximum static errors measured 0.03 mm and 1.05 mm, respectively, while
the dynamic errors ranged from 0.00 mm to 0.78 mm. The proposed AIRLS optimization
method demonstrated superior performance compared to both SBA and LM techniques.
The average static error was reduced to 0.28 mm, the dynamic error to 0.25 mm, and the
total average error to 0.27 mm. The SD for the static error was 0.19 mm, and for the dynamic
error, it was 0.25 mm. The minimum static error was 0.00 mm, with a maximum of 0.74 mm,
and the dynamic errors ranged from 0.00 mm to 1.07 mm.

While other methods significantly reduced the dynamic error, they increased the
static error. This indicates unbalanced optimization, with a bias towards minimizing
dynamic error at the cost of static error accuracy, potentially leading to suboptimal camera
parameters in a multi-camera system. Unlike these methods, the proposed AIRLS method
effectively balances the optimization of both static and dynamic errors. This balanced
approach ensures the simultaneous minimization of both types of errors, contributing to
more accurate and robust optimization of the camera parameters. By iteratively adjusting
the weights of the error components, the method prevents the dominance of either static or
dynamic errors in the optimization process. This balanced and comprehensive approach
consequently enhances the overall performance and accuracy of the multi-camera system.

The results clearly demonstrate that the proposed AIRLS optimization method sur-
passed other techniques in minimizing static and total errors, thereby achieving superior
overall accuracy. The integration of the proposed cost function with the AIRLS method
led to a substantial enhancement, especially in diminishing static error, which is crucial
for precise multi-camera calibration. The inclusion and effective weighting of all static
error components (3D coordinates, distances, angles, reprojection errors) in the optimiza-
tion process were instrumental in this improved performance. Dynamic error remained
relatively constant across all methods, indicating consistent wand distance measurements.
Nevertheless, the proposed method’s balanced strategy in reducing both static and dy-
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namic errors underscores its robustness in various calibration scenarios. The statistical
analysis of errors, which includes average error, SD, minimum, and maximum values,
further validates the precision and reliability of the AIRLS method for multi-camera calibra-
tion. Overall, the comparative analysis highlights the efficacy of the AIRLS optimization
method in refining camera parameters, thus enhancing high-accuracy 3D reconstruction
and tracking applications.

The analysis of the intrinsic, extrinsic, and distortion parameters for each camera
in the multi-camera system, before and after optimization using AIRLS, shows marked
improvements in calibration accuracy. Key parameters of each camera before and after
optimization are concisely summarized in Table 2.

Table 2. Camera parameters for each camera before and after optimization using AIRLS.

Parameter
Camera 1

before
Optimization

Camera 1
after

Optimization

Camera 2
before

Optimization

Camera 2
after

Optimization

Camera 3
before

Optimization

Camera 3
after

Optimization

Camera 4
before

Optimization

Camera 4
after

Optimization

Intrinsic
parameters

fx 1232.63 1232.42 1270.59 1378.36 1278.43 1277.18 1223.13 1139.12

fy 1234.91 1240.25 1270.71 1371.16 1272.48 1280.75 1221.88 1149.17

s 11.3 11.6 2.4 5.7 −18.9 −9.8 −4.29 −7.78

u0 637.0 598.52 590.84 722.38 607.11 620.52 595.02 592.75

v0 529.83 510.28 481.85 389.02 556.06 473.49 513.53 578.96

Extrinsic
parameters

Rx −0.6073 −0.6307 −0.7438 −0.7053 −0.8185 −0.8134 −0.8402 −0.8358

Ry 0.7929 0.7758 0.664 0.7089 0.5744 0.5813 0.5216 0.5289

Rz 0.0492 0.0166 −0.0767 0.0056 0.0134 0.0218 −0.1483 −0.1474

tx −67.74 15.25 51.0 −261.34 46.77 22.49 79.61 82.05

ty 79.79 121.24 154.34 371.23 46.44 201.87 26.59 −120.11

tz 2557.62 2568.86 2938.49 3193.72 2354.75 2365.91 2714.54 2535.75

Distortion
coefficients

k1 9.09 × 10−9 4.44 × 10−9 −6.7 × 10−8 6.78 × 10−8 −2.2 × 10−9 3.64 × 10−8 −1.4 × 10−7 2.06 × 10−6

k2 −5.41 × 10−13 −7.7 × 10−13 2.29 × 10−12 −2.37 × 10−12 1.53 × 10−14 −1.43 × 10−13 6.75 × 10−12 −1.14 × 10−10

k3 5.37 × 10−18 7.33 × 10−18 −1.72 × 10−17 1.13 × 10−17 1.26 × 10−19 3.51 × 10−19 −6.84 × 10−17 1.47 × 10−15

p1 −1.91 × 10−7 −1.08 × 10−6 8.39 × 10−7 −3.58 × 10−6 2.69 × 10−9 4.44 × 10−7 1.27 × 10−6 −1.4 × 10−5

p2 5.96 × 10−8 1.31 × 10−7 1.65 × 10−7 −1.14 × 10−6 −1.51 × 10−7 −7.37 × 10−6 2.57 × 10−7 1.76 × 10−5

For Camera 1, the focal lengths fx and fy decreased slightly after optimization, indi-
cating a refinement of the camera’s internal geometry. The skew parameter s remained
relatively constant, suggesting minimal corrections were needed for the angle between
the image axes. The principal point coordinates u0 and v0 exhibited minor adjustments,
likely correcting minor displacements from the image center. These adjustments in intrinsic
parameters suggest more precise camera calibration, enhancing imaging accuracy. Camera
2 experienced an increase in the focal lengths fx and fy after optimization, which could
be attributed to improved lens property estimations. The skew parameter s increased
slightly, indicating a minor adjustment in the angle between the image axes. The principal
point coordinates u0 and v0 were adjusted to more accurately center the image. These
changes reflect a more refined estimation of the intrinsic properties, resulting in improved
calibration accuracy. For Camera 3, the focal lengths fx and fy exhibited minor changes,
reflecting refined estimations of the intrinsic properties. The skew parameter s decreased,
correcting any angular deviations between the image axes. The principal point coordinates
u0 and v0 were adjusted to correct the principal point offset. These adjustments indicate a
precise calibration of the camera’s internal geometries. Camera 4 showed a decrease in the
focal lengths fx and fy, indicating enhanced lens calibration accuracy. The skew parameter
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s decreased slightly, suggesting a minor adjustment in the alignment of the image axes. The
principal point coordinates u0 and v0 were significantly adjusted to correct the image center.
These significant changes in intrinsic parameters post-optimization can be attributed to
several factors. First, the initial camera parameters were computed using the normalized
DLT method, which is known for its limitations in handling lens distortion and sensitivity
to noise. DLT assumes a linear projection model and does not account for nonlinear dis-
tortions, leading to less accurate initial intrinsic estimates [17]. Additionally, the AIRLS
method employed in the optimization process incorporates a combined cost function that
accounts for both static and dynamic error components, along with regularization, which
reduces overfitting and ensures a more robust parameter estimation. By refining these
initial estimates through iterative optimization and integrating error minimization from
multiple error sources, the camera’s intrinsic properties were corrected to reflect a more
accurate and precise model of the internal camera geometry.

The extrinsic parameters also showed notable improvements. Camera 1′s rotation
matrix R and translation vector T exhibited minor adjustments, indicating improved align-
ment of the camera’s orientation and position within the multi-camera setup. The minor
adjustments to rotation angles and translation components suggest the fine-tuning of the
camera’s spatial configuration. Camera 2 experienced significant changes in its rotation
matrix R and translation vector T, indicating a considerable realignment of the camera’s
orientation and position. This realignment could be attributed to the correction of the initial
miscalibration post-optimization. Camera 3′s rotation matrix R and translation vector T
displayed slight adjustments, reflecting minor corrections in the camera’s orientation and
position. These changes suggest that the initial calibration was relatively accurate but
required fine-tuning. Camera 4 exhibited significant modifications in its rotation matrix
R and translation vector T, indicating substantial corrections to the camera’s spatial con-
figuration. The likely correction of initial misalignments led to a more accurate overall
setup. The alterations in extrinsic parameters across all cameras indicate that the optimiza-
tion process effectively enhanced the spatial configuration of the multi-camera system,
achieving improved alignment and positioning. The refinement of distortion coefficients
across all cameras signifies that the lens distortion models were substantially improved,
leading to enhanced image quality and diminished distortion artifacts. Specifically, Camera
1′s distortion coefficients underwent slight modifications, highlighting minor corrections
in its lens distortion model. Camera 2 displayed substantial changes in its distortion
coefficients, indicating major corrections in the lens distortion model. Adjustments in
Camera 3′s distortion coefficients reflect enhancements in its lens distortion model, while
significant alterations in Camera 4′s distortion coefficients point to major corrections in its
lens distortion model.

Overall, the optimization process for camera parameters, as detailed in Table 2, clearly
demonstrates that the proposed AIRLS method significantly enhances the accuracy of the
intrinsic, extrinsic, and distortion parameters of the multi-camera system. The fine-tuning
of intrinsic parameters augments the internal geometry of each camera, while adjustments
in extrinsic parameters optimize spatial configuration and alignment. The refined distortion
coefficients contribute to reduced lens distortions, thereby improving image quality.

In addition to the data presented in Table 2, further insights from the supplementary
Table S1 allow for a deeper understanding of the optimization outcomes when comparing
the AIRLS method with the LM approach. Table S1 highlights the intrinsic, extrinsic, and
distortion parameter changes for each camera after optimization using both methods. The
results from Table S1 reveal a consistent trend where both methods improve the calibration
accuracy, but the AIRLS method generally provides finer adjustments, particularly in
handling intrinsic parameters and minimizing lens distortion errors. This trend of more
precise corrections extends across all cameras, where AIRLS offers a more controlled
reduction in parameter deviations, particularly for the skew parameter s and the principal
point coordinates u0 and v0, as demonstrated by smaller post-optimization adjustments
in AIRLS.
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Furthermore, the analysis of the five error components in the cost function
(Equations (10)–(12), (14) and (15)) in Table S2 provides crucial insights into which aspects
of the calibration process benefited the most from the AIRLS optimization. The results
demonstrate that all error components showed improvements after optimization, with the
most significant reduction observed in the dynamic wand distance error (Equation (15)).
Initially averaging 2.47 mm, the dynamic error dropped dramatically to 0.25 mm post-
optimization. This substantial reduction is vital, as it directly impacts the accuracy of
dynamic calibration, enhancing the overall tracking performance across the target space.
In terms of static errors, the 3D coordinate error (Equation (10)) experienced a marked
improvement, decreasing from an average of 0.61 mm to 0.40 mm. This reduction un-
derscores the AIRLS method’s efficacy in refining 3D reconstructions of marker positions.
The reprojection error (Equation (14)) also saw significant improvement, with the error
reduced from 0.16 mm to 0.12 mm, which reflects the better projection accuracy of 3D
points onto the 2D image plane—an important factor for precise image-based tracking.
The distance error (Equation (11)) and angle error (Equation (12)) showed more moderate
but still notable improvements. The distance error decreased from 0.31 mm to 0.28 mm,
while the angle error was reduced from 0.18 mm to 0.15 mm. These reductions contribute
to better spatial relationships among the markers, further strengthening the calibration’s
overall precision. The analysis confirms that while dynamic calibration experienced the
greatest improvement, the reductions in 3D coordinate error and reprojection error also
play crucial roles in enhancing static calibration accuracy. The comprehensive approach of
the AIRLS method, which balances improvements across all error components, ensures a
robust and reliable multi-camera calibration system that minimizes overfitting and delivers
high-precision results.

The results in Table 3 offer a detailed comparison of the proposed multi-camera
calibration method against the traditional normalized DLT and other related research
methods. Each method underwent evaluation based on the average values from five trials,
encompassing average error, SD, minimum error, and maximum error, with statistical
significance determined using ANOVA and post-hoc tests.

Table 3. Comparative analysis of multi-camera calibration techniques using 390 mm and 500 mm
commercial calibration wands.

Normalized
DLT Calibration

(1) [24,25]

Orthogonal Wand
Triad Calibration

(2) [10,11]

3-Axis Frame and
Wand Calibration

(3) [2,3]

Proposed
Calibration (4) ANOVA Results Post-Hoc Test

390 mm wand
(mm)

Average 5.50 ± 1.80 3.45 ± 0.15 1.21 ± 0.17 0.42 ± 0.09 F = 31.98, p = 0.00 (1) > (2) > (3) > (4)
SD 3.02 ± 0.56 2.06 ± 0.15 1.03 ± 0.23 0.32 ± 0.10 F = 69.48, p = 0.00 (1) > (2) > (3) > (4)

Min 0.01 ± 0.01 0.01 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 F = 2.67, p = 0.08 (1), (2), (3), (4)
Max 11.89 ± 2.67 7.65 ± 0.51 3.88 ± 1.05 1.48 ± 0.64 F = 46.39, p = 0.00 (1) > (2) > (3) > (4)

500 mm wand
(mm)

Average 6.73 ± 1.83 3.77 ± 0.44 1.74 ± 0.07 0.46 ± 0.13 F = 42.01, p = 0.00 (1) > (2) > (3) > (4)
SD 3.77 ± 0.95 2.46 ± 0.27 1.43 ± 0.19 0.43 ± 0.12 F = 39.76, p = 0.00 (1) > (2) > (3) > (4)

Min 0.36 ± 0.62 0.01 ± 0.01 0.02 ± 0.05 0.00 ± 0.00 F = 1.56, p = 0.24 (1), (2), (3), (4)
Max 14.22 ± 3.27 9.29 ± 1.14 5.55 ± 0.48 1.82 ± 0.29 F = 45.65, p = 0.00 (1) > (2) > (3) > (4)

The proposed method demonstrated exceptional accuracy when validated using
the 390 mm commercial calibration wand, achieving an average error of 0.42 ± 0.09 mm.
This performance was significantly superior to the errors recorded for the normalized DLT
(5.50 ± 1.80 mm), related research 1 (3.45 ± 0.15 mm), and related research 2 (1.21 ± 0.17 mm).
The ANOVA results (F = 31.98, p = 0.00) confirm the statistical significance of these differ-
ences, indicating the superior accuracy of the proposed method.



Photonics 2024, 11, 867 19 of 22

Similarly, with the 500 mm commercial calibration wand, the proposed method
recorded an average error of 0.46 ± 0.13 mm, surpassing the performance of the nor-
malized DLT (6.73 ± 1.83 mm), related research 1 (3.77 ± 0.44 mm), and related research 2
(1.74 ± 0.07 mm). The ANOVA results (F = 42.01, p = 0.00) reinforce the statistical signifi-
cance, underscoring the method’s robust performance across different validation tools.

Additionally, the analysis of SD across trials revealed that the proposed method not
only achieved lower mean errors but also exhibited less variability in its measurements. For
the 390 mm commercial calibration wand, the proposed method’s SD was 0.32 ± 0.10 mm,
compared to the normalized DLT’s 3.02 ± 0.56 mm, related research 1′s 2.06 ± 0.15 mm,
and related research 2′s 1.03 ± 0.23 mm. The 500 mm commercial calibration wand results
mirrored this trend, with the proposed method exhibiting an SD of 0.43 ± 0.12 mm. This
lower SD emphasizes the proposed method’s robustness and reliability, ensuring consistent
results across different trials and conditions.

Minimum errors across all methods approached zero, demonstrating effective calibra-
tion capabilities. However, the proposed method consistently recorded significantly lower
maximum errors (390 mm commercial calibration wand—1.48 ± 0.64 mm; 500 mm com-
mercial calibration wand—1.82 ± 0.29 mm) compared to the normalized DLT and related
research methods. This reflects the proposed method’s superior capability in handling
outliers and extreme cases, offering a more stable and accurate calibration.

The discrepancy in errors between the validations using the 390 mm and 500 mm
commercial calibration wands can likely be attributed to the varying distances between
marker centers. The longer distance in the 500 mm commercial calibration wand likely led
to a broader tracking zone, increasing the 3D triangulation error across all methods. Despite
this, the increase in error for the proposed method was less pronounced, demonstrating its
robustness in maintaining accuracy even within a broader tracking zone. This robustness
is crucial as it suggests that the proposed method can adapt more effectively to varying
calibration scenarios than the other methods.

The superior performance of the proposed method is attributed to its comprehensive
cost function, which integrates multiple error components—3D coordinate, distance, angle,
and reprojection errors for static errors, alongside dynamic wand distance error. This holis-
tic approach significantly enhances the accuracy of calibration and 3D data triangulation
by providing a more comprehensive assessment of potential discrepancies. Historically,
simpler cost functions were often employed, which, while simpler to optimize, typically
resulted in lower calibration accuracy. The complexity of this comprehensive cost function
could potentially lead to an imbalance during the optimization process, wherein certain
error components might dominate, causing inaccuracies. This challenge was effectively
addressed by utilizing the AIRLS optimization method. AIRLS ensures balanced optimiza-
tion by appropriately weighting both static and dynamic error components, preventing
any single component from dominating the process. This balance mitigates the risk of
overfitting or underfitting specific error types, thereby leading to more precise and ro-
bust calibration outcomes. The combination of the comprehensive cost function and the
AIRLS optimization method represents a significant advancement in achieving precise
multi-camera calibration.

Although the proposed method has its advantages, it shares some common limitations
with other calibration techniques, such as the significant impact of input data quality on
calibration accuracy. Errors may arise from poor marker detection or noise. Environmental
factors, including lighting conditions and reflections, may also affect the precision of the
calibration. Additionally, the method presupposes the rigidity of the calibration setup,
which might not be consistent in all practical scenarios. Furthermore, the complexity of the
proposed method, particularly due to the intricate cost function and AIRLS optimization,
leads to longer computational time compared to other multi-camera calibration methods.
While this additional time contributes to improved calibration accuracy by addressing
key limitations in existing methods, it may be a concern in applications requiring faster
performance or limited computational resources. Addressing this issue in future work
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could improve the method’s applicability across a wider range of resource-constrained
settings. Additional research on regularization techniques and parameter correlation
minimization would also be necessary to further enhance the robustness of the method.
These limitations should be taken into account when implementing the proposed method
across various environments and use cases.

4. Conclusions

This study introduces a novel multi-camera calibration method that merges static
and dynamic calibration methods to improve accuracy and robustness. By integrating a
comprehensive cost function with an AIRLS optimization method, the proposed technique
adeptly balances static and dynamic error components, enabling precise 3D reconstruction
and tracking. Extensive validation with 390 mm and 500 mm commercial calibration
wands confirms that our method significantly outperforms traditional and other recently
proposed methods. Despite some commonly shared limitations concerning data quality,
environmental factors, and rigidity assumptions, the proposed method marks a notable
advancement in multi-camera calibration, offering a dependable and efficient approach
for complex calibration tasks. It provides a robust and efficient solution for high-precision
applications across various fields, including optical motion capture, robotics, and surgical
navigation systems.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/photonics11090867/s1. Figure S1. Sensitivity analysis of static error com-
ponents of the proposed cost function. (a) Analysis of static errors based on 3D coordinates, distance,
angle, and reprojection errors. (b) Dynamic error analysis based on the dynamic distance errors
between wand markers. (c) Combined analysis of static and dynamic errors; Table S1. Comparison of
camera parameters before and after optimization using Levenberg-Marquardt (LM) and Adaptive
Iter-atively Reweighted Least Squares (AIRLS) methods. Below each parameter in brackets, the
difference from the parameter before optimization is indicated; Table S2. Comparison of initial and
post-optimization errors for each cost function component using the proposed AIRLS method.
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Abbreviations

AIRLS Adaptive iteratively reweighted least squares
DLT Direct Linear Transformation
SBA Sparse Bundle Adjustment
LM Levenberg–Marquardt optimization method
P Projection matrix
K Intrinsic matrix
R Rotation matrix
T Translation vector
F Fundamental matrix
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fx, fy Focal lengths of the camera along the x and y axes
s Skew coefficient
u0, v0 Principal point coordinates
Rx, Ry, Rz Rotation angles around the x, y, and z axes
tx, ty, tz Translation vector along the x, y, and z axes
k1, k2, k3 Radial distortion coefficients
k4, k5 Tangential distortion coefficients
Error3D Static 3D coordinate error
Errordistance Static distance error
Errorangle Static angle error
Errorreprojection Static reprojection error
Errordynamic distance Dynamic wand distance error
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