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Abstract: A block-based mode decomposition (BMD) algorithm is proposed in this paper,
which reduces computational complexity and enhances noise resistance. The BMD uses
randomly selected sample blocks of the beam images to restore mode coefficients instead
of all pixels in the beam images. It allows for blocks of any shape, such as triangles.
In noise-free simulations, compared to the spatially degenerated mode decomposition
(SPMD) algorithm, the BMD algorithm requires only 1% of the multiplication operations,
thereby significantly increasing the computational efficiency while maintaining a high
mode decomposition accuracy. In simulations with noise, increasing the signal-to-noise
ratio (SNR) reduces decomposition errors across all configurations. The amplitude error
of BMD can outperform SPMD by 15 dB. The experimental results show that BMD has a
better performance than SPMD.

Keywords: mode decomposition; few-mode fibers; fiber characterization

1. Introduction
Few-mode fibers (FMFs) have attracted widespread attention from researchers owing to

their potential application prospects in high-power fiber lasers [1–4], mode-division multi-
plexing transmission systems [5–7], imaging [8,9], and nonlinear optics research [10–12], etc.
The characteristics of the supported modes in FMFs directly affect the optical field distribu-
tion and overall properties of the propagating beam. Therefore, accurate measurement and
characterization of the modal evolution in FMFs are of utmost importance.

Mode decomposition based on numerical analysis methods typically requires only one
or two charge coupled device(CCD) or complementary metal oxide semiconductor(CMOS)
cameras to capture near-field or far-field images at the fiber output. These images are then
processed using computer algorithms to solve for the mode coefficients. The proposed nu-
merical mode decomposition (MD) methods can be broadly categorized into several types,
including the Gerchberg–Saxton algorithm [13], linear search algorithm [14], stochastic
parallel gradient descent algorithm [15,16], deep learning algorithm [17–20], and inverse
matrix analysis algorithm [21]. The first three algorithms—Gerchberg–Saxton, linear search,
and stochastic parallel gradient descent—are iterative algorithms whose accuracy and
convergence time are highly dependent on the choice of initial values. Moreover, as iter-
ative algorithms, their convergence time increases rapidly with the number of modes to
be decomposed.
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Non-iterative algorithms, such as neural network-based mode decomposition methods,
have been proposed as an alternative. These methods offer significantly faster decomposi-
tion rates than iterative algorithms and generally have a higher accuracy. As a result, deep
learning methods have also been applied to mode decomposition problems. However, they
require high-performance computing resources with a substantial amount of memory, and
lengthy neural network training times.

In 2020, Manuylovich et al. introduced a novel MD method based on matrix opera-
tions [21]. This approach breaks down the comprehensive nonlinear MD problem into two
parts: a linear step (solving a system of linear equations) and a straightforward nonlinear
step (solving a simple system of nonlinear equations). As a result, this matrix operation
method shows significant promise for both scientific and industrial applications. Previously,
a spatially degenerated mode decomposition (SPMD) algorithm that addresses the issue of
polarization degeneracy was proposed [22]. This algorithm recovers the mode coefficients
for two orthogonal polarization directions by analyzing the intensity distributions at three
different polarization angles. However, we found that the accuracy of such MD algorithms,
based on beam intensity measurements, are severely limited by image noise.

In this paper, we proposed a block-based mode decomposition (BMD) algorithm.
The BMD reduces computational complexity while improving the algorithm’s noise resis-
tance. In Section 2, the mathematical principles of the proposed algorithm are introduced.
Section 3 evaluates the algorithm’s performance metrics in both noise-free and noisy condi-
tions through computer simulations and experiments, which were designed to verify its
robustness and accuracy. Section 4 provides conclusions.

2. Materials and Methods
The electric field distributions within a fiber can be expressed as follows:

→
E =

N

∑
n=1

(
Cx,nϕx,n

→
x + Cy,nϕy,n

→
y
)

(1)

where ϕ·,n represents the field distribution of the n-th linearly polarized eigenmode. The
subscripts x and y indicate the polarization directions, while

→
x and

→
y are orthogonal unit

vectors. The complex coefficients Cx,n and Cy,n are defined as follows:

Cx,n = Ax,nexp(iθx,n) (2)

Cy,n = Ay,nexp
(
iθy,n

)
(3)

where A·,n is the amplitude coefficient and θ·,n is the phase coefficient. Without a loss of
generality, we set θx,1 = 0.

For a fiber with N-spatially degenerated mode groups, there are a total of 4N-1
coefficients, which consist of 2N amplitudes coefficients and 2N-1 phase coefficients. To
recover the mode coefficients of polarization degenerated modes, the intensity distributions
of at least three polarization angles are needed. Without a loss of generality, let us assume
α = 0◦, 45◦, 90◦. The intensity distribution at polarization angle α can be captured by a
CCD or CMOS camera. The pixel in the kth row and jth column in an obtained image of
M × M pixels can be represented as Ik,j

α, k, j = 1 . . . M.
Next, we define a set of position of points for constructing blocks. We have already

selected B blocks and each block has L pixels. Let the bth block βb be as follows:

βb = {(kb1 , jb1), (kb2 , jb2), · · · , (kbl
, jbl

), · · · , (kbL , jbL)} (4)

where kbl
and jbl

represent the coordinate positions b = 1 · · · B, l = 1 · · · L.
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Figure 1 shows an example of rectangular sample blocks. Each small beige square
represents a pixel, and pixels of the same color form a sampling block, which can overlap
with each other. In this work, we use rectangular blocks because of the simplicity of
selection of these sample blocks. However, our algorithm can use various shapes of blocks,
such as triangles, and so on.

Figure 1. Example of selection of blocks.

For α = 0◦ or 90◦, the total intensity of the sample blocks is given by the
following equation:

Γα = [Γα
1 · · · Γα

b · · · Γα
B]

⊤ = TαRα (5)

where
Γα

b = ∑(
kbl

,jbl

)
∈βb

Iα
kbl

,jbl
(6)

We calculate the field distributions of different modes and multiply them, according
to a specific pattern. The matrix Tα is defined as follows:

Tα =



φ
(α)
1,1,1 · · · φ

(α)
1,N,N 2φ

(α)
1,1,2 · · · 2φ

(α)
1,1,N 2φ

(α)
1,2,3 · · · 2φ

(α)
1,2,N · · · 2φ

(α)
1,N−1,N

...
...

...
...

...
...

...

φ
(α)
b,1,1 · · · φ

(α)
b,N,N 2φ

(α)
b,1,2 · · · 2φ

(α)
b,1,N 2φ

(α)
b,2,3 · · · 2φ

(α)
b,2,N · · · 2φ

(α)
b,N−1,N

...
...

...
...

...
...

...

φ
(α)
B,1,1 · · · φ

(α)
B,N,N 2φ

(α)
B,1,2 · · · 2φ

(α)
B,1,N 2φ

(α)
B,2,3 · · · 2φ

(α)
B,2,N · · · 2φ

(α)
B,N−1,N


(7)

where
φ
(α)
b,s,w = ∑(

kbl
,jbl

)
∈βb

ϕν,s
(
kbl

, jbl

)
ϕν,w

(
kbl

, jbl

)
, s, w = 1 . . . N. (8)

The subscript b denotes the bth block. For α = 0◦, ν = x, and ν = y for α = 90◦.
Rα is a vector of length N(N + 1)/2 and is given by the following equation:

Rα = [Cν,1C∗
ν,1, · · · ,

Cν,N−1C∗
ν,N + Cν,NC∗

ν,N−1

2
]⊤ (9)

According to Equations (9)–(12) in Ref. [22], we can solve for the modal weights
Ax,n, Ay,n and modal phase θx,n.

Next, we solve for the phase coefficient θy,n. According to Equation (6), Q is given
as follows:

Q = (P)−1(2Γ45 − Γ0 − Γ90) (10)
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P = 2



φ
(α)
1,1,1 · · · φ

(α)
1,1,N φ

(α)
1,2,1 · · · φ

(α)
1,2,N · · · φ

(α)
1,2,N · · · φ

(α)
1,N,1 · · · φ

(α)
1,N,N

...
...

...
...

...
...

...

φ
(α)
b,1,1 · · · φ

(α)
b,1,N φ

(α)
b,2,1 · · · φ

(α)
b,2,N · · · φ

(α)
b,2,N · · · φ

(α)
1,N,1 · · · φ

(α)
b,N,N

...
...

...
...

...
...

...

φ
(α)
B,1,1 · · · φ

(α)
B,1,N φ

(α)
B,2,1 · · · φ

(α)
B,2,N · · · φ

(α)
B,2,N · · · φ

(α)
1,N,1 · · · φ

(α)
B,N,N


(11)

where
φ
(α)
b,s,w = ∑(

kbl
,jbl

)
∈βb

ϕx,s
(
kbl

, jbl

)
ϕy,w

(
kbl

, jbl

)
, s, w = 1 . . . N. (12)

Q = [Ax,1 Ay,1 cos(θy,1 − θx,1) Ax,1 Ay,2 cos(θy,2 − θx,1) · · · Ax,1 Ay,N cos(θy,N − θx,1) · · · Ax,N Ay,N cos(θy,N − θx,N)]
⊤ (13)

Similarly, we can solve for the modal phases θy,n according to Equations (16)–(18)
in Ref. [22].

3. Results
3.1. Simulation

For the simulation, we used a step-index optical fiber with a core diameter of 12.8 µm
and a numerical aperture of approximately 0.2. This fiber can support up to 54 modes simul-
taneously at a wavelength of 780 nm. We performed light field reconstruction by inputting
spot images with polarization angles of 0◦, 45◦, and 135◦. All simulation experiments were
conducted on a computer with an Advanced Micro Devices(AMD) Ryzen 5 processor using
Matrix Laborator (MATLAB) R2021a.

3.1.1. Mode Decomposition Without Noise

For the noise-free case, we use 512 × 512 images to perform SPMD and BMD simu-
lations 10,000 times. To verify the accuracy of the algorithm, we introduce the following
evaluation metrics :amplitude errors eA and phase errors eθ , which are calculated as follows:

eA =
∥ ARe − A ∥

∥ A ∥ , eθ =
∥ θRe − θ ∥

∥ θ ∥ (14)

where ARe and θRe represent the recovered amplitude and phase coefficients, respectively,
while ∥ · ∥ indicates the 1-norm.

Figure 2a,b display the mode decomposition errors as a function of mode numbers,
with the y-axis on a logarithmic scale. The two figures present different error metrics
related to two mode decomposition algorithms (BMD and SPMD). The configuration of
(B = 50, L = 4900) represents a random selection of 50 sample blocks, each of which has
70 × 70 pixels.

For both algorithms, the errors increase with the mode numbers. When the mode
number is 34, the amplitude errors of these configurations are all below 10−6 and the
phase errors are all below 10−3. The phase error is larger than the amplitude error, as the
calculation of the phase error requires the use of the recovered amplitude. Errors of all
configurations are always below 10−2, indicating that the algorithm has a high accuracy in
a noise-free environment.

However, the SPMD requires 3,145,728 multiplication operations, while BMD
(B = 50, L = 4900) only requires 30,000 multiplication operations, according to Equation (6).
BMD requires only 1% of the multiplication operations needed by SPMD. It is evident that
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the complexity of the latter is significantly lower than that of the former, which implies an
improved computational efficiency and a reduced memory space.

Figure 2. Decomposition errors of noiseless images. (a) Amplitude errors; (b) phase errors.

3.1.2. Mode Decomposition with Noise

Next, we conducted a simulation to study the impact of noise on the algorithm’s
performance. We added additive Gaussian white noise to the generated dataset using the
following equation:

Iα
noise k,j = max[0, Iα + N(0, f ) · max( Iα )] (15)

N(0, f ) is a random matrix with a normal distribution of the same size as Iα. f is the noise
factor, which determines the variance of the noise. The max function is used to prevent the
occurrence of negative intensities.

The definition of SNR (signal-to-noise ratio) is as follows:

SNR(dB) = 10lg

 ∑
k=p
k=1 ∑

j=p
j=1 ( Iα )2

∑k=M
k=1 ∑

j=M
j=1

(
Iα
k,j − Iα

noise k,j

)2

 (16)

Figure 3 shows the impact of different block pixels L on the block mode decomposition
error under the same signal-to-noise ratio and number of blocks B. The modal weights
errors eAx and eAy decrease significantly as the block pixels L increase. When L = 1, it
corresponds to the sub-sample sampling method proposed in Ref. [23]. When L increases
from 1 to 400, the errors drop rapidly. After L reaches around 1600, the errors stabilize and
remain at a level of approximately 10−4. The phase errors also show a rapid decreasing
trend when L increases from 1 to 400, but the reduction is not as pronounced as it is for
amplitude errors. The phase errors level out around 10−3 at L = 4900, suggesting that
further increases in L do not significantly improve decomposition accuracy.

Overall, Figure 3 indicates that amplitude errors decrease significantly with an increase
in the number of block pixels. Although phase errors also decrease with an increase in
block pixels, the reduction is less pronounced. Increasing L helps improve the accuracy of
mode decomposition, particularly for amplitude errors.

Figure 4 illustrates the behavior of mode decomposition errors as a function of the
number of blocks B. For SNR = 55 dB and L = 4900, all the errors decrease as the number
of blocks B increases. Notably, the amplitude errors exhibit the most pronounced decrease,
with the errors rapidly decreasing from approximately 10−1 to below 10−4. At the same
time, phase errors show a less dramatic decrease with an increase in B. After an initial
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decrease, these errors are around 10−2. The results indicate that increasing B significantly
improves the accuracy of mode decomposition.

Figure 3. Mode decomposition error versus the number of block pixels L for SNR = 55 dB, N = 6,
and B = 50.

Figure 4. Mode decomposition errors versus the number of blocks B with the input pixel size
M = 128 or 512, SNR = 55dB, N = 6, and L = 4900.

The computational load increases with the block size L and the number of blocks
B, as the algorithm requires more multiplications and memory accesses. Larger blocks
increase accuracy by capturing more local information but at the cost of processing time.
However, as the B or L increases, the additional pixels in each block have a smaller impact
on improving the accuracy, as the most significant contributions to phase error reduction
have already been achieved with smaller block sizes. There may also be limitations related
to the numerical resolution of the algorithm. Once the block size exceeds a certain threshold,
the algorithm may reach its inherent resolution limit, beyond which further increases in
block size offer little improvement. An optimal balance can be found depending on the
specific application and computational constraints. In practice, it may be necessary to tune
the block size and number of blocks to achieve an acceptable trade-off between accuracy
and computational efficiency, depending on the available computational resources and the
desired level of precision.

Different input image sizes also affect the mode decomposition algorithm’s perfor-
mance: the MD error for M = 512 is generally lower than that for M = 128. For example,
when B = 50, eAx is 3 × 10−5 for M = 512, while eAx is 7 × 10−4 for M = 128. For phase
error, eθx is 2 × 10−3 for M = 512, while, for M = 128, eθx is 3 × 10−2.This suggests that
larger input image sizes can provide more information, thereby improving decomposition
accuracy and reducing error.
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Figure 5 shows the mode decomposition error as a function of SNR, with different
configurations of B. Panel (a) shows the amplitude error of the mode decomposition
algorithms under varying SNR values. This panel highlights how the BMD algorithm
performs with different block sizes (denoted as B) in comparison with the SPMD algorithm.
Panel (b) shows the phase error of the mode decomposition algorithms under the same
SNR conditions. All kinds of errors decrease as the SNR increases, which is expected since a
higher SNR typically leads to better image quality and more accurate mode decomposition.
The curves for larger B values (i.e., B = 30 or 50) show consistently lower errors compared
to smaller B values (i.e., B = 10). For SNR = 70 dB, when B = 50, eAy is 6 × 10−6, and, when
B = 10, eAy is 2× 10−3. At the same time, for SNR = 70 dB, when B = 50, eθy is 3× 10−3, and,
when B = 10, eθy is 5 × 10−2. This indicates that increasing the number of selected blocks
improves the decomposition accuracy across all SNR levels.

Figure 5. Mode decomposition errors and the signal-to-noise ratio (SNR) for N = 6, L = 4900, and
M = 512.

When the SNR is above 50 dB, both the amplitude and phase errors for both B = 30
and B = 50 are lower than those for the SPMD of M = 128. For amplitude error, this
algorithm outperforms 15 dB better than the SPMD at the error value of 3 × 10−4,while, for
phase error, it can outperform by 30 dB at error value of 3 × 10−2, indicating that the BMD
is better than SPMD.

3.2. Experiment

The performance of the block mode decomposition was further evaluated by employ-
ing actual near-field beam profile images, captured by a polarization camera. The detailed
experimental setup for acquiring these real beam profile images is illustrated in Figure 6.

Figure 6. Experimental setup. MS: optic fiber linear motion stages, Obj.: objective lens, Pol. Cam:
polarization camera.

The laser emits light at a wavelength of 790 nm. By adjusting the knobs on the fiber
linear motion stages, the relative position between the HI780 fiber and the single-mode
fiber (a FullBand Low Water Peak Single-mode fiber from Yangtze Optical Fiber, Wuhan,
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China) can be varied, allowing for the excitation of different mode groups. The five-axis
motion stages provide precise, smooth, and continuous adjustments, ensuring long-term
stability. A 60× magnification objective lens is used to enlarge the image, and a polarization
camera (LUCID TRIO5051-PC from Lucid Vision in Richmond, British Columbia, Canada)
captures images at four different polarization angles. A correlation metric is introduced for
the comparative analysis between the captured image and the reconstructed image.

Corr =

∣∣∣∣∣∣
∫∫

∆Ir(x, y)∆Io(x, y)dxdy√∫∫
∆I2

r (x, y)dxdy
∫∫

∆I2
o (x, y)dxdy

∣∣∣∣∣∣ (17)

Here, ∆Ir(o) = Ir(o) − Ir(o), Ir, and Io represent the reconstructed and original field distribu-
tions, and Ir(o) is the mean value of Ir(o).

The captured images of pixel size 500 × 500 are processed using BMD to calculate
mode coefficients, which are then employed to reconstruct the field intensity distribution.
A typical example of mode decomposition results is presented in Figure 7. This algorithm
utilizes the field intensity distributions at polarization angles of 0◦, 45◦, and 90◦ to recover
the coefficients. As shown in Figure 7, when the number of modes is six, the correlation
coefficients between the reconstructed images and the original images are all above 95%,
indicating that this algorithm has practical applicability.

Figure 7. Results of block-based mode decomposition experiments when B = 50 L = 4900, with the
color bar indicating intensity (scaled from 0 to 1).

The correlation coefficient (Corr) is used as the evaluation metric to compare the
original and reconstructed images. The recovery is also performed using the SPMD, and
the results of the two algorithms are shown in Table 1. It is worth noting that using
SPMD requires 750,000 multiplication operations, while BMD only requires 30,000 mul-
tiplication operations. As can be observed from Table 1, the proposed algorithm exhibits
better performance.

Table 1. Experimental results of SPMD and BMD (correlation).

0◦ 45◦ 90◦

SPMD
(M = 250) 0.9855 0.9609 0.9200

BMD
B = 50 L = 4900 0.9932 0.9613 0.9511
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4. Conclusions
We propose a mode decomposition algorithm with sample blocks that, compared

to our previously introduced SPMD algorithm, significantly reduces computational com-
plexity while maintaining a high accuracy. We also analyze the algorithm’s performance
under various SNR values, demonstrating that this algorithm offers better noise sustain-
ability in noisy environments. When the SNR is greater than 40 dB, it achieves higher
accuracy compared to the SPMD, which offers a new approach to improving the accuracy
of mode decomposition.
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