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Abstract: An optical vortex (OV) beam is an important type of spatially structured beam.
However, the diffraction limit for light with orbital angular momentum (OAM) remains a
challenge for certain applications. Surface plasmon polaritons (SPPs) can confine light to
nanoscale dimensions and enhance light–matter interactions. Over the past two decades,
researchers have begun to explore the imparting of OAM onto SPPs to generate plasmonic
vortices (PVs). Since the discovery of PVs, significant efforts have been made in this field,
leading to considerable progress. This article reviews these studies in three key areas:
(a) the generation and manipulation of PVs, (b) the characterization of PVs, and (c) the
application of PVs. We believe that PVs represent a promising tool utilizing plasmonic
OAM for both fundamental research and practical applications and hold great potential for
the future with continued dedicated efforts.

Keywords: optical vortex (OV); orbital angular momentum (OAM); spin angular momentum
(SAM); surface plasmon polariton (SPP); plasmonic vortex (PV); Archimedes spiral (AS);
plasmonic vortex lens (PVL)

1. Introduction
An optical vortex (OV) beam is an important type of spatially structured beam. In

1992, Allen et al. experimentally demonstrated that an optical vortex beam has a well-
defined orbital angular momentum (OAM) of ↕ℏ per photon (ℏ is the reduced Planck
constant). Such a beam, with its spiral wavefront, can be represented by a spatial profile
modified by the factor exp(i↕θ), where θ is the azimuthal angle and ↕ is the azimuthal
mode index [1], also known as the topological charge. The sign of nonzero ↕ determines
whether the helical phase in the phase profile is clockwise or anticlockwise, and its helical
phase has a singularity at the center, which leads to a donut-shaped intensity profile
(Figure 1) [2]. Over the past 30 years, many methods have been developed to generate
optical OAM beams, such as mode converters, helical phase plates, fork gratings, phase-
type diffraction vortex gratings [3], and metasurfaces [3,4]. Various applications make
light with OAM highly attractive, including ultra-large-capacity optical communication,
rotating body detection, optical tweezers, laser processing, super resolution imaging [3],
directional coupling, and emission via spin–orbital interactions [5], as well as applications
in astronomy, metrology, biomedicine and chemistry, quantum entanglement, nonlinear
optics, and nanotechnology [6]. Additionally, OAM light is used in the directional excitation
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of surface plasmon polaritons (SPPs) [7]. However, the diffraction limit of OAM light
remains a challenge for some applications, which can potentially be addressed by SPPs.
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wavefronts, intensity distributions, and phase profiles. Reprinted from [2]. Creative Commons
Attribution (CC BY) license.

SPPs, propagating field-coupled collective electron oscillations at a metal and di-
electric interface, can confine fields to nanoscale dimensions and enhance light–matter
interactions. Following Ritchie’s pioneering work on plasma losses by fast electrons in
thin films in 1957 [8], much attention has been devoted to SPPs and numerous applica-
tions have emerged alongside the development of nanotechnology over the past decades.
These applications include plasmonic solar cells [9,10], medical diagnoses [11], chemi-
cal reactions [12], biosensors [13,14] and other sensors [15], molecular electronics [16],
meta-optics [17], waveguides [18], and color generation [19], among others. Among these,
plasmon-enhanced Raman and fluorescence techniques, such as surface-enhanced Raman
spectroscopy (SERS) and tip-enhanced Raman spectroscopy (TERS), have gained promi-
nence and now play a vital role in many areas of research. In plasmon-enhanced Raman
and fluorescence, surface plasmons are crucial, as they can highly confine and significantly
enhance electric fields [20]. This has led to a greatly improved detection sensitivity and has
paved the way for numerous applications since the discovery of the effect [21–27].

However, it was not until the past two decades that researchers began to explore the
imparting of OAM onto SPPs to generate plasmonic vortices (PVs). PVs are evanescent
Bessel excitations that also possess OAM. But unlike free-space optical vortices (OVs), PVs
are generated by surface plasmons, giving them the advantages of field confinement and
enhancement in addition to the properties of OAM. Since the discovery of PVs [28,29],
significant efforts have been made in this field, leading to considerable progress. In this
review, we cover these works in three key areas: (a) the generation and manipulation of
PVs; (b) the characterization of PVs; and (c) the application of PVs.

2. Generation and Manipulation of Plasmonic Vortices
Since PVs have gained researchers’ attention [28], various plasmonic structures and

methods have been proposed to realize PVs. The commonly used method among them is
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the Archimedes spiral (AS) [28,30]. However, to generate localized vortices with multiple
topological charges in a single structure, several variations of this spiral structure have
emerged [30–34]. In this section, we review some work on the generation and manipulation
of PVs.

2.1. Direct Transformation from Optical Vortices to Plasmonic Vortices

It is intuitive to see that the chirality of incident light is preserved in the evanescent
Bessel beam through the symmetrical structure [28]. Shutova et al. proposed that a nanolens
could efficiently focus OVs to the nanoscale and generate PVs (Figure 2) [35]. Meanwhile,
Sunaba et al. demonstrated that a tailored plasmonic multimer could confine the Laguerre–
Gaussian (LG) mode field into a nano-sized gap by transferring high-order OAM and spin
angular momentum (SAM) from photons to localized plasmons [36].
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2.2. Modified Archimedes Spirals or Other Methods

One commonly used method to generate PVs is the AS, whose trajectory is given by
r = r0 +

φ+π
2π mλspp, φ ∈ (−π, π], where r0 is the initial radius, λspp is the wavelength of

excited surface plasmons, φ is the azimuthal angel, and m is an integer (Figure 3a) [37]. Both
the path difference of the spiral contour inducing the dynamic phase and the polarization of
excitation light determine the value of plasmonic OAM [33]. To overcome the limitation of
generating PVs with multiple charges in a single structure, various modifications have been
introduced, such as a segmented AS [31,32]. Tan et al. achieved an arbitrary combination of
OAM numbers by simultaneously manipulating both geometric and dynamic phases in a
phase gradient spiral lens [31]. Similarly, Zhang et al. demonstrated that the superposition
of two different OAM states could be attained and altered in a single generator by adjusting
these two phases (Figure 3b,c) [32]. Tsai et al. overcame the spin-locked OAM generation
restriction, enabling spin-independent OAM generation by incorporating the geometric
phase with the dynamic phase [30]. Zang et al. were able to control terahertz (THz) near-
field PVs with multiple degrees of freedom by combining the geometric and dynamic
phases [33]. Furthermore, they introduced an approach to generate multiplexed THz
PVs using geometric metasurfaces [38]. Prinz et al. proposed the possibility of achieving
arbitrarily large plasmonic OAM values by modifying the helicity of the incident light and
tailoring both the local and global geometries of vortex generators [34].
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Figure 3. Archimedes spirals and modified ASs. (a) Schematic of an AS and the excitation of
PVs. Reprinted from [37]. Copyright © 2016, The Author(s). Creative Commons Attribution 4.0
International License. (b) Schematic of a segmented spiral metasurface, whose rotation angle of
the slits is ϕ(θ) = qθ + α0 and the radius of the spiral is rm = initial radius + λspp × mod(mθ, 2π)

2π ,
where θ is the azimuthal angle, q is the rotation order of the slits, m is the geometric order of the
spiral, α0 is the initial angle of the slits, λspp is the SPP wavelength, and mod(mθ, 2π) represents the
remainder of the division of mθ

2π . (c) Near-field intensity measurements for the metasurface samples
A–H interacting with right circularly polarized light, varying three parameters: q, m, and α0. Adapted
with permission from [32]. © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Additionally, some studies have utilized added degrees of freedom in the light source
to manipulate PVs. Wang et al. proposed a technique for dynamically sculpturing PVs
from integer to fractional OAM by leveraging the radial phase gradient induced by the
propagation of an incident LG beam [37]. Huang et al. proposed a lens capable of generating
PVs with linearly polarized light [39]. Bai et al. demonstrated a wavelength-tunable
PV generator that can control both the topological charges and the vortex locations [40].
Recently, Gu et al. showed that positively elliptically polarized beams can excite SPP
vortices with a relatively uniform electric field intensity distribution, avoiding the effect of
amplitude ratio variations in the beam. This new plasmonic lens also allows the modulation
of topological charges using vector beam illumination [41].

Even with other structures, researchers have achieved PVs. Yuan et al. localized
electromagnetic vortex waves with multimodal topological charges, creating a PV print-
ing technology using a periodic array of metaparticles (Figure 4a) excited by coplanar
waveguide-based spoof SPPs [42]. Xu et al. proposed a design that selectively controls
the conversion from optical SAM to plasmonic OAM through near-field coupling between
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paired resonators in a metasurface (Figure 4b) [43]. Gu et al. introduced a PV lens based on
the geometric phase (Figure 4c), capable of generating SPP vortices when illuminated by
either circularly or linearly polarized light [44]. Additionally, Triolo et al. confirmed that
vortex modes can be generated in an elliptical nanohole when illuminated by incident light
with a polarization direction differing from the ellipse’s axes [45]. Furthermore, Ghanei
et al. advanced this approach using metal–insulator–metal structures (Figure 4d), produc-
ing uniform, high-quality PVs with varied topological charges by smoothly adjusting the
ellipse’s minor-to-major axis ratio [46].

Photonics 2025, 12, x FOR PEER REVIEW 5 of 21 
 

 

Even with other structures, researchers have achieved PVs. Yuan et al. localized elec-
tromagnetic vortex waves with multimodal topological charges, creating a PV printing 
technology using a periodic array of metaparticles (Figure 4a) excited by coplanar wave-
guide-based spoof SPPs [42]. Xu et al. proposed a design that selectively controls the con-
version from optical SAM to plasmonic OAM through near-field coupling between paired 
resonators in a metasurface (Figure 4b) [43]. Gu et al. introduced a PV lens based on the 
geometric phase (Figure 4c), capable of generating SPP vortices when illuminated by ei-
ther circularly or linearly polarized light [44]. Additionally, Triolo et al. confirmed that 
vortex modes can be generated in an elliptical nanohole when illuminated by incident 
light with a polarization direction differing from the ellipse’s axes [45]. Furthermore, 
Ghanei et al. advanced this approach using metal–insulator–metal structures (Figure 4d), 
producing uniform, high-quality PVs with varied topological charges by smoothly adjust-
ing the ellipse’s minor-to-major axis ratio [46]. 

(a) (b) 

 
(c) (d) 

Figure 4. Schematic of various plasmonic vortex generation structures. (a) A six-long-spiral meta-
particle and four snapshots showing the real-time evolution of the near-field distribution of the 𝐸௭ 
component, excited by a linearly polarized plane wave at 8.5 GHz. Adapted with permission from 
[42]. © 2021 Wiley-VCH GmbH. (b) A metasurface of ring-shaped paired resonators. Reprinted with 
permission from [43]. © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (c) A meta-atom 
comprising four rectangular slits arranged along a circular contour. Reprinted from [44]. © 2023 
Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement. (d) A 
metal–insulator–metal structure featuring a circular array of elliptical holes embedded in the bottom 
gold film and a central circular hole in the top gold film, along with its normalized electric field 
distribution in the XY plane and along the X-axis. Adapted from [46]. Copyright © 2023, The Au-
thor(s). Creative Commons CC BY license. 

2.3. Spatiotemporal Dynamics/Modulation of Plasmonic Vortices 

Figure 4. Schematic of various plasmonic vortex generation structures. (a) A six-long-spiral meta-
particle and four snapshots showing the real-time evolution of the near-field distribution of the
Ez component, excited by a linearly polarized plane wave at 8.5 GHz. Adapted with permission
from [42]. © 2021 Wiley-VCH GmbH. (b) A metasurface of ring-shaped paired resonators. Reprinted
with permission from [43]. © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (c) A
meta-atom comprising four rectangular slits arranged along a circular contour. Reprinted from [44].
© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement.
(d) A metal–insulator–metal structure featuring a circular array of elliptical holes embedded in the
bottom gold film and a central circular hole in the top gold film, along with its normalized electric
field distribution in the XY plane and along the X-axis. Adapted from [46]. Copyright © 2023, The
Author(s). Creative Commons CC BY license.

2.3. Spatiotemporal Dynamics/Modulation of Plasmonic Vortices

It is widely assumed that static boundary conditions and specific excitations determine
the generated field. However, the initially generated PV evolves over time due to various
factors, such as the propagation and reflection of the SPPs and spin–orbit coupling between
light and the SPPs. Consequently, the spatiotemporal dynamics of PVs, alongside their
average field distribution, are crucial for understanding the mechanism underlying these
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physical processes and expanding their range of applications. Here, we highlight some
important studies that offer insight into these dynamics. Yang et al. counterintuitively iden-
tified the surprising existence of multiple deuterogenic PVs in a single plasmonic vortex lens
(PVL), even when excited by a fixed, circularly polarized vortex beam, providing a glimpse
into the dynamics of PVs [47]. Spector et al. explained that the reflection of the SPP vortex
from structural boundaries generates successive vortex pulses with increasing topological
charges as a function of time (Figure 5a) [48]. Subsequently, Yuan et al. demonstrated that
PVs can have distinct spatiotemporal dynamics based on different coupler designs, even
when the vortices possess the same topological charge (Figure 5b) [49]. Furthermore, Yuan
et al. verified the existence of a temporally deuterogenic vortex mode whose spatiotemporal
evolution could be tailored through various PVL designs and incident beams, enriching our
understanding of PV dynamics [50]. Li et al. explored the effects of spin−orbit coupling on
the spatiotemporal modulation of ultrafast PVs, including the formation of multiple phase
singularities, energy flow loops, and changes in the localized OAM/SAM distribution [51].
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Figure 5. Spatiotemporal dynamics of plasmonic vortices. (a) Revolution stages of a vortex, from its
generation to after the first and second reflections at the boundary. The bottom lines show azimuthal
and radial fitting of the diameter and the number of lobes in the main vortex signal. Adapted
from [48]. Copyright © 2021, The Authors, some rights reserved. Creative Commons Attribution
License 4.0 (CC BY). (b) Schematic of distinct generation and evolution behaviors of vortices with the
same topological charge, produced by different couplers. Reprinted from [49]. © The Author(s) 2023.
Creative Commons Attribution 4.0 International License.
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3. Characterization of Plasmonic Vortices
Several methods have been developed to probe plasmonic local fields generated by

SPPs since their discovery. The most popular technique is scanning near-field optical
microscopy (SNOM), which can operate in both apertured and apertureless modes. Addi-
tionally, some modifications have been applied to enhance its performance. For instance,
Michaelis et al. attached a nanoscopic active medium to the SNOM tip to increase its spatial
resolution [52]. Another method is a photon scanning tunneling microscope (PSTM), in
which SPPs are excited by the reflection of an evanescent light field at the metal–glass inter-
face in the Kretschmann configuration. Krenn used a PSTM to experimentally observe the
near-field optical effects of Au nanoparticles [53]. Sandtke et al. reported the observation of
slow and femtosecond SPP wavepackets using a phase-sensitive, time-resolved PSTM [54].

Two-photon luminescence microspectroscopy (TPLM) is another approach, and
Ghenuche et al. used it to resolve the resonant spectra map of gap antennas [55]. Moreover,
Lahiri et al. used the photothermal-induced resonance (PTIR) technique to identify the
dark plasmonic resonance of gold asymmetric split-ring resonators (A-SRRs) [56]. Lastly,
Stockman et al. proposed the combination of photoelectron emission microscopy (PEEM)
with attosecond streaking spectroscopy to study the dynamics of plasmons with a nanome-
ter and attosecond spatiotemporal resolution [57]. Here, we summarize some studies on
the characterization of PVs.

3.1. Detection of Plasmonic Vortices

Gorodetski et al. observed the circular, polarization-dependent, near-field intensity
distribution of a spiral plasmonic structure with SNOM [29]. Later, Carli et al. demon-
strated different OAM states of the PV by detecting the “on” and “off” status of four gold
nanorods placed in a hole at the center of the spiral using SNOM (Figure 6a) [58]. Yang
et al. further revealed the existence of multiple PVs within a single PVL excited by a fixed,
circularly polarized vortex beam and demonstrated general spin-to-orbit coupling [47].
However, the above studies utilized monochromatic global excitation to achieve spatially
resolved detection. To characterize the dispersion of locally excited PVs, Hachtel et al. in-
vestigated the cathodoluminescence response generated by the excitation of a fast electron
beam in a scanning transmission electron microscope (STEM), allowing for an examina-
tion of the plasmonic phase and amplitude across a broad spectral range simultaneously
(Figure 6b) [59].
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3.2. Dynamics Detection of Plasmonic Vortices

Next, we reviewed work on the detection of the dynamics of PVs, which helped
to unveil the nature of plasmonic angular momentum and expanded the possibilities
for new applications. Spektor et al. observed the detailed spatiotemporal evolution of
nanovortices using time-resolved, two-photon photoemission electron microscopy (TR-
2P–PEEM) and extracted the OAM magnitude of light based on the angular velocity of
the vortex (Figure 7a) [60]. Additionally, Spektor et al. successfully achieved optical
spin–orbit mixing through the interaction between three-dimensional (3D) light and two-
dimensional (2D) PVs, with its mixing outcome transferred to matter via the excitation of
electrons through a two-photon absorption process. The electrons were collected to provide
a high-resolution map of the interaction (Figure 7b) [61].
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Reprinted with permission from [60]. © 2017, American Association for the Advancement of Science.
(b) Simulated and experimental results showing spin–orbit mixing of light with PVs. Reprinted
from [61]. Creative Commons Attribution 4.0 International License. (c) Attosecond-resolved videos
depicting the spatial evolution of vortex fields, captured using ultrafast nonlinear coherent photoelec-
tron microscopy (top) and simulated (bottom). The color scale represents photoelectron counts. The
white scale bars are SPP wavelength, 530 nm. Adapted with permission from [62]. © The Author(s),
under exclusive license to Springer Nature Limited 2020.

Meanwhile, Tsai et al. proposed a paradigm where the dynamic phase is incorporated
with the geometric phase, allowing for the controllable production of both spin-dependent
and -independent OAM, enabling the study of OAM formation dynamics without spin
hybridization [30]. Dai et al. captured videos of the spatial evolution of vortex fields
in an Archimedean coupling structure using ultrafast nonlinear coherent photoelectron
microscopy (Figure 7c), revealing that some vortices are generated through spin–orbit
interactions, forming spin textures known as plasmonic meron quasiparticles through three
of these vortices [62].

The aforementioned studies focused on the integer OAM of plasmonic vortices. How-
ever, Bauer et al. used TR-2P−PEEM and near-field optical microscopy to measure and
analyze the time evolution of fractional OAM SPPs, revealing that their fields depend on
integer OAM eigenstates [63].

4. Applications of Plasmonic Vortices
By leveraging the properties of the local fields of SPPs and their OAM, PVs offer

several advantages for various applications. Below, we summarize some areas where PVs
show promise, underscoring their potential as valuable tools for future research.

4.1. Tip-Enhanced Raman Spectroscopy Based on Spiral Plasmonic Lens Excitation

Unlike the far-field light excitation used in conventional TERS, TERS based on a spiral
plasmonic lens excites the tip using SPPs generated by the symmetry-breaking lens. This
approach creates a strong longitudinal electric field at the focus [64], resulting in a higher
excitation efficiency of the near-field Raman signal and reduced far-field background noise,
thereby enhancing the detection sensitivity [65]. Although this detection method is limited
by its ability to detect only samples positioned at the center of the plasmonic lens (where
the SPP field is concentrated), improvements can be made to address this limitation. For
example, Gu et al. theoretically demonstrated that, by rotating the plasmonic lens and
adjusting the incident angle of circularly polarized light, the focus position can be shifted
within the lens, enabling sample scanning for imaging [66].

4.2. Chirality Detection

Since the discovery of OVs, many efforts have been made to utilize twisted light to
discriminate chiral molecules, as the OAM in an OV can take unlimited values compared to
the SAM, which has only two defined values. Currently, circular dichroism using circularly
polarized excitation and the optical rotation of linearly polarized light are primary methods
for characterizing chirality. Although some studies have shown that twisted light does not
achieve chiral differentiation through electric or magnetic dipole interactions [67], recent
experiments have demonstrated that linearly polarized twisted waves can exhibit helical
dichroism when interacting with chiral samples via higher-order interactions, such as
electric quadrupole interactions (Figure 8a,b) [67,68].
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Figure 8. Chirality detection using optical or plasmonic vortices. (a) Helical dichroism through
optical vortices interacting with enantiomers via strong electric quadrupole fields. Reprinted with
permission from [67]. Copyright © 2016, The Authors. (b) Helical dichroism in fenchone using linearly
polarized light, where l = 0 represents Gaussian beams and l = ±1, 2 represents vortex beams.
Reprinted with permission from [68]. © The Author(s), under exclusive license to Springer Nature
Limited 2022. (c) Chirality detection with plasmonic vortices, showing that like-chirality nanospirals
exhibit stronger cathodoluminescence intensities than unlike-chirality nanospirals. Reprinted with
permission from [69]. © 2017 Optical Society of America.

Specifically, Begin et al. used femtosecond high-power laser excitation to explore
the helical dichroism effect arising from the coupling of the electric dipole and electric
quadrupole terms [68]. Similarly, Burllot et al. leveraged the local fields of nanoparticle
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aggregates to enhance the engagement of OAM with molecular chirality through electric
quadrupole fields (EQFs) [67]. These findings suggest that nanoplasmonic vortices, with
their enhanced fields, could potentially discriminate enantiomers via high-order transition
moments. Additionally, Hachtel et al. observed that nanospirals positioned at the center of
a vortex plasmon generator showed a greater cathodoluminescence when their chirality
matched that of the generator (Figure 8c) [69].

4.3. Circular Polarization Analyzer

Numerous studies have demonstrated that plasmonic metasurfaces can manipulate
the polarization of incident light through SPPs. OVs can even be generated using specifi-
cally designed plasmonic structures by specific incident polarization [70]. In recent years,
researchers have shown that a spiral plasmonic lens can focus an appropriate circularly
polarized light into a PV. Moreover, left- and right-handed circularly polarized light is
focused into spatially separated plasmonic fields by such a lens (Figure 9). Zhan et al.
utilized this property to create an efficient miniature circular polarization analyzer [71,72].
Zhang et al. proposed a more complex coaxial AS structure, and their simulation results
indicated an improved coupling efficiency as a circular polarization analyzer [73]. Addi-
tionally, Afshinmanesh et al. integrated linear and spiral slits to measure the polarization
state with the complete Stokes parameters [74,75].
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Figure 9. SNOM images of a (a) left-handed and (b) right-handed single Archimedean spiral slot
(LHS) under left-handed circular (LHC) and right-handed circular (RHC) polarization illumination,
showing that a specific spiral has different focusing behaviors for two circular polarizations. Reprinted
with permission from [71]. Copyright © 2010 American Chemical Society.

4.4. Generation and Readout of Optical OAM

Not only can OVs generate PVs, but PVs can also be used to generate OVs. This section
briefly reviews some studies on OV generation using PVs, focusing on two main methods:
(1) A tapered metal tip surrounded by a spiral slit, where the PVs generated by the spiral
structure are coupled into free space via the metal tip at the center (Figure 10a) [76–78].
(2) A PVL with a central hole, where PVs produced by the PVL transmit through the
hole and scatter at its edge into free space [79]. Additionally, modifications to the second
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method include positioning the spiral lens and the hole on two separate metal layers
with an insulating layer in between. This design prevents impinging light from directly
transmitting through the hole, resulting in a pure OAM state (Figure 10b) [80].

Photonics 2025, 12, x FOR PEER REVIEW 12 of 21 

second method include positioning the spiral lens and the hole on two separate metal 
layers with an insulating layer in between. This design prevents impinging light from d

(a) (b) 

Figure 10. Generation of optical OAM. (a) Structure of a tapered gold tip surrounded by a spiral slit 
for generating optical vortices. The right two |E| maps in the middle row show that the same tip 
with different basis curvature radii 𝑟 has different far-field coupling effects. The |E| maps at the 
bottom show the far-field coupling effect of the same tip for PVs with different topological charges 𝑙. Reprinted from [76]. © 2016 American Chemical Society. Creative Commons license CC BY-NC-
ND 4.0. (b) Metal–insulator–metal holey plasmonic vortex lens used to generate optical vortices. 
Reprinted from [80]. Copyright © 2016, The Author(s). Creative Commons CC BY license. 

Furthermore, although Prinz et al. reviewed some works on employing a PVL for 
demultiplexing OAM at a chip scale [81], additional studies are included here as well. 
Wang et al. proposed an elliptical AS that is illuminated by incident light with different 
angular momenta, generating various PVs. The positions and sizes of these PVs can pro-
vide information about both the spin and orbital angular momentum of the incident light 
simultaneously (Figure 11a) [82]. Using a circular plasmonic lens, Liu et al. established 
interference between the surface plasmon and directly transmitted light. The rotation di-
rection and amount of rotation of these interference patterns are linked to the sign and 
value of the OAM, respectively (Figure 11c) [83]. Mei et al. proposed a semi-ring plas-
monic nanoslit that can focus various OAM modes of light onto spatially separate posi-
tions on the metallic surface. Additionally, they enhanced the focal intensity by increasing 
the number of such semi-ring nanoslits concentrically (Figure 11b) [84]. 

Figure 10. Generation of optical OAM. (a) Structure of a tapered gold tip surrounded by a spiral
slit for generating optical vortices. The right two |E| maps in the middle row show that the same
tip with different basis curvature radii rc has different far-field coupling effects. The |E| maps
at the bottom show the far-field coupling effect of the same tip for PVs with different topological
charges l. Reprinted from [76]. © 2016 American Chemical Society. Creative Commons license CC
BY-NC-ND 4.0. (b) Metal–insulator–metal holey plasmonic vortex lens used to generate optical
vortices. Reprinted from [80]. Copyright © 2016, The Author(s). Creative Commons CC BY license.

Furthermore, although Prinz et al. reviewed some works on employing a PVL for
demultiplexing OAM at a chip scale [81], additional studies are included here as well. Wang
et al. proposed an elliptical AS that is illuminated by incident light with different angular
momenta, generating various PVs. The positions and sizes of these PVs can provide
information about both the spin and orbital angular momentum of the incident light
simultaneously (Figure 11a) [82]. Using a circular plasmonic lens, Liu et al. established
interference between the surface plasmon and directly transmitted light. The rotation
direction and amount of rotation of these interference patterns are linked to the sign and
value of the OAM, respectively (Figure 11c) [83]. Mei et al. proposed a semi-ring plasmonic
nanoslit that can focus various OAM modes of light onto spatially separate positions on the
metallic surface. Additionally, they enhanced the focal intensity by increasing the number
of such semi-ring nanoslits concentrically (Figure 11b) [84].

4.5. Plasmonic Vortex Interferometers

Interferometers are commonly used tools in both research studies and commercial
applications. Lang et al. proposed a novel interferometer that utilizes the interference
between customized PVs, enabling the measurement of the polarization state, spin, and
orbital angular momentum of incident light. The core component is the versatile design
of the PVL, which consists of two sets of slit resonators, varying the separation distances
and orientation angles on the two circular contours, and features multiple degrees of
freedom that allow for the independent designation of the phase, relative amplitude,
topological charge, and number of PVs generated by two orthogonal circular polarizations
(Figure 12) [85].
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Figure 11. Readout of optical OAM. (a) Positions and sizes of PVs in an elliptical AS reveal both the
spin and orbital angular momentum of light. Reprinted from [82]. IEEE Open Access Publishing
Agreement (OAPA), 1943-0655 © 2017 IEEE. (b) Semi-ring plasmonic nanoslits capable of focusing
various OAM modes of light onto spatially distinct positions. The right figure depicts intensity profiles
along the white dashed lines in the left figure. Adapted with permission from [84]. © The Royal
Society of Chemistry 2016. (c) Circular plasmonic lens that utilizes interference between plasmon
and transmitted light to identify OAM states of light, causing different intensity distributions, shown
experimentally (top) and computationally (bottom). Reprinted with permission from [83]. Copyright
© 2013, The Author(s).
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4.6. Plasmonic Tweezers and Particle Manipulation

Compared to optical tweezers (OTs), plasmonic tweezers (PTs) overcome the diffrac-
tion limit, offering a higher accuracy in particle manipulation. OTs, which rely on sufficient
gradient forces, struggle to trap subwavelength-sized nanoparticles due to mismatches
between the spot and particle sizes [86]. Additionally, trapping metal particles with OV
tweezers is challenging due to the strong scattering force involved. To uncover the reason
for the capability of PVs in trapping metal particles, Zhang et al. explored the trapping
potential of metal particles with PV tweezers, finding that PV tweezers generated a domi-
nant gradient force capable of counteracting the scattering force, thereby stabilizing particle
trapping (Figure 13) [87].
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monic field generated by illuminating a circularly polarized pulsed laser onto a nanofab-
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Figure 13. Plasmonic and optical spanner. (a) Schematic of the spanner setup and its conceptually
operational principles, capable of stably trapping and dynamically rotating particles. (b) Video
recordings illustrating the movement of gold particles in the OV field (top two rows) and in the
PV field (bottom row). The black arrows denote motion direction of particles. Reprinted from [87].
Copyright © 2015, The Author(s). Creative Commons Attribution 4.0 International License.

To address the limitation of fixed nanostructures in modulating the PV field, Ju et al.
proposed a method for generating a holographic plasmonic field, where incident light is
modulated through a digital holographic algorithm to control the spot number, location,
and topological charge of PVs. This approach enables the dynamic trapping and rotation of
multiple gold particles [88]. Tsai et al., in contrast, used the plasmonic near-field generated
by a gold plasmonic AS to selectively trap or rotate dielectric microparticles [89]. Later,
Zaman et al. analyzed the three-dimensional optical force field produced by a plasmonic
AS to further explain Tsai’s results. They decomposed the force into conservative and
solenoidal components and observed that the right-handed plasmonic AS generated a
notable solenoidal force under right-handed, circularly polarized excitation, which induced
the rotation of the trapped particle [86].

4.7. Electron Beam Shaping

A tailored electron beam holds good promise for applications such as nanolithography,
microscopy, and imaging. Madan et al. employed an external spatial light modulator to
import the desired amplitude and phase characteristics to a light field, which were then
transferred to the electron beam via inelastic electron-light scattering on a flat, electron-
transparent plate. This method works for both Hermite–Gaussian and LG modulations [90].
Recently, Huo et al. demonstrated the generation of structured electron vortex beams with
customizable intensity patterns in free space using electron diffraction holography [91].

Moreover, these studies have broadened the scope of this field by inducing spatial
electron modulation based on ultrafast interactions between electron pulses and plasmonic
fields [92,93]. Vanacore et al. demonstrated this by using a femtosecond chiral plasmonic
field generated by illuminating a circularly polarized pulsed laser onto a nanofabricated
hole in a silver film on a Si3N4 membrane. This setup enables the interaction of both light
and SPP fields with electron wavepackets as they pass through the hole, creating and
controlling an ultrafast electron vortex beam [92]. Tsesses et al. dynamically controlled the
electron beam by shaping the SPP patterns through various plasmonic coupling slits and
by adjusting the SPP boundary conditions with different laser polarizations (Figure 14).
Furthermore, by tuning the incident laser intensity and pulse width, and by post-selecting
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specific electron energies after an interaction with guided SPPs, they could unlock another
type of electron spatial modulation [93].
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mechanism. (b) The spatial modulation of free electrons can be adjusted via altering the SPP field
boundary conditions by changing the incident laser polarization. The upper scale bar, 10 µm; the
lower scale bar, 0.5 µm. Reprinted with permission from [93]. Copyright © 2023, The Author(s),
under exclusive license to Springer Nature Limited.

5. Conclusions
In this article, we reviewed three aspects of PVs: the generation and manipulation

of PVs; the characterization of PVs; and the application of PVs. Although PVs have been
studied intensively in the two most recent decades, more efforts are still needed to push
PVs forward as a promising tool in both fundamental research and practical applications.
For instance, we mentioned their potential application in chirality discrimination. However,
the study mentioned in this review used ultrafast OAM light excitation, which complicates
our understanding of the light–matter interaction in this process due to potential nonlinear
effects. Thus, more work is still needed to explore the interaction mechanism involved
and achieve chirality detection via pure PV excitation. Furthermore, their applications in
super-resolution microscopy and spectroscopy warrant further exploration.

While significant breakthroughs have been made in the manipulation and characteri-
zation of PVs, leveraging their spatiotemporal characteristics remains an open challenge.
It is already known that spin–orbit coupling plays a vital role in this process. However,
how to use the process reversely remains an open question. Addressing this question
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could deepen our understanding of light–matter interactions and expand their applications.
Moreover, studies on controlling or shaping the spatiotemporal modulation of ultrafast
PVs remain limited. We believe that insights from ultrafast optics and ultrafast plasmonics
could provide valuable guidance in exploring this underdeveloped area. Some aspects,
such as their dispersion behavior, interference process, and pulse manipulation, represent
new frontiers that require further exploration. Regardless, we believe that PVs hold great
potential for the future with continued dedicated efforts.
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