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Abstract: We report on a mechanically Q-switched Tb:LiYF4 laser at 544 nm based on an
optical chopper. With appropriate chopper settings, 521 µJ, 86 ns green pulses are generated
at 1 kHz, corresponding to a peak power of 6.1 kW. To the best of our knowledge, this is
the highest peak power generated using Tb:LiYF4 lasers to date. Numerical simulations
are carried out and agree well with the experimental results, which show that the pulse
energy can be further scaled to the millijoule level and the peak power to over 10 kW.
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1. Introduction
Recently, many efforts have been devoted to the development of green lasers owing

to their wide scientific and industrial applications, such as material processing, medical
treatment, optical communication and laser imaging [1–6]. Various methods have been
proposed for achieving green light emissions, including nonlinear frequency conversion
and direct laser emissions from rare-earth-doped (Pr3+, Tb3+, Dy3+, Ho3+ and Er3+) gain
media [7–9]. Compared with nonlinear-frequency-conversion-based light sources, in which
complex laser designs are required, directly emitting green solid-state lasers are potentially
more attractive due to their compactness, simplicity and higher efficiency. To date, based
on rapidly developed frequency-doubled optically pumped semiconductor lasers (2ω-
OPSLs), the highest continuous-wave (CW) average power from Pr3+-doped lasers can
reach 4.3 W [10], while this is 1.25 W for Tb3+-doped lasers [11].

For a number of high-precision applications, to avoid collateral damage to the periph-
eral elements, green pulsed lasers with a short pulse duration and a high peak power are
desired prior to CW operation. Q-switching has been demonstrated to be a common and
reliable technique for generating short and intense pulses. Among all of the rare earth
ions with green transition, trivalent terbium (Tb3+) is a good candidate for Q-switched
laser applications owing to its long upper-state lifetime and low non-radiative loss, which
allow for large energy storage [12]. Meanwhile, the upper 5D4 state of Tb3+ does not
suffer a concentration-quenching effect, indicating that the substrate crystals can be highly
doped [12]. The high doping concentration can further enhance the energy storage capabil-
ity of Tb3+-doped lasers. To date, several works concerning Q-switched Tb3+-doped lasers
have been reported. Chen et al. realized the first passively Q-switched Tb3+-doped lasers in
the green spectral region by using a single-layer graphene saturable absorber (SA), which
produced 2.9 µs, 19.2 µJ Q-switched pulses at 38.7 kHz, corresponding to a peak power
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of 6.6 W [11]. Afterwards, with a Co2+:MgAl2O4 crystal as the SA, the output peak power
was further scaled to hundreds of watts with a sub-µs pulse duration [13,14].

Compared with passive Q-switching, active Q-switching has the clear advantages of a
controllable pulse repetition rate, a larger output pulse energy and higher peak power. Em-
ploying an acousto-optic modulator (AOM) [15] and an electro-optic modulator (EOM) [16],
actively Q-switched Tb3+-doped lasers have been demonstrated. Specifically, the AOM-
based Q-switched laser could deliver 0.15 mJ pulses at 3 kHz with a peak power of 0.58 kW,
while the EOM-based Q-switched laser could generate 0.2 mJ pulses at 200 Hz with a higher
peak power of 0.8 kW. However, in addition to their high costs and bulky systems, the
insertion of the AOM and EOM will cause an additional cavity loss, which will degrade
the laser performance. Considering these deficiencies, more efforts are required to address
the need for an economic and compact Q-switched Tb3+-doped laser with a high output
peak power.

Mechanical Q-switching, especially optical chopper Q-switching, represents a simple
approach to realizing high-peak-power pulsed operation [17–20]. Mechanical Q-switches
comprise inexpensive and readily available components which are unsusceptible to laser-
induced damage and maintenance-free. More importantly, when working in a high-Q state,
mechanical Q-switches exhibit no cavity insertion loss. This paper will show our recent
efforts towards developing a mechanically Q-switched Tb:LiYF4 laser. The laser adopts an
optical chopper as the Q-switch and generates green pulses with a pulse energy of 521 µJ
and a pulse duration of 86 ns at 1 kHz, corresponding to a peak power of 6.1 kW. To the
best of our knowledge, this is the highest peak power generated using Tb:LiYF4 lasers
to date. Numerical simulations agree well with the experimental results and predict the
generation of millijoule pulses with a peak power in excess of 10 kW.

2. The Experimental Setup
A schematic of the experimental setup is depicted in Figure 1. A hemispherical cavity

is constructed, which is composed of a planar input mirror (IM, HT@488 nm, HR@544 nm)
and a concave output coupler (OC, HR@488 nm). The OC has a transmittance of 3.6%
at 544 nm and a radius of curvature of 100 mm. The pump source is a commercial 2ω-
OPSL (Coherent Genesis CXSTM) that can output a maximum power of 3 W at 488 nm. A
half-wave plate is inserted to adjust the polarization of the pump light for optimization of
the laser’s efficiency. The pump’s light is focused onto a commercial c-cut 15% Tb:LiYF4

(Tb:YLF, EKSMA Optics, Vilnius, Lithuania) crystal using a plano-convex lens (f = 500 mm),
resulting in a beam radius of 77 µm with a Rayleigh range of 34.5 mm. The Tb:LiYF4 crystal
has a length of 30 mm and an aperture of 5 mm, with both surfaces anti-reflection-coated,
and is placed as close as possible to the IM. The single-pass absorption efficiency of
the pump light in the gain crystal is measured to be 56%. Considering the second-pass
absorption benefiting from the high reflectance at 488 nm of the OC, a total absorption
efficiency of 81% can be obtained in the CW operation state. Residual light from the pump
is blocked using a long-pass filter (FEL0500, Thorlabs, Newton, NJ, USA). An optical
chopper is placed between the crystal and the OC. In the experiment, we select two types
of choppers (Chopper 1: Thorlabs MC1F100, a 50% duty cycle, frequency adjustable from
200 Hz to 10 kHz; Chopper 2: Thorlabs MC1F10A, adjustable 10-slot blade with a 0–50%
duty cycle, frequency adjustable from 20 Hz to 1 kHz) and study the influences of the
chopper frequency and duty cycle on the laser performance. To achieve good mode-
matching between the pump and the laser modes, the total cavity length is adjusted to
approximately 100 mm. The corresponding TEM00-mode beam radius is calculated to be
71 µm, indicating good spatial overlap between the pump mode and the laser mode.
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Figure 1. Schematic of the mechanically Q-switched Tb:LiYF4 laser. λ/2: half-wave plate; IM: input
mirror; OC: output coupler.

The temporal characteristics of the Q-switched pulses are monitored using a silicon-
based photodetector (Thorlabs DET10A/M, Newton, NJ, USA, rise time = ~1 ns) con-
nected to a digital oscilloscope (Keysight, MSOX3024T, Santa Rosa, CA, USA, bandwidth:
200 MHz). The spectrum is measured using an optical spectrum analyzer (Ocean Optics,
USB2000, Orlando, FL, USA).

3. Results and Discussion
The dependence of the average output power on the incident pump power in different

Q-switched states is illustrated in Figure 2a. It is seen that with a chopper frequency of
10 kHz and a duty cycle of 50%, the output power increases linearly with the incident
pump power without the appearance of saturation. A maximum output power of 874 mW
is obtained, while the corresponding slope efficiency reaches 35%. To the best of our
knowledge, this is the highest average power generated using Q-switched Tb:LiYF4 lasers
to date, demonstrating the good advantages of optical chopper Q-switching. When the
chopper frequency is reduced to 1 kHz, the maximum output power and slope efficiency
decrease to 685 mW and 27%, respectively. Meanwhile, multiple pulses are observed at
the trailing edge of the main pulse, as shown in the middle panel of Figure 2b. Generally,
this multi-pulse phenomenon is caused by the long switching time of the Q-switch [21]. To
mitigate the multi-pulse problem, we adjust the duty cycle to 10% while maintaining the
chopper frequency at 1 kHz. As a result, the maximum output power and slope efficiency
drop to 521 mW and 21%, respectively, whereas the trailing pulses disappear, as shown
in the bottom panel of Figure 2b. However, due to the inherent mechanical instability of
optical choppers, significant pulse-to-pulse amplitude fluctuations are observed. With a
chopper frequency of 1 kHz and a duty cycle of 10%, the normalized root mean square
(RMS) deviation in the pulse amplitude is calculated to be 24.4%, while it is 28.3% and 21.6%
for the cases of 1 kHz (50%) and 10 kHz (50%), respectively. For comparison, we also present
the results in the CW state in Figure 2a, which are characterized by a maximum output
power of 1.02 W and a slope efficiency of 41%. Taking into account the absorption efficiency
of 81%, the slope efficiency with respect to the absorbed pump power can reach 51%.

Figure 3a depicts the measured pulse duration as a function of the incident pump
power. As the pump power increases, the pulse duration gradually decreases, while a
lower chopper frequency or a smaller duty cycle favors a shorter pulse duration. This is
due to the fact that a higher pump power, a lower chopper frequency or a smaller duty
cycle can help store more energy in the gain medium and thus provide a higher roundtrip
gain, which, in turn, generates a laser pulse for fewer round trips [22]. The shortest pulse
duration of 86 ns is obtained with a chopper frequency of 1 kHz and a duty cycle of 10%.
Note that to prevent optical damage to the coatings due to the high intra-cavity pulse
energy, the chopper frequency and the duty cycle in the experiment are kept above 1 kHz
and 10%, respectively. Figure 3b,c present the corresponding single-pulse waveform and
spectrum, respectively. The center wavelength is located at 544 nm. No noticeable change
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in the laser wavelength is observed in the experiment regardless of the chopper frequency
or duty cycle.
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quencies and duty cycles. (b) Pulse waveform and (c) corresponding spectrum at shortest output
pulse duration.

To explore the peak power scalability, a further discussion is carried out based on the
setting of 1 kHz and a 10% duty cycle. Figure 4a depicts the evolution of the experimentally
obtained pulse energy with the incident pump power. Under the maximum available
pump power, the largest pulse energy reaches 521 µJ. The corresponding calculated peak
power is shown in Figure 4b, which increases with an increasing pump power, generating
a record peak power of 6.1 kW. Compared with the sub-kW peak power from AOM- and
EOM-based Q-switched Tb:LiYF4 lasers [15,16], the output peak power from this laser
is greatly enhanced. For a better understanding of the pulse dynamics in mechanically
Q-switched Tb:LiYF4 lasers, numerical simulations are also carried out. The intracavity
photon density ϕ and population inversion density n can be described using the coupled
differential equations [23]

dϕ
dt = 2σnlϕ

tr
− ϕ

tc
dn
dt = −γσcϕn

, (1)

where σ = 2 × 10−21 cm2 is the stimulated emission’s cross-section [12], c is the speed of
light in a vacuum, l is the length of the gain crystal, and tr = 2l’/c is the roundtrip transit
time in the laser cavity of length l’. The inversion reduction factor γ is set to 1 due to the
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rapid multi-phonon relaxation of the lower 7F5 state of Tb3+ [24]. The photon decay time tc

can be expressed as

tc =
tr[

ln
(

1
R

)
+ L

] , (2)

where R is the OC’s reflectivity, and L = 5% is the roundtrip dissipative optical loss. To
determine the initial and final population inversion densities ni and nf relative to the pulse
build-up process, an additional equation is required to describe the accumulation behavior
of n during the time interval between sequent pulses, which can be written as [25]

dn
dt

= KPin − n
τ

, (3)

where Pin is the incident pump power, and τ = 4.9 ms is the fluorescence lifetime [16]. K
= ηnt/τPth is a pumping parameter, in which η is the absorption efficiency and Pth is the
threshold pump power. nt is the threshold inversion density and can be obtained using

nt =
1

2σl

[
ln
(

1
R

)
+ L

]
. (4)Photonics 2025, 12, x FOR PEER REVIEW 6 of 8 
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After numerically solving the above equations, the single pulse energy and peak
power can be calculated by using the formulas [23]

E =
hvA
2σγ

ln
(

1
R

)
ln

(
ni
n f

)
, (5)

P =
Alhv
γtr

ln
(

1
R

)[
ni − nt − nt ln

(
ni
nt

)]
(6)

where A is the beam’s cross-section area, and hv is the laser photon energy. Generally, Pth
is treated as a constant. Figure 4 shows the corresponding calculated results according to
Equations (5) and (6), which are labeled Model 1. In order to bring the simulation into
better agreement with the experiment, here, we introduce a dimensionless coefficient α and
assume that Pth = α × Pin + P0. This assumption can be explained by the possibility that
as the incident pump power Pin increases, the thermal lens effect will become severe and
cause a mode mismatch between the pump and the laser beam, which will result in an
increase in the threshold pump power Pth [26,27]. The corresponding calculated results,
labeled Model 2, are also shown in Figure 4 for comparison. It is seen that Model 2 is more
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consistent with the experimental results than Model 1, exhibiting a good tool for studying
the Q-switched pulse dynamics.

The evolution of the population inversion density n during the pulse build-up process
under the maximum pump power is illustrated in Figure 5a. It is seen that n decreases
slowly first and then rapidly. When n drops to the threshold inversion density nt, the
instantaneous power coupled from the cavity reaches its peak value. In other words,
the maximum intracavity photon density ϕ is obtained when the gain is equal to the
loss. Beyond the threshold point, the instantaneous power dies out quickly, generating
a Q-switched pulse with a pulse duration of 79 ns and a peak power of 6.7 kW. The
slight inconsistency with the experiment may be caused by pulse-to-pulse instability in
the experiment or inaccuracies in the simulation parameters. Afterwards, the population
inversion density n starts to recover under the pump radiation and enters the next cycle.
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The output pulse characteristics at different chopper frequencies under a fixed pump
power of 3 W are numerically investigated based on Model 2, as illustrated in Figure 5b.
With an increase in the chopper frequency, the pulse energy decreases, while the pulse
duration increases almost linearly. As a result, the peak power decreases rapidly, ranging
from 24 kW to 70 W. A log horizontal scale is used in the peak power plot due to its large
span. At a chopper frequency of 500 Hz, the output pulse energy can reach 1 mJ with a
pulse duration of 42 ns, corresponding to a peak power of 24 kW. Such an intense pulse is
promising for a wide range of applications.

4. Conclusions
In conclusion, we have demonstrated a mechanically Q-switched Tb:LiYF4 laser based

on an optical chopper. At a chopper frequency of 1 kHz and a duty cycle of 10%, the laser
can generate green pulses at 544 nm with a pulse energy of 521 µJ and a pulse duration of
86 ns, corresponding to a peak power of 6.1 kW, which constitutes the highest-peak-power
pulses ever achieved using Tb:LiYF4 lasers to date. Further improvement in the laser
performance can be expected by optimizing the coatings and choppers and increasing the
pump power. When the chopper frequency and the duty cycle are increased to 10 kHz
and 50%, respectively, a record average power of 874 mW is achieved. A numerical model
is developed for a better understanding of the pulse dynamics, of which the accuracy
has been experimentally demonstrated. The simulation results show that it is feasible to
generate millijoule pulses with the peak power exceeding 10 kW. This work provides an
effective way to develop high-peak-power green lasers, within which the simple, compact
and economic setup should be of great interest for many applications.
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