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Abstract: We explore the integration of smart pixel light modulators (SPLMs) into bidi-

rectional optical neural networks (BONNs), highlighting their advantages over traditional 

spatial light modulators (SLMs). SPLMs enhance BONN performance by enabling faster 

light modulation in both directions, significantly increasing the refresh rate of neural net-

work weights to hundreds of megahertz, thus facilitating the practical implementation of 

the backpropagation algorithm and two-mirror-like BONN structures. The architecture of 

an SPLM-based BONN (SPBONN) features bidirectional modulation, simplifying hard-

ware with electrical fan-in and fan-out. An SPBONN with an array size of 96 × 96 can 

achieve high throughput, up to 4.3 × 1016 MAC/s with 10 layers. Energy assessments 

showed that the SPLM array, despite its higher power consumption compared to the SLM 

array, is manageable via effective heat dissipation. Smart pixels with programmable 

memory in the SPBONN provide a cost-effective solution for expanding network node 

size and overcoming scalability limitations without the need for additional hardware. 
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1. Introduction 

Over the past seven decades, substantial efforts have been made to develop optical 

computers for real-time data processing owing to their potential advantages in terms of 

speed and parallelism over electronic computers [1–3]. Notwithstanding these efforts, op-

tical computing has failed to outpace digital computing, which has advanced more rap-

idly and offers greater power, ease of use, and flexibility [4]. Optical computing remains 

predominantly analog, while electronic computing is digital. This fundamental difference 

has posed challenges, as digital optics lack the necessary components to compete directly 

with electronics. By contrast, free-space optics [3] and smart pixels [5,6] represent prom-

ising solutions for overcoming the limitations of electronic processors, particularly in ar-

tificial neural networks [7]. Purely electrical neural networks face a complex topology of 

connections as the number of input and output nodes increases, which can cause signifi-

cant electromagnetic crosstalk or noise, specifically at high clock rates [3,4]. However, 

light paths in free-space optics can cross without electromagnetic crosstalk, simplifying 

interconnections and reducing fabrication costs. This feature is particularly advantageous 

in neural networks, which are inherently analog and tolerant to some input errors [7]. 

Consequently, researchers have proposed a hybrid approach, combining optics and elec-

tronics, leveraging optics for tasks where it excels [1]. 

Received: 27 December 2024 

Revised: 17 January 2025 

Accepted: 31 January 2025 

Published: 2 February 2025 

Citation: Ju, Y.-G. A Conceptual 

Study of Rapidly Reconfigurable 

and Scalable Bidirectional Optical 

Neural Networks Leveraging a 

Smart Pixel Light Modulator.  

Photonics 2025, 12, 132. https:// 

doi.org/10.3390/photonics12020132 

Copyright: © 2025 by the author. Li-

censee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/). 

 



Photonics 2025, 12, 132 2 of 15 
 

 

Extensive research has been conducted on optical neural networks (ONNs); however, 

their complexity and bulkiness have hampered their commercial success compared to dig-

ital electronics [1,2,8–16]. Some ONNs based on photonic integrated circuits [9,10] have 

been successful. However, they use physical waveguides that cannot cross each other, 

resulting in lower space efficiency and reduced parallel throughput for a given connection 

density. To simplify the system and reduce optical crosstalk while maintaining immense 

optical parallelism from free-space optics, ONNs based on Köhler illumination using lens 

arrays and a spatial light modulator have been suggested, and their performances have 

been analyzed [17–19]. In these types of systems, optics have been used for linear calcula-

tions, while smart pixels or electronics have been employed for nonlinear calculations. 

Furthermore, this architecture has evolved into a bidirectional ONN (BONN) [19] to han-

dle backward data flow, such as the backpropagation algorithm. The capability of sending 

data in the backward direction also enables a two-mirror-like BONN (TMLBONN) [19], 

which emulates multilayer calculations, saving considerable hardware space. However, 

for the successful implementation of the backpropagation algorithm in a BONN, it is es-

sential to develop a fast spatial light modulator (SLM) capable of handling frequent 

changes in data flow. The change in data flow demands the updating of weights in each 

layer at a fast rate, exceeding several hundred megahertz. Nevertheless, most currently 

available SLMs are slow and only serially addressable, resulting in considerable latency 

[20,21]. Despite recent advancements in microelectromechanical systems (MEMSs) tech-

nology, most SLMs still operate in the range of tens of kilohertz, which is significantly 

slower than electronic switches. Therefore, the slow speed of currently available SLMs 

causes considerable latency within the BONN architecture. 

To address these challenges, we propose an optical neural network (ONN) based on 

free-space optics that incorporates lens arrays and a smart pixel light modulator (SPLM). 

The ONNs presented here are advancements of previously reported architectures, such 

as the linear combination optical engine (LCOE) [17] and BONN [19]. By replacing the 

SLM in earlier systems with the SPLM, we achieve significantly higher modulation 

speeds, resulting in a faster refresh rate for weights in the ONN. This enhanced refresh 

rate makes BONN and TMLBONN more practical for real-world applications. BONN en-

ables backward data flow, which is critical for learning algorithms, while TMLBONN 

saves significantly more hardware resources by emulating a multi-layer neural network. 

Thus, integrating SPLM into ONN technology may pave the way for developing more 

versatile and practical ONNs using current smart pixel technologies. 

Additionally, we analyze the performance of the SPLM-based ONN (SPONN) and 

explore how memory usage in the SPLM influences the scalability of the ONN. Unlike 

previous systems, this approach eliminates the need for clustering techniques to increase 

the number of input and output nodes, offering a more streamlined and efficient solution. 

2. Materials and Methods 

In an ONN based on free-space optics [17], an SLM is used to represent the weights 

of the neural network, as shown in Figure 1. Lens 1 distributes the input light into the 

pixels of the SLM, and Lens2 focuses the rays from the pixels, making the ray slopes dif-

ferent according to the relative position of the pixel from the optical axis of Lens1 and 

Lens2. Lens3 forms the images of the pixels on the detector plane, collecting rays of equal 

inclination into the same spot. This Köhler illumination scheme realizes the neural net-

work connection with minimal optical crosstalk between the channels. 

Rays from the input nodes pass through Lens1, the SLM, Lens2, and Lens3 until they 

reach the photodiode (PD). This optical process performs the linear calculations of the 

neural network in a single step, increasing throughput considerably. If the numbers of 

input and output nodes constitute two-dimensional N × N and M × M arrays, respectively, 
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then the total number of interconnections is N2 × M2. The rest of the neural network in-

volves the application of a nonlinear function and sending the result to the next stage, 

which can be efficiently handled by an electronic processor (EP) as in smart pixels. Because 

the smart pixels on the detector plane are connected only locally with neighboring pixels, 

the parallelism of the system is not compromised. Although optical nonlinearities enable 

faster computing without electronic delays [14], they are difficult to control and reconfig-

ure precisely in large arrays with small form factors. In this paper, this role is performed 

by the EP or smart pixel. This reflects the direction of LCOE in designing ONNs to be 

general-purpose and programmable. 

This LCOE architecture shows immense optical parallelism with fixed weights in the 

neural network, which can be very useful, particularly in inference applications. Although 

the SLMs are reconfigurable and programmable, the switching speed of currently availa-

ble SLMs remains at a few kilohertz [20,21], which delays calculations and significantly 

reduces throughput if the weights need to be changed during calculations. 

There are two potential solutions for improving the refresh rate of the SLM. The first 

is to develop a fast SLM array, such as absorption modulators. However, this approach 

involves significant time, effort, and cost. The second solution is to utilize existing tech-

nologies, such as smart pixels, which can integrate the detector, light source, and EP into 

a chip form. Recently, optoelectronic packaging technologies have advanced significantly, 

making the hybridization of these devices into an array feasible [6]. Additionally, the EP 

can perform various functions with memory, making the ONN more programmable and 

intelligent compared to using SLMs alone. 

 

Figure 1. An example of an ONN based on free-space optics using lens arrays and an SLM. LED, 

SLM, PD, and EP denote light-emitting diode, spatial light modulator, photodiode, and electronic 

processor, respectively. 𝑎𝑖
(𝑙)

 indicates the i-th input or output node in the l-th layer. 𝑤𝑗𝑖 represents 

the weight connecting the i-th input and the j-th output. 

A simple form of the ONN using SPLM is shown in Figure 2. The SPLM replaces the 

SLM in the previous LCOE system, while the other parts remain unchanged. The SPLM 

comprises a PD, an EP, and a light-emitting diode (LED) [6]. Since LEDs have some limi-

tations in modulation speed, they can be replaced with multi-mode vertical-cavity sur-

face-emitting lasers for higher modulation speeds [19,22,23]. The PD receives the incom-

ing light, converts it into an electrical signal, and sends it to the EP inside the SPLM. The 

EP amplifies the electrical signal as per the weight value stored in its inherent memory. 

The output from the EP is sent to the LED, which emits light proportional to the input and 

weight. The PD, EP, and LED form a pixel, and such pixels are only locally connected 
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except when the program is being downloaded. Once the program is loaded, the array of 

pixels operates independently, maintaining the parallelism of the system. Each pixel es-

sentially functions as a small repeater. 

Because the components are electronic, the modulation speed exceeds several hun-

dred megahertz, which is much higher than that of typical SLMs such as liquid crystal 

displays (LCDs) and MEMS [20,21]. Although the use of SPLM introduces two additional 

steps of conversion between optical and electronic signals, the delay from this process is 

less than a few nanoseconds [6]. However, the gain from the high modulation speed of 

the SPLM is much greater in many applications, as mentioned in the introduction. 

Another difference between the SPONN and the SLM-based ONN is that the LED 

output of the SPLM changes the divergence of the rays, whereas the SLM maintains colli-

mated light. This issue can be mitigated by using a small lens after the LED. However, 

this diverging beam does not affect the performance of the ONN because the SLM or 

SPLM plane is conjugate to the detector plane of the ONN through Lens2 and Lens3. This 

means the image of the LED in the SPLM forms at the detector plane regardless of the 

divergence angle of the LED. 

 

Figure 2. An example of an ONN based on free-space optics using lens arrays and an SPLM. SPLM(l) 

represents an SPLM in the l-th layer. Each smart pixel in the SMPL contains a PD, an EP, and an 

LED to modulate the input light with the weight stored in the memory of the EP. 

The SPONN can be further simplified by replacing LED(0) and Lens1 with an electrical 

fan-out, as shown in Figure 3a. The electrical fan-out is illustrated in detail in Figure 3b. 

The light input and Lens1 function as an optical distributor of the input signal, while the 

electrical fan-out in Figure 3a,b serves as an electrical distributor. This electrical distribu-

tor has a simple wiring topology that connects the output of the preceding layer to the 

inputs of the pixels in the following SPLM. This simple topology reduces wiring complex-

ity and electromagnetic noise. By using an electrical fan-out, the number of components 

and the burden of optical alignment can be reduced, thereby simplifying the system. 

The removal of LED(0) and Lens1 simplifies the optics and eliminates the need for 

Köhler illumination, in which Lens1 and Lens2 form a condenser system and Lens2 and 

Lens3 form a projection system. With only the projection system remaining, further sim-

plification is possible, as shown in Figure 3c. In this configuration, the distance between 

Lens2 and Lens3 can be shortened, or they can be combined into a single lens using ce-

menting or a diffractive optical element (DOE). Combining them into one element saves 
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space and reduces the burden of optical alignment, leading to cost reduction. Each layer 

of the system comprises an input smart pixel array, a lens array, and an output detector 

array with a smart pixel array. 

Overall, the replacement of SLM by SPLM greatly simplifies the system and may re-

duce fabrication difficulty and cost in the future. A three-dimensional view of the SPONN 

is shown in Figure 3d. This architecture is cascadable and accommodates multilayer 

ONNs like the LCOE. 

 
(a) 

 

 
(b) 
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(c) 

 
(d) 

Figure 3. Scalable ONN based on free-space optics using lens arrays and an SPLM with electrical 

fan-out: (a) schematic of the SPONN; (b) schematic of the electrical fan-out used for the input of the 

SPLM; (c) combining Lens Array2 and Lens Array3; (d) three-dimensional view of a system with a 

2 × 2 input and a 3 × 3 output. 

3. Results 

The application of SPLM in an ONN can also be extended to BONN [19], as illustrated 

in Figure 4a. In the SPLM-based BONN (SPBONN) architecture, the SPLM replaces the 

SLM, which was previously responsible for modulating light propagating in both forward 

and backward directions according to the weight values of the neural network [19]. The 

images of the SPLM pixels are formed on the detectors in the second substrate or the de-

tector plane using Lens2 (L20) and Lens3 (L30). The second substrate also includes light 

sources (𝐿𝐷′1
(1)

) for backward propagation, as shown in Figure 4b. The light source for the 

backward direction can include a laser diode, grating, and prism to control the properties 

of the output beams, which pass through the SPLM and focus on the PDs (𝑃𝐷′0
(0)

) on the 

first substrate for the backward direction. This entire BONN scheme is preserved even 

after replacing the SLM with SPLM, with the key improvement being a dramatic increase 

in modulation speed. 
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Because the SPLM can modulate light at several hundred megahertz, the refresh rate 

of the weights of the neural network can also reach a few hundred megahertz, as the next 

weight stored in the EP memory is sent to the amplifier within a few nanoseconds. This 

high refresh rate eliminates most of the concerns associated with the slow modulation of 

SLM in the previous BONN architecture. Replacing the SLM with SPLM enables the prac-

tical implementation of the backpropagation algorithm and the TMLBONN structure 

without the need for developing new types of fast SLM array devices. The implementation 

details of the backpropagation algorithm in BONN, along with the benefits of TMLBONN 

within the BONN architecture, are discussed in reference [19]. 

The SPLM used in this BONN differs from those in Figures 2 and 3; the details are 

shown in Figure 4c. To enable bidirectional modulation, the pixels are divided into two 

groups. One group is dedicated to the forward direction, featuring PD1 on the left side 

and LED2 on the right side of the same pixel, connected via EP2. The other group is de-

signed for the backward direction, with PD2, EP1, and LED1 within a pixel to modulate 

light in reverse. LED1 may include a microprism or lens to control emission and diver-

gence angles. 

 
(a) 

 
(b) 

 
(c) 
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Figure 4. BONN using lens arrays and an SPLM: (a) A schematic of the SPBONN and the associated 

mathematical formulas. 𝐿𝐷𝑖
(𝑙)

 and 𝑃𝐷𝑖
(𝑙)

 denote the i-th laser diode and photodiode in the l-th layer 

for the forward direction, respectively, while 𝐿𝐷′𝑖
(𝑙)

 and 𝑃𝐷′𝑖
(𝑙)

 represent the i-th laser diode and 

photodiode in the l-th layer for the backward direction, respectively. 𝐿10, 𝐿20, and 𝐿30 represent 

Lens Array1, Lens Array2, and Lens3, respectively. 𝐸𝑃𝑖
(𝑙)

 and 𝑆𝑃𝐿𝑀𝑖
(𝑙)

 denote the i-th electronic 

processor and the SPLM in the l-th layer, respectively; (b) light source for the backward direction; 

(c) schematic of the smart pixel light modulator used for the SPBONN. 

As with the simplification from Figure 2 to Figure 3, a similar approach can be ap-

plied to transform the SPBONN in Figure 4 into that in Figure 5 by using electrical fan-in 

and electrical fan-out to replace the optical input distribution previously achieved with 

Lens1. The final SPBONN design comprises SPLM, lenses, and detectors on the second 

substrate, maintaining the same bidirectional data flow while significantly simplifying the 

hardware structure. The electrical fan-in is introduced to perform the analog summing of 

optical signals for the backward direction, as in the previous version of the BONN. The 

EPs within the SPLM convert the output into current, and the electrical fan-in aggregates 

this current into the electrical input/output node of the EPs in the preceding layer. An 

example of a multilayer SPBONN is displayed in Figure 5c, which uses the cascading fea-

ture of SPBONN. The number of layers can be expanded further to increase parallel 

throughput for continuous input data. 

 
(a) 

 
(b) 
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(c) 

Figure 5. BONN based on free-space optics using lens arrays and an SPLM with electrical fan-out 

and fan-in: (a) schematic of the SPBONN with electrical fan-out and fan-in; (b) schematic of the 

electrical fan-out and fan-in used for the input and output of the smart pixel; (c) an example of a 

multilayer SPBONN. 

To assess the SPBONN, it is important to understand the scalability of the BONN 

system, which is inherited from the LCOE [17,19]. The core of the SPBONN lies in its pro-

jection system, comprising Lens2 and Lens3, as shown in Figure 5. This system faces scala-

bility limitations if clustering techniques are not employed [17,19]. Geometrical aberra-

tions and image magnification restrict the size of the input and output arrays to less than 

192 × 192 if the worst-case angular aberration is 1 mrad and the f-number (f/#) of Lens2 is 

2, respectively. Each bidirectional channel requires four subchannels to manage forward 

and backward data flow in the difference mode. Consequently, the maximum input or 

output array size is limited to 96 × 96 under the optical constraints outlined in reference 

[17]. This array size enables approximately (96 × 96)2, or 8.5 × 107, parallel multiply-and-

accumulate (MAC) operations per instruction cycle. Assuming a delay of approximately 

10 ns in the SPLM and an additional 10 ns delay in the detector plane of the second sub-

strate [6], the parallel throughput of a single layer is estimated to be 4.3 × 1015 MAC/s. This 

throughput can be further increased as the number of layers increases, provided the data 

flow remains continuous, as in inference applications, similar to pipelining in a digital 

computer, with multiple layers operating simultaneously. For example, if there are 10 lay-

ers, the throughput could reach 4.3 × 1016 MAC/s, surpassing the throughput of a tensor 

processing unit by nearly 100 times [24]. 

The above estimation does not apply to the backpropagation algorithm, as the data 

flow during backpropagation occurs in a single pass after the forward calculation. In this 

scenario, calculations are performed one layer at a time, which means that multiple layers 

are not activated simultaneously, thereby offering no gain from using multiple layers. In 

the LCOE architecture, multiple layers are necessary for maintaining high optical paral-

lelism because the refresh rate of weights or the SLM is only a few kilohertz. However, 

SPBONN does not require multiple layers, which would not only demand significant 

hardware space, but also involve substantial fabrication and assembly efforts, leading to 

high costs. The SPLM-based TMLBONN architecture addresses this issue by effectively 

handling the multilayer sequential algorithm, thereby saving hardware resources. The 

data flow bouncing between two layers can emulate a multilayer ONN because the weight 

refresh takes only 10 ns, which can occur during the calculation on the detector plane in 

the preceding layer. Consequently, there is no additional delay due to weight updates for 

the next layer. 

  



Photonics 2025, 12, 132 10 of 15 
 

 

4. Discussion 

The energy consumption of SPBONN needs to be evaluated, as SPLMs may consume 

more power than SLMs. SLMs, such as LCDs, are highly energy efficient devices that only 

rotate liquid crystals using an electric field without generating significant heat. However, 

SPLMs contain light sources such as LEDs or LDs, which emit light and can generate heat, 

particularly in large arrays. For example, if each SPLM output pixel in Figure 5b uses a 

micro-LED measuring 5 × 5 µm2 and consuming approximately 1 µW—with a typical cur-

rent density of 1 A/cm2 [25] and an optical output power of around 0.25 µW—a 96 × 96 

input and output array would require 2 × (96 × 96)2 LEDs in the SPLM array. The total 

electrical power consumption would be approximately 170 W. This amount of heat could 

be dissipated via natural or forced convection without significantly increasing the device's 

temperature, provided the board or substrate, including the light sources, is not exces-

sively small. If the SPLM pixels are spaced 20 µm apart, the total size of the SPLM array 

would be 370 × 370 mm2, which may be large enough for effective heat dissipation using 

convection alone. Considering that the throughput of a single-layer SPBONN decreases 

to the level of a tensor processing unit [24], the power consumption drops to only 17 W, 

which is very low compared to that of an electronic neural network. 

Replacing the SLM with the SPLM enhances the functionality of the ONN, as each 

smart pixel contains an EP that is programmable and has memory for storing weight data. 

This memory can be used to scale the number of input and output nodes with some time 

delay. Previously, the scaling limits of ONNs were overcome by using clustering tech-

niques in hardware, where multiple ONN modules were stacked in layers to redistribute 

extended input data and make full connections between the doubled input and output 

nodes [17]. However, SPONN eliminates the need for hardware scaling by using memory 

to increase the number of input and output nodes. 

The process of doubling the input and output nodes is illustrated in Figure 6. First, a 

full connection is made between the first group of N input nodes and the first group of N 

output nodes, with the output nodes storing the first output group in memory, as shown 

in Figure 6a. Next, the first input group is connected to the second group of N output 

nodes, and the first input group is stored in memory while the second input group is 

loaded into the input nodes using the memory of the input smart pixels, as shown in Fig-

ure 6b. Then, the second input group is fully connected with the second output group, as 

depicted in Figure 6c. Because the second output group accumulates all the weighted out-

puts from both the first and second input groups, it is stored in memory and replaced by 

the first output group, as shown in Figure 6c. Finally, the second input group is fully con-

nected to the first output group to complete the first output group, as shown in Figure 6d, 

which now contains the weighted outputs from both the first and second input groups. 

The process of doubling the input and output nodes is summarized in the form of a logic 

diagram, as shown in Figure 6e. 

This method of doubling input and output nodes can be repeated to further increase 

the number of nodes. The entire doubling process requires nine steps, which introduces 

some calculation delays and reduces throughput; however, it provides a way to expand 

the number of input and output nodes without additional hardware scaling. This ap-

proach saves on cost and space, offering flexibility for ONNs to accommodate various 

input and output sizes. 
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(a) (b) 

  
(c) (d) 

 
(e) 

Figure 6. Scaling the connection between input and output nodes using the memory of the smart 

pixel in the SPONN: (a) full connection between the first input group and the first output group, 

with the first output group stored in memory and the second output group loaded into the nodes; 

(b) full connection between the first input group and the second output group, with the first input 

group stored in memory and the second input group loaded into the nodes; (c) full connection be-

tween the second input group and the second output group, with the second output group stored 

and the first output group loaded into the nodes; (d) full connection between the second input group 

and the first output group; (e) logic diagram for doubling the input and output nodes. 

Smart pixel memory in SPONN can also be used to perform ONN operations in dif-

ference mode. In the LCOE configuration, handling negative weights requires an addi-

tional optical channel to obtain the weighted outputs and subtract them from the outputs 

of positive weights. However, in SPONN, inputs are first connected to the positive 

weights, and the weighted outputs are stored in the smart pixel memory on the second 
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substrate. The positive weights are then replaced with negative weights, and the outputs 

are recalculated. The negative weighted outputs are subtracted from the positive ones 

stored in memory. Although this process introduces a slight delay due to the additional 

steps, it requires only half as many output nodes as the traditional difference mode. Thus, 

SPBONN can emulate the difference mode using smart pixel memory, with a minimal 

delay when sufficient input and output nodes are unavailable. This approach is practical 

because the fast weight refresh rate of the SPLM significantly reduces the impact of the 

delay. 

If typical SLMs are used instead of SPLMs to handle positive and negative weights 

separately by refreshing weight values, the delay increases to at least 10 µs, compared to 

just 10 ns for SPLMs. This excludes the time required for serialization and loading input 

data into the SLM array. Consequently, replacing SLMs with SPLMs results in a through-

put improvement of over 10,000 times. A similar advantage is observed in applications 

where the same input data is applied to different sets of weight values. The throughput 

gain becomes particularly evident with SPLMs in ONN systems, as they significantly re-

duce the delay when switching between different weight sets. 

Furthermore, scaling input and output nodes falls under the multiple weight set sce-

nario. Doubling the input and output nodes causes the number of interconnections to in-

crease fourfold, while the number of calculation steps rises ninefold. If a calculation step 

using SPLMs takes 10 ns [6], then doubling the scale requires 90 ns, whereas the same 

calculation using SLMs takes 900 µs. Consequently, the parallel throughput of a single 

layer, as described at the end of the previous section, is estimated to decrease to approxi-

mately 1.9 × 1015 MAC/s and 1.9 × 1011 MAC/s for SPLMs and SLMs, respectively. There-

fore, SPBONN does not significantly degrade parallel throughput while doubling the in-

put and output nodes, thereby providing greater flexibility for ONN. 

Compared to previous ONNs [15–17,19], the SPONN architecture offers significant 

advantages in terms of flexibility and reconfigurability. Earlier ONNs, such as hologram-

based ONNs [11] and diffractive deep neural networks [15,16], relied on DOEs to repre-

sent both the linear and non-linear components of a neural network. While these diffrac-

tive optics provided a fast, fully optical implementation, they were neither reconfigurable 

nor programmable, limiting their applications. Furthermore, hologram-based ONNs [11] 

lack cascading capability, which critically hinders the implementation of multilayer neu-

ral networks. Other ONNs, such as LCOE [17] and BONN [19], used SLMs, making them 

reconfigurable, but the slow speed of current SLMs hinders real-time weight updates. To 

maintain optical parallelism with slow SLMs, multiple layers need to be applied in a cas-

cading manner, which becomes space-inefficient, as modern deep neural networks require 

hundreds of layers. 

In contrast, the SPONN architecture uses SPLMs to reconfigure network weights at 

speeds of just a few nanoseconds. This allows weight updates to occur while the previous 

layer’s computations are still being processed, ensuring real-time reconfigurability with-

out sacrificing optical parallelism. This fast reconfigurability brings greater flexibility in 

both hardware and software. For hardware, SPBONN can adopt the TMLBONN [19] ar-

chitecture, significantly reducing space requirements by facilitating data flow between 

two layers. 

The operation of a smart-pixel-based TMLBONN (SPTMLBONN) is illustrated in 

Figure 7. Data flows between two layers as light bounces back and forth between two 

mirrors, emulating the 2n layers of a neural network. This approach reduces the hardware 

requirements from 2n layers to just 2 layers, saving hardware space and cost while in-

creasing the delay by 2n times for continuous input compared to a 2n-layer multilayer 

SPBONN. 
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Figure 7. An example of a smart-pixel-based TMLBONN: The data flows back and forth between 

two layers in the sequence indicated by the arrows above the figure to emulate a multilayer neural 

network. 

For example, if a 10-layer SPBONN achieves 4.3 × 1016 MAC/s, a 2-layer 

SPTMLBONN can achieve 4.3 × 1015 MAC/s, using five times less space and hardware 

resources. Therefore, SPTMLBONN offers significant advantages during the initial devel-

opment stage, as its architecture requires much less hardware while still emulating an 

arbitrary number of layers, depending on the memory capacity of the smart pixels. In this 

sense, SPTMLBONN, with memory embedded in smart pixels, enables the scaling of the 

neural network in the direction perpendicular to the layer. In contrast, if an SLM replaces 

the SPLM in the TMLBONN, the parallel throughput decreases by at least 10,000 times, 

resulting in 4.3 × 1011 MAC/s. Thus, the advantage of the SPLM with TMLBONN is obvi-

ous. 

From a software perspective, the rapid reconfigurability of SPBONN enables bidirec-

tional data flow, making practical implementations of algorithms like backpropagation 

possible with large-scale optical parallelism. This makes SPOBNN suitable for both infer-

ence and learning applications, providing a path toward a more general-purpose ONN 

that balances hardware efficiency with software flexibility. 

Implementing a practical SPBONN system requires the consideration of many as-

pects, such as the design and fabrication of optoelectronic chips, lens arrays, and the op-

tical alignment between them. Although smart pixel technology is an established and ma-

ture field, it needs to be adapted to accommodate SPBONN using advanced 3D chip pack-

aging techniques, which have become more widely used recently due to the development 

of AI chips. 

A more thorough tolerance analysis of the optical alignment is necessary to ensure 

the system’s feasibility, even though a basic analysis was conducted in the scalability 

study in [17]. The optical elements used in SPBONN, as shown in Figure 5, are simplified 

and can be implemented with a single DOE of high precision, significantly simplifying the 

alignment process. In this scheme, the critical factor is the alignment between the smart 

pixels on the first substrate and the DOE, which can be maintained within a tolerance of 

less than 5 µm: a feasible target [26]. The same logic applies to the light source for the 

backward direction, as shown in Figure 4b. 

5. Conclusions 

We investigated the integration of SPLMs into ONNs and BONNs and their ad-

vantages over traditional SLMs. SPLMs replaced SLMs in these architectures, enabling the 

faster modulation of light in both forward and backward directions. This significant im-

provement in the refresh rate of the neural network weights, from tens of kHz to several 
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hundred MHz, is crucial for the practical implementation of the backpropagation algo-

rithm and the TMLBONN structure, eliminating the need for new fast SLM array devices. 

The SPLM used in BONN differs from those in SPONN by enabling bidirectional 

modulation, where pixels are divided into two groups dedicated to forward and back-

ward light propagation. This division allows for effective modulation in both directions, 

contributing to the overall efficiency and performance of the BONN system. The introduc-

tion of electrical fan-in and fan-out in the SPBONN designs further simplifies the hard-

ware structure while maintaining bidirectional data flow. 

An SPBONN with an array size of 96 × 96 enables approximately 8.5 × 107 parallel 

MAC operations per instruction cycle. The parallel throughput of a single layer can reach 

4.3 × 1015 MAC/s, which can be further increased with additional layers, similar to pipe-

lining in digital computers. For instance, with 10 layers, the throughput could reach 4.3 × 

1016 MAC/s. The SPLM-based TMLBONN can emulate a multilayer ONN using the high 

weight refresh rates of the SPLM, saving hardware resources and ensuring data flow be-

tween two layers at much higher speeds than an SLM-based BONN. 

An assessment of the energy consumption of SPBONN was conducted, given that 

SPLMs may consume more power than SLMs. For instance, a 96 × 96 SPLM array could 

consume approximately 170 W. However, effective heat dissipation via convection is fea-

sible if the SPLM array is sufficiently large. 

Replacing SLMs with smart pixels in the ONN enhances its functionality in addition 

to the speed, as each smart pixel contains an EP with a programmable memory to store 

weight data. This memory facilitates the scaling of the number of input and output nodes 

without additional hardware, overcoming previous scaling limitations that required clus-

tering techniques and hardware stacking. The method of doubling input and output 

nodes using smart pixel memory offers a flexible and cost-effective way to expand the 

neural network without hardware scaling, although it introduces some calculation delays 

and reduces throughput. 

In summary, replacing an SLM with an SPLM in an ONN significantly boosts the 

weight refresh rate, making BONN and TMLBONN highly practical for achieving mas-

sive parallelism and rapid reconfigurability with current smart pixel technologies. Addi-

tionally, incorporating memory within smart pixels overcomes scaling limitations, 

providing the flexibility to accommodate various input and output node sizes. These ad-

vancements suggest that the newly proposed architectures could pave the way for more 

general-purpose optical computing in the future. 
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