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Abstract: With the rapid advancement of infrared detection technology, the development
of infrared stealth materials has become a pressing need. The study of optical micro/nano
infrared stealth materials, which possess selective infrared radiation properties and precise
structural features, is of significant importance. By integrating deep reinforcement learning
with a multilayer perceptron, we have framed the design of radiation-selective films as
a reinforcement learning problem. This approach led to the creation of a Ge/Ag/Ge/Ag
multilayer micro/nano optical film that exhibits infrared stealth characteristics. During
the design process, the agent continuously adjusts the thickness parameters of the optical
film, exploring and learning within the defined design space. Upon completion of the
training, the agent outputs the optimized thickness parameters. The results demonstrate
that the film structure, optimized by the agent, exhibits a low average emissivities of 0.086
and 0.147 in the 3∼5 µm and 8∼14 µm atmospheric windows, respectively, meeting the
infrared stealth requirements in terms of radiation characteristics. Additionally, the film
demonstrates a high average emissivity of 0.75 in the 5∼8 µm range, making it effective for
thermal radiation management. Furthermore, we coated the Si surface with the designed
thin film and conducted experimental validation. The results show that the coated material
exhibits excellent infrared stealth properties.

Keywords: infrared stealth; multilayer films; reinforcement learning

1. Introduction
Infrared stealth technology involves reducing or modifying the infrared radiation

characteristics of a target to decrease its detectability, which is of significant importance in
modern military applications [1,2]. According to the Stefan–Boltzmann law, reducing the
emissivity of a target and controlling its surface temperature are fundamental methods for
achieving infrared stealth. Due to constraints such as environmental conditions, altering
the surface temperature of an object is often challenging, making the control of spectral
emissivity a more feasible approach. However, achieving a balance between low emissivity
and effective thermal management through heat dissipation is challenging. Therefore,
the current requirements for low emissivity infrared stealth materials are as follows: (1) low
emissivity in the 3∼5 µm and 8∼14 µm atmospheric window bands to evade infrared
detection; (2) high emissivity in the 5∼8 µm non-atmospheric window bands to facilitate
thermal radiation management [3,4]. Zhang et al. fabricated one-dimensional Ge/ZnS
photonic crystals, achieving average emissivities as low as 0.046 and 0.190 in the atmo-
spheric windows of 3∼5 µm and 8∼14 µm, respectively, and an average emissivity as high
as 0.579 in the non-atmospheric window of 5∼8 µm [5]. Zhu et al. combined Ge/ZnS
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photonic crystals with the thermal insulating material silica aerogel to achieve infrared
stealth at high temperatures [6].

At present, various methods have been developed to achieve emissivity regulation
on target surfaces, including metamaterials [7–10], phase change materials [11,12], pho-
tonic crystals [5,13], and multilayer films [14]. Among these, multilayer films control
the reflection, transmission, and absorption characteristics of incident light by alternately
stacking different materials. Due to their simple structure and ease of large-scale manufac-
turing, they have become prominent in the field of infrared stealth materials in recent years.
Peng et al. proposed a simple Ge/Ag/Ge/Ag four-layer metal film structure that balances
strong infrared stealth performance and high thermal dissipation [15]. Zhu et al. proposed
a structure composed of ZnS/Ge multilayer films and Cu-ITO-Cu metasurface to achieve
multispectral camouflage across visible light, infrared, laser, and microwave ranges [16].
Unlike the previously mentioned four-layer Ge/Ag multilayer film, the Ge/ZnS multilayer
film adopts an eleven-layer structure. This structure not only integrates infrared stealth
capabilities in the MWIR and LWIR bands and laser stealth at 1.55 µm and 10.6 µm but also
achieves visible-light stealth through the top ZnS layer.

In recent research on multilayer film design, beyond intuitive methods based on
human experience and intuition, there has been a growing focus on using efficient and
intelligent approaches for inverse design [17]. The inverse design method generates the cor-
responding sample structure based on the target spectral properties. Classic optimization
algorithms include genetic algorithms [18,19], evolutionary strategy [20], simulated anneal-
ing [21], particle swarm optimization [22,23], and topology optimization [24]. However,
a limitation of these algorithms is that their computational complexity increases exponen-
tially with the number of parameters. An alternative approach is using neural networks for
the inverse design of material structures [25,26]. Liu et al. proposed using tandem neural
networks in micro-nano photonic structure design to address the non-uniqueness problem
encountered in the inverse design of photonic devices using deep neural networks [27].
Guan et al. applied tandem neural networks to the design of film colors in colored radiative
cooling films, successfully identifying the bottom nano-cavity structures corresponding
to arbitrary colors, thereby minimizing color matching errors [28]. Wang et al. intro-
duced tandem neural networks into the design of circular hole metamaterials for infrared
stealth, achieving multi-band compatible infrared stealth [29]. However, these deep neural
network-based design methods can be labor-intensive, often requiring substantial amounts
of training data and extensive data preprocessing.

Reinforcement learning is a prominent artificial-intelligence algorithm that, unlike
deep neural networks, does not require a pre-existing dataset. Instead, it learns and com-
pletes complex tasks through exploration and interaction with the environment. Deep
reinforcement learning algorithms combine reinforcement learning with deep neural net-
works (DNNs), enabling agents to develop a more robust understanding of complex
environments. These algorithms have been increasingly applied to the design of multilayer
films and metamaterials in recent years. Jiang et al. employed Deep Q-Network (DQN)
for the design of multilayer optical films, optimizing a solar absorber without any human
intervention [30]. Liao et al. combined deep neural networks and the Proximal Policy
Optimization algorithm for the intelligent design of flexible target chiral meta-surfaces,
achieving optimal absolute circular dichroism values with high time efficiency in the train-
ing results [31]. Yu et al. proposed a general framework for emissivity engineering using
DQN, which can be widely applied in the design of thermal metamaterials [32]. However,
this method requires real-time computation of transmission matrices during intelligent
design, leading to high computational costs.



Photonics 2025, 12, 67 3 of 17

Research on the intelligent design of materials with both infrared stealth and thermal
radiation management properties is limited, and the advantages of reinforcement learning
have yet to be fully applied to the design and optimization of infrared stealth materials.
In this work, we apply the Deep Q-Network (DQN) algorithm to adjust the thickness of a
multilayer Ge/Ag/Ge/Ag micro-nano film structure. A virtual design environment based
on a multilayer perceptron is established, where the process of adjusting the film thickness
is treated as a Markov decision process, enabling automated adjustment and design of the
film. Benefiting from a pre-trained MLP, the agent can rapidly generate spectral responses
based on the current state, thereby replacing complex electromagnetic computations. This
significantly enhances the learning efficiency of the DQN during exploration. Compared
to the previously proposed four-layer Ge/Ag structure [15], the design obtained through
machine exploration achieves an average absorption reduction of 0.1 in the 3∼5 µm and
8∼14 µm bands, a higher absorption peak in the 5∼8 µm band, and it is observed that the
fourth Ag layer has no significant effect on the absorption spectrum. The results show that
the agent can efficiently explore and learn the design environment, with the automatically
designed structures demonstrating excellent performance.

2. Model and Method
2.1. Setting Up the Design Environment

As shown in Figure 1, the design space for the target problem consists of a four-layer
Ge/Ag/Ge/Ag structure. The thickness parameters for these layers, from top to bottom,
are represented as l1, l2, l3, and l4, with the surrounding environment considered as air.
Even small changes in the thickness of each layer can significantly affect the absorption
spectrum, making it challenging to identify the correct set of four thickness values within
this design space. Our goal is to enable the agent to automatically adjust these thicknesses,
designing a structure that meets the target spectral characteristics. To frame this problem
as a reinforcement learning challenge, we define the state space as the thicknesses of the
four layers and the action space as the adjustments to the thicknesses that the agent can
make. In this scenario, we specify the range of parameters for the different layers and
allow the agent to learn and design structures within these predefined limits. Specifically,
the thickness ranges are set as follows: l1 ranges from 250 nm to 750 nm, l2 from 5 nm to
45 nm, l3 from 250 nm to 750 nm, and l4 from 5 nm to 45 nm. This formulation enables a
structured exploration and learning process where the agent iteratively adjusts the layer
thicknesses to optimize the desired optical properties. To reduce training time and enable
real-time acquisition of electromagnetic responses under current conditions, we use a
multilayer perceptron (MLP), as shown in Figure 2. This MLP serves as the surrogate
model for electromagnetic computation. Through this multilayer perceptron model, we
can provide real-time absorption spectra for the current state while the agent explores
the environment. These spectra are used to formulate the reinforcement learning reward
and penalty functions, enabling timely updates to the agent’s network. The multilayer
perceptron consists of an input layer, hidden layers, and an output layer. The input layer
corresponds to the thickness of various layers of the film. The hidden layers consist of
four fully connected layers, each containing 500 nodes. The output layer represents the
absorption spectrum of the membrane in the 3 to 14 µm range. In this case, predictions are
made at 0.5 µm wavelength intervals, corresponding to 23 output values. The ReLU [33]
activation function is chosen for the layers, and the mean squared error (MSE) function is
selected as the loss function:

MSE =
1
N

N

∑
i=1

(
yi

pre − yi
true

)2
(1)
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In the formula, N represents the number of discrete points in the absorption spectrum,
which is 23 , ypre refers to the predicted values of the absorption spectrum outputted by
the MLP, while ytrue corresponds to the actual values of the absorption spectrum from
the dataset.

We obtained the dataset required for training the MLP using COMSOL Multiphysics
6.0. In data collection, build the model with reference to Figure 1. Apply periodic boundary
conditions on the x–y plane, and let the light be incident along the negative z-axis. Treat
l1, l2, l3, and l4 as parameters and perform parametric sweeps to obtain the absorption.
The thicknesses l1 and l3 varied from 250 nm to 750 nm in increments of 50 nm, while l2
and l4 ranged from 5 nm to 45 nm in 5 nm increments. For the Ge layer, we perform a
scan with a 50 nm step size, and for the Ag layer we use a 5 nm step size. This ensures
that the resulting data uniformly cover the design space, thereby allowing more effective
learning of the electromagnetic spectra within the parameter domain. In the subsequent
design process, the design resolution for each layer is set to one-fifth of the scanning step
size, thus maintaining design accuracy while making effective use of the MLP’s predictive
capabilities. A total of 9801 sets of absorption spectrum data for different structures were
collected. Of these, 80% were used for the training set and 20% for the test set. The data were
then input into the MLP model for training, resulting in a well-trained spectral prediction
surrogate model.

Figure 1. Design environment.

Figure 2. Multilayer perceptron.
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2.2. DQN Design Process

Figure 3 illustrates how we transform the film design problem into the Markov Deci-
sion Process (MDP) framework required for reinforcement learning. The MDP is defined
as M = (S, A, P, R, γ), where S is the set of finite states, A is the set of finite actions, P
represents the state transition probabilities , R is the reward function, and γ is the discount
factor used to calculate the cumulative reward. At time t, the state of the environment
is denoted as st, which represents the thickness of each layer of the film at that moment,
where st belongs to the set S of all possible states. The action taken by the agent at time t is
at, which involves adjusting the thickness of the Ge layer by increments or decrements of
10 nm, and the Ag layer by increments or decrements of 1 nm, with at belonging to the set
A of possible actions. After the agent executes action at, the environment transitions to the
next state, st+1. The environment then utilizes a well-trained multilayer perceptron (MLP)
model to predict the absorption spectrum at the new state, st+1. Based on this predicted
absorption spectrum and a predefined reward function, the reward rt is calculated and
returned to the agent. Based on the described process, the sequence from moment 0 to
time t forms a Markov Decision Process (MDP). To design absorption spectra that closely
approximate the ideal absorption spectra for infrared stealth, which ideally has very low
absorption rates in the 3∼5 µm and 8∼14 µm ranges and high absorption rates in the
5∼8 µm range, and to guide the proper design process, a reward function is required.
The deviation between the design outcome and the expectation can be evaluated based on
RMSD [34]:

RMSD =

√√√√√ 14µm
∑

λ=3µm
(ϵsim,λ − ϵideal,λ)

2

N
(2)

where ϵsim,λ and ϵideal,λ are the simulated and ideal spectral emissivities, respectively,
within the wavelength range of 3∼14 µm, and N is the total number of wavelengths
considered.

Since the reward needs to be set as a positive value, and the ideal emissivity in the
5∼8 µm range can be considered as 1, while the ideal emissivity in the 3∼5 µm and 8∼14 µm
ranges is considered as 0, the following preliminary reward function can be formulated.

R =
8µm

∑
λ=5µm

ϵλ −
(

5µm

∑
λ=3µm

ϵλ +
14µm

∑
λ=8µm

ϵλ

)
(3)

where R represents the reward value and ϵλ is the emissivity at wavelength λ.
In this design environment, there are a total of 23 discrete points in the 3∼14 µm range.

Considering the relatively fewer data points in the 5∼8 µm range, their weights need to
be increased to achieve more significant training results. Finally, the reward function is
specified as follows:

R = 20 ·
9

∑
i=5

yi − 10 ·
(

3

∑
j=0

yj +
22

∑
j=11

yj

)
(4)

Formula (4) omits the two critical points at 5 µm and 8 µm. In the formula, R represents
the reward value, yi represents the absorption values at the five discrete points between
5 µm and 8 µm, and yj represents the absorption values at the sixteen discrete points
between 3∼5 µm and 8∼14 µm.
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Based on the aforementioned MDP process, the agent explores and learns within the
environment, which provides timely feedback to the agent. During this interactive process,
the agent needs a strategy to guide its actions, referred to as π(a|s). The objective of the
reinforcement learning process is to find the optimal policy, π, that maximizes cumulative
rewards. The formula for cumulative rewards is as follows:

Gt =
∞

∑
t=0

γtR(st, at) (5)

where Gt represents the cumulative return starting at time step t, γ ∈ [0, 1] is the discount
factor that determines the present value of future rewards, R(st, at) is the reward received
by taking action at in state st, and the summation accounts for the accumulated rewards
over all time steps. Based on Equation (5) and the agent’s policy, π(a|s), we can introduce
the action–value function, which represents the expected return from taking a certain action
in a given state, as follows:

Qπ(s, a) = E[Gt|st = s, at = a] (6)

If the optimal policy, π(a|s), has been obtained, according to the Bellman equation,
the action–value function can be expressed in terms of the action–value function at the next
time step:

Qπ(s, a) = E
[
rt+1 + γmaxaQ(st+1, a′)|st = s, at = a

]
(7)

where Qπ(s, a) represents the action–value function under policy π, E denotes the expected
value, rt+1 is the reward received after taking action a in state s, γ ∈ [0, 1] is the discount
factor that determines the importance of future rewards, and maxa′ Q(st+1, a′) represents
the maximum action–value for the next state, st+1, under the optimal action, a′. The equa-
tion captures the expected cumulative reward starting from state s and action a under
policy π. In Equation (7), the optimal policy is defined as choosing the action with the
highest action–value function, Q(s′, a′). However, for an initial problem, we need a formula
to iteratively update Q in order to obtain the desired optimal policy. In the Q-learning
algorithm, this formula is defined as:

Q(s, a)← Q(s, a) + α(r + γmaxaQ(s′, a)−Q(s, a)) (8)

In the formula, α represents the learning rate. The Deep Q-Network (DQN) algorithm
builds upon the Q-learning algorithm by introducing a neural network to approximate the
Q-function, addressing the challenge of updating and converging in a high-dimensional
state space that Q-learning faces. To enhance the stability of training, the DQN algo-
rithm incorporates another network, known as Q_target. The update formula for DQN is
defined as:

Q(s, a; θ)← Q(s, a; θ) + α(r + γQ′(s′, arg maxaQ(s′, a; θ); θ′)−Q(s, a; θ)) (9)

In the formula, Q′ represents the target network, θ′ represents the parameters of the
target network, and θ represents the current parameters of the DQN network. In this
specific problem, the DQN network consists of an input layer corresponding to the film
thickness, a hidden layer with 50 nodes, and an output layer corresponding to the actions.
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Figure 3. DQN network interacts with the design environment.

2.3. Training Process

To prevent convergence to local optima, the DQN algorithm utilizes an ϵ-greedy
mechanism to select actions. Here, ϵ is a parameter within the range [0, 1], representing
the probability of selecting the action with the highest Q-value in the current state. With a
probability of 1-ϵ, an action is selected randomly, ensuring the exploration of the unknown
environment. In this study, ϵ is set to 0.9, indicating a 90% probability of selecting the
best-known action and a 10% probability of exploring by choosing an action at random.
After an agent selects an action based on the DQN network, it utilizes a mechanism known
as the experience replay buffer to collect experiences. This involves storing tuples of the
form (s, a, s′, r) in the replay buffer. During the update process, the DQN network retrieves
batches of these tuples from the buffer to update itself. The capacity of the replay buffer is
set to 2000. During the update phase, the DQN network begins updating once the capacity
of the replay buffer is full. In each update, it selects a batch of size, typically referred to
as batch-size, from the replay buffer for processing. The loss function used is the mean
squared error (MSE), and the network parameters are updated using the Adam optimizer.
Furthermore, every n steps, the parameters θ of the DQN network are copied to the target
network θ′, to gradually integrate learned behaviors into the more stable target model.
In this specific setup, the batch-size is set at 32 and n is set at 100, indicating that the update
of the target network’s parameters from the DQN’s occurs every 100 steps. This process
helps stabilize learning by smoothing out fluctuations in the estimated values.

3. Result
The method was validated on a personal computer equipped with an i7-13700K

3.40 GHz processor and 32GB of RAM. During the training phase of the multilayer per-
ceptron (MLP) model, the learning rate was set to 0.001. The loss functions for both the
training and test sets, as depicted in Figure 4, indicate that the MLP model effectively learns
from the spectral data in the dataset. To demonstrate the accuracy of the MLP prediction,
we randomly sampled 1296 structures within the design space and evaluated their mean
absolute error to quantify the prediction error.

MAE =
1
N

N

∑
i=1
|ŷi − yi| (10)

As shown in Figure 5, if an MAE < 0.01 is defined as accurate, then 97.61% of the
predicted data meet this criterion, demonstrating that the MLP can effectively replace
electromagnetic simulations within the design space. For a more intuitive explanation, the
network was tested by inputting random thickness parameters. The predicted absorption
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spectra and the simulated absorption spectra, shown in Figure 6a–d, confirm that the MLP
model achieves a good fit for the absorption spectra within the designed space. The DQN
model was configured to explore the designated environment by storing experiences in
the replay buffer and sampling from it during learning iterations. The number of episodes
was set to 600, with each episode consisting of 150 adjustment steps. The learning rate was
set at 0.005. To ensure complete exploration of the agent and the design space, the four
thickness parameters were initialized to random values within their parameter domain
at the start of each exploration round. If any thickness parameter exceeded its domain
boundaries, it was reset to the opposite boundary. The reward values over the episodes are
depicted in Figure 7, showing an increase from an initial −2000 to a final 8000, indicating
that the DQN model effectively learns from the design environment. The trained model
was retained for further adjustments to the four thickness parameters, and trajectories for
10 sets of parameter changes were plotted. The changes in each layer’s thickness across
the adjustment steps are shown in Figure 8a–d. Specifically, l1 converged to 330 nm, l2
to 10 nm, and l3 to 600 nm, while l4 did not converge, indicating that the thickness of the
bottom Ag layer does not significantly impact the target absorption spectra.

Based on the results, the final automatic design configuration determined by the
DQN model is as follows: l1 = 330 nm, l2 = 10 nm, l3 = 600 nm, and l4 = 25 nm. This
structure was then subjected to electromagnetic simulation to validate its performance.
The absorption spectra, as depicted in Figure 9, show that, in the atmospheric windows
of 3∼5 µm and 8∼14 µm, the average emissivity is low, at 0.086 and 0.147, respectively.
Meanwhile, in the main radiative cooling band of 5.5∼7.5 µm, the average emissivity
reaches as high as 0.75. These characteristics meet the requirements for infrared stealth and
thermal radiation management.

Figure 4. The traing and test loss of MLP.
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(a) (b)

Figure 5. The MAE between the MLP-predicted values and the actual simulation results. (a) Scatter
plot; (b) Statistical distribution histogram.

(a) (b)

(c) (d)

Figure 6. Comparison of MLP-predicted and simulated absorptivity for four cases of random thick-
nesses. (a) l1 = 300, l2 = 5, l3 = 350, l4 = 10; (b) l1 = 350, l2 = 20, l3 = 450, l4 = 25; (c) l1 = 690, l2 = 28,
l3 = 550, l4 = 38; (d) l1 = 500, l2 = 10, l3 = 550, l4 = 40.
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Figure 7. Reward curves of DQN across three different training runs. The dark lines represent the
mean values and the shaded areas indicate the standard deviations of the means.

(a) (b)

(c) (d)

Figure 8. Convergence of the thickness of each layer under DQN conditioning. (a) Layer 1; (b) Layer 2;
(c) Layer 3; (d) Layer 4.
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Figure 9. Absorption spectra of design and ideal results.

4. Experiment
Following the designed film parameters, we deposited the film on a silicon wafer

using a coating process to produce a physical sample. The coating process utilizes electron
beam evaporation. The equipment employed is the SKY system from Shenyang Scien-
tific Instruments, featuring a temperature control precision of ±0.2 ◦C and temperature
uniformity within ±2 ◦C. For Ge sputtering, the pressure is maintained at 0.4 Pa, with a
radio frequency power of 60 W. Ag sputtering is conducted at a pressure of 0.4 Pa using a
direct current power of 50W. Both the coated silicon wafer and a bare silicon wafer were
placed on a heating stage, and images were captured using an infrared thermal imager
for comparative analysis. The heating stage was set to three different temperatures: 30 ◦C,
50 ◦C, and 70 ◦C. Measurements were conducted after heating to the target temperature was
stabilized, with a heating duration of approximately 30 minutes. The results, as shown in
Figure 10, indicate that the coated silicon wafer appears significantly darker in the infrared
thermal imager compared to the uncoated silicon wafer, showing lower temperatures
by 1.8 ◦C, 8.9 ◦C, and 12.2 ◦C at the respective heating temperatures. We also measured
the emissivity of the two specimens, and the results are shown in Figure 11. The figure
indicates that the emissivity of the silicon wafer significantly decreases in the 3∼5 µm and
8∼14 µm ranges after coating, while it increases in the 5∼8 µm range. This result is gener-
ally consistent with our simulation outcomes; however, some discrepancies do exist. These
errors may be attributed to the following factors: inaccuracies in the actual coating process,
leading to slight differences between the fabricated layer thicknesses and those used in
the simulations; variations in the material parameters employed in practice compared to
those in the simulations, as the optical properties of materials can differ under varying
conditions; and minor contamination or oxidation of the materials during the processing
or measurement stages. The experimental measurements presented above demonstrate
that the designed thin film effectively regulates the emissivity of the silicon wafer within
the infrared detection wavelength range, thereby validating its effectiveness for infrared
stealth applications.
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(a) (b) (c)

Figure 10. Infrared images of two materials at three different temperatures. (a) Heating stage set to
30 ◦C; (b) Heating stage set to 50 ◦C; (c) Heating stage set to 70 ◦C.

Figure 11. Emissivity measurement of silicon wafers and coated silicon wafers.

5. Discussion
Tandem neural networks and genetic algorithms are classic methods in inverse design.

This chapter discusses and compares the performance differences of the MLP-DQN method
proposed in this paper, the tandem neural network method, and the genetic algorithm
within the context of infrared stealth film design. The structure of the tandem neural
network is illustrated in Figure 12. The forward network utilizes a previously trained
MLP and is trained using the previously generated 9801 datasets for the inverse network.
During the training of the inverse network, the forward network is kept fixed, and the
output of the inverse network is used as the input to the forward network to obtain the
forward network’s prediction. The error between the forward network’s output and the
inverse network’s input is set as the loss function, thereby addressing the one-to-many
problem inherent in spectral inverse design. The MSE is shown in Figure 13, and the
convergence of the training and testing errors indicates the successful training of the inverse
network. After training, the expected absorption spectrum is input, and the inverse network
outputs the thicknesses of the four-layer film. Compared to the RL method previously
used, the uncertainty in the network’s output may result in unreasonable structures (such
as thickness values outside the design range or negative values). Therefore, it is necessary
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to generate several plausible absorption spectra using the Gaussian formula and select
structural parameters with better performance from these spectra.

A(λ) = a + b · exp
(
− (λ− λ0)

2

2σ2

)
(11)

where a is the baseline absorptivity. The parameter b is the height of the Gaussian peak
above the baseline, making the peak value a + b. The term λ0 is the center wavelength of
the peak, and σ determines the width and sharpness of the peak.

Figure 12. Tandem neural networks.

The genetic algorithm is also implemented based on the previously trained MLP.
The initialization phase is similar to the earlier DQN environment, with the ranges for l1
and l3 set between 250 and 750 nm, and l2 and l4 set between 5nm and 45 nm. The target
absorption spectrum is set to 0 in the ranges of 3∼5 µm and 8∼14 µm, and to 1 in the range
of 5∼8 µm. The MSE between the predicted spectrum and the target spectrum is calculated,
and its negative value is used as the fitness function for the genetic algorithm. The fitness
improvement with the number of iterations is shown in Figure 14, and the optimal film
thickness for each layer is ultimately output.

The design results from the three algorithms were subjected to electromagnetic simula-
tions, yielding absorption spectra as shown in Figure 15a. To accurately assess the infrared
stealth performance of the structures produced by the three algorithms, the following MAE
calculation formula was established, and the performance of the design results was defined
as 1-MAE. The performance of the design results from the three algorithms is presented in
Figure 15b.

MAE =
1
N

N

∑
i=1

∣∣∣∣∣∣∣∣yi −


0 if 3.0µm ≤ λi ≤ 5.0µm,

1 if 5.0µm < λi < 8.0µm,

0 if 8.0µm ≤ λi ≤ 14.0µm.

∣∣∣∣∣∣∣∣ (12)

P = 1−MAE (13)

In summary, the proposed MLP-DQN method in this paper exhibits the best perfor-
mance in designing infrared stealth thin films as shown in Table 1. The results of the genetic
algorithm are comparable to those of the DQN method. However, the disadvantage of the
genetic algorithm lies in its inability to flexibly respond to design objectives, as it requires
re-iteration for each design spectrum. In contrast, the other two methods, RL and TNN, can
retain network parameters and achieve flexible design objectives by adjusting the input
spectrum without the need for retraining. The design results of the tandem neural networks
are not as good as those of DQN. Moreover, due to the uncertainty of the network outputs,
it may produce values that exceed the design region or negative values, necessitating the
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generation of multiple absorption spectra using Gaussian formulas for the design. On the
other hand, DQN fully leverages RL’s exploration mechanism of the design environment,
enabling it to directly output results that meet expectations.

Figure 13. The training and test loss of tandem neural networks.

Figure 14. Iterative performance of the genetic algorithm.

Table 1. Comparison of methods in inverse design.

Method Performance Flexible Target Needs Extra Data

MLP + DQN 0.80955 Yes No

MLP + GA 0.79763 No No

TNN 0.77638 Yes Yes
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(a) (b)

Figure 15. Comparison of the design results of three algorithms. (a) Absorption spectra of the design
results; (b) performance comparison of the design results.

6. Conclusions
We propose a method for designing infrared stealth films utilizing deep reinforcement

learning and a multilayer perceptron (MLP). The MLP maps the design space, facilitating
real-time interaction between the agent and the design environment. This configuration
enables the agent to autonomously learn and design film structures that meet the spectral
characteristics necessary for infrared stealth. The performance of the resulting structures
was validated experimentally. In addition, we compared the MLP-DQN algorithm pro-
posed in this paper with several classical inverse design algorithms within the given design
scenario. The results indicate that the MLP-DQN algorithm yields superior design out-
comes and offers greater efficiency and stability. This method is characterized by short
optimization times and high scalability, making it applicable to the design of other micro-
and nano-structured devices.
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