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Abstract: Diabetes mellitus is a metabolic disorder that is rapidly growing across the world.
Our laboratory has recently demonstrated that photobiomodulation (PBM) can couple to
its metabolic pathways by modulating calcium dynamics in islet cells, including α- and
β-cells. Using computer vision algorithms, changes in PBM-induced calcium dynamics
can be verified, and, more importantly, this led us to propose hypotheses that will likely
advance our understanding of photostimulatory effects in islet cells. In our previous paper,
we determined changes in calcium spiking in response to PBM at 810 nm by manually
segmenting the cells and the calcium spiking patterns. We have since developed a computer
vison pipeline to automate cell segmentation and subsequent image analyses. By using
automated methods for segmentation, registration, tracking, and statistical analysis, we
were able to improve the accuracy of previously observed changes in calcium spiking
in response to PBM in both cell types. Moreover, this pipeline was applied to elucidate
the wavelength-dependent modulation of calcium dynamics at 1064 nm. The extent of
increase in calcium spiking appears to have been overestimated by manual analysis, and
the machine learning pipeline was able to capture and segment nearly 3-fold more cells,
suggesting improved accuracy in the analysis of calcium spiking in islet cells. Detailed
calcium analysis also indicates a biphasic dose response among α- and β-cells in response
to PBM therapy at different wavelengths. The current findings offer a novel hypothesis
and may facilitate the use of translational PBM as a potential therapy for diabetes mellitus.

Keywords: calcium spiking; computer vision algorithms; image analysis; islet cells;
photobiomodulation

1. Introduction
Photobiomodulation (PBM), also known in the past as low-level laser (light) therapy,

uses red or near-infrared (NIR) light to stimulate metabolic interactions, including increased
mitochondrial activity. It has been repeatedly demonstrated that the red or NIR light is
absorbed by the cytochrome c oxidase (CCO) enzyme [1–3]. The photodissociation of nitric
oxide from the enzyme facilitates an influx of oxygen and increases the rate of adenosine
triphosphate (ATP) synthesis [4], producing numerous physiological benefits.
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1.1. Photobiomodulation Therapy

PBM has become a therapy of interest for a multitude of fields, including wound
healing [5–7], inflammation [8], Alzheimer’s disease [9,10], stroke [11,12], and traumatic
brain injury [13]. Several dermatological procedures have incorporated PBM as a treatment
method as well [14]. In the realm of cosmetics, PBM is believed to increase skin strength
and hydration and to improve its overall texture [15]. Various forms of light therapy have
been used for skin rejuvenation and wrinkle treatments, acne reduction, and fat loss [14,16].
Furthermore, PBM was found to decrease lipid accumulation in adipose-derived stem
cells [17], providing potentially significant insights for insulin resistance studies [18]. In
addition, numerous studies have investigated the potential benefits of PBM therapy for
diabetic patients. Treatments have been shown to improve glucose metabolism [3,19,20]
and facilitate diabetic wound healing [21–23].

As red and NIR photons are accepted by the heme subunit of CCO, the mitochondrial
membrane potential is increased [21]. Enhanced ATP synthesis has been shown to promote
wound healing by accelerating cell proliferation and migration [21]. However, the effec-
tiveness of PBM is dependent on multiple factors, including the wavelength, irradiance,
mode (e.g., continuous or pulsed), and exposure rate [21]. Treatment is likely wavelength-
dependent, as CCO absorption peaks at approximately 800 nm and diminishes at increasing
wavelengths [24–27]. Thus, shorter wavelengths have a more direct effect on CCO and
are often used for surface-level therapies (e.g., skin), while longer wavelengths allow for
deeper penetration and affect the tissues below the skin or skull in the brain [17,18,21].
Moreover, reviews of multiple studies have found positive effects using both continuous-
and pulsed-laser treatments in diabetic would healing models [21,22]. The variation in
wavelengths, mode, and fluence (J/cm2) used in diabetes research is widespread, and thus
the optimization of these therapies remains elusive [21].

1.2. Non-Invasive Stimulation of Pancreatic Cells

There are many intricate factors that affect the mechanisms of diabetes and the regula-
tion of glucose levels. Glycogen muscle concentration [3], insulin and glucose tolerance [20],
and adipocyte area [19,28] should all be considered when evaluating treatment results from
diabetic models. Changes in calcium levels serve as another important indicator for better
understanding how pancreatic cells regulate glucose levels. For example, membrane depo-
larization derived from the closure of ATP-sensitive potassium channels (KATP) stimulates
the opening of voltage-gated Ca2+ channels (VGCCs) and induces insulin secretion [29–31].
Our laboratory has previously shown that the frequency and intensity of calcium spiking
can be increased through non-invasive stimulatory techniques. Electric field stimulation
(EFS) in the physiological range of field strength <2 V/cm was demonstrated to activate
VGCCs, increase the calcium spiking frequency, and, subsequently, increase insulin secre-
tion [32]. Interestingly, stimulatory techniques using PBM also showed a significant increase
in calcium activity for α- and β-cells [33], but PBM is not expected to couple directly to
VGCCs. The analysis of the PBM-induced increase in calcium spiking found it to be corre-
lated with a higher level of insulin secretion. However, a laborious and manual method
was used to hand-segment individual cells, which required tens of hours for analyzing just
one set of experiments. Furthermore, in the manipulation of the fluorescence intensities
that represented the intracellular calcium concentration, it was questioned whether human
biases played a role in concluding that this was a potential non-invasive and non-biologic
treatment for diabetes mellitus. It is believed that implementing machine learning tech-
niques could significantly accelerate the standardization of PBM parameters through the
utilization of more sophisticated models, enabling faster and more comprehensive data
analysis [21].
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1.3. Complications with Manual Segmentation

Much of the data from these previous experiments have unfortunately been hampered
by the limitations of manual analysis techniques. Advancements in technology have led to
the quantification of biological images as standard practice in conjunction with examining
visual elements, and open source software is increasingly utilized to meet these research
needs [34]. However, these programs regularly lack the capacity to perform accurate
segmentation to the same extent as modern neural networks. Manual segmentation is
a time-consuming process and frequently requires multiple researchers to minimize any
potential bias [35]. It is difficult to achieve the complete, accurate segmentation of all cells,
and the information obtained from each image is likely limited.

Although traditional programs have previously been demonstrated to be useful tools,
advancements in computer vision and machine learning could lead to more sophisticated
analyses. These new methods enable investigators to not only perform detailed experiments
but also to explore and formulate more intricate hypotheses. While machine learning
algorithms often face similar challenges with segmentation, especially on cells with unique
shapes, training models with large datasets and providing appropriate parameters can
improve accuracy. Automated segmentation techniques are notably faster than manual
analysis and can also process far greater amounts of data and provide more detailed
results, including spatial and temporal information. We therefore developed and applied a
computer vision pipeline, BetaBuddy [36], to previous datasets in order to reassess results
determined using hand segmentation methods.

1.4. Study Rationale

Our first application of BetaBuddy was to reanalyze calcium spiking patterns in β-cells
that were stimulated by EFS [32]. Automated cell segmentation and analysis confirmed the
originally published results but found subtle differences in that the overall calcium spiking
activity had been underestimated using manual analysis. In this current study, we applied
BetaBuddy and reanalyzed the calcium fluorescence images of mouse islet cells treated
with PBM therapy.

The primary objective was to validate the results of the original experiments and
assess the differences in the calculated calcium activity between manual and automated
segmentation. This study also aimed to assess the efficacy of using a computational
model to acquire more specialized data on the effects of photostimulatory treatments and
determine whether these algorithms can be employed to optimize cell-type-dependent
parameters. To achieve this objective, similar experiments should be conducted using
varying wavelengths and exposure durations while maintaining the same fluence.

Interestingly, the automated image analysis indicates that the manual analysis overes-
timated the extent of calcium spiking in response to PBM. The wavelength dependence of
PBM effects was experimentally measured, and the same pipeline was applied to better
analyze the data and elucidate the intricate interplay between the two major islet cell types
that are believed to counteract one another to regulate glucose homeostasis. We now have
the capability to further explore the complicated β-cell physiology due to having access to
more accurate and rapid analysis without human biases.

2. Materials and Methods
2.1. Dataset

Mouse-derived βTC6 insulinoma cells (ATCC CRL-3605, Manassas, VA, USA) were
cultured in high-glucose DMEM (4.5 g/L, Sigma, Milwaukee, WI, USA), 15% Fetal Bovine
Serum (FBS, ThermoFisher, Frederick, MD, USA) and 1% Penicillin–Streptomycin (P-S,
10,000 U/mL, ThermoFisher, Greencastle, PA, USA). Additionally, αTC1 cells (a gift from
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the Baylor Scott & White Research Institute) were cultured in low-glucose DMEM (1 g/L,
Sigma, Milwaukee, WI, USA), supplemented with 10% FBS and 1% P-S. Both lines were
incubated at 37 ◦C and 5% CO2.

2.2. Laser Parameters

Of the different NIR wavelengths involved in many PBM studies, 810 nm and 1064 nm
are commonly used [24,26]. The absorption of CCO peaks at around 800 nm, and it is
theorized that light scattering at 1064 nm can result in deeper penetration [24]. Thus, these
wavelengths were chosen for this study. In an effort to further optimize the experimental
conditions, multiple levels of irradiance (W/cm2) and dosing rates (s) were used. These
can be precisely controlled in each laser system. Because both lasers have a fixed beam size,
the power (W) and rate of delivery were easily manipulated while maintaining a standard
fluence (J/cm2).

For the photostimulation treatments, cells were exposed to a continuous-wave NIR
laser of either 810 nm (Cytonsys; Austin, TX, USA) or 1064 nm (Cell Gen Therapeutics,
Dallas, TX, USA; model CG-5000) at a 9 J/cm2 fluence with varying irradiance. Fluences
greater than 10 J/cm2 have previously been associated with decreased cell viability and
DNA damage [37]. A dataset of cells laser-treated with an 810 nm wavelength stimulated
at an intensity of 150 mW/cm2 for 60 s was obtained from a previous study [33]. New
treatments with the 1064 nm laser were applied at 300 mW/cm2 for 30 s and 200 mW/cm2

for 45 s. A continuous 1064 nm wavelength was used to test and establish the wavelength
dependence in comparison to the previous 810 nm exposure experiments.

2.3. Fluorescence Imaging

All cells were seeded onto 35 mm glass-bottom dishes (Cellvis, Mountain View, CA,
USA) for live cell imaging. Fluo-8 (Abcam, Boston, MA, USA) was used for fluorescence
staining to monitor calcium activity. The dye was mixed with Hank’s Balanced Salt Solution
(HBSS) to a final concentration of 0.8 and 1.6 µM for βTC6 and αTC1, respectively, and
incubated at 37 ◦C for 30 min. All cells were counterstained with NucBlue to assist with
segmentation. Each plate was imaged at 5 s intervals for 2 min prior to treatment to obtain
control data. Following photostimulation, the cells were then imaged for 2 min intervals at
t = 5, 10, and 15 min to minimize photobleaching.

2.4. AI-Assisted Pipeline

BetaBuddy is a computer vision pipeline that provides a series of algorithms to auto-
matically segment, register, and track the imaged cells over time, as shown in Figure 1. We
recently provided a full description of the development and application of BetaBuddy [36].
Briefly, microscopic images acquired using an imaging system first undergo a file type
conversion process to standard format (i.e., TIFF files). Next, the calcium-sensitive Fluo-8
intensity channel is merged with the DAPI channel (visualization of nuclei) so that indi-
vidual cells may be better identified. The segmentation of the images is performed using
Cellpose [35], a generalist algorithm designed for the successful segmentation of multiple
different cell types.

To further assist with accurate segmentation, composite images containing the maxi-
mum intensity value of every pixel were produced so that cell boundaries could be more
strictly defined during periods of low intensity. Due to the fact that β- and α-cells are
typically found to be clustered and therefore do not move within the observation and image
acquisition time (15 min), this process was justifiable, as spatial locations were not too
significantly changed during fluorescence imaging. The composite images then underwent
the segmentation process, and the resulting masks were overlayed with their respective
image stacks. The Fiji plugin Trackmate [38] identifies the ROIs obtained from the mask
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images and uses them to register the cells. Each cell is then tracked across every frame,
providing individualized spatial and time-series data. Data obtained from the registration
and tracking of the ROIs are output into a CSV file, which is then used to perform auto-
mated background subtraction and normalization. Once the data have been normalized,
an automated calcium spike detection procedure is used to analyze and represent changes
in calcium dynamics.
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Figure 1. Modified BetaBuddy flowchart. The BetaBuddy pipeline automatically converts the
fluorescence image files into a workable TIFF file type, merges the FITC (calcium fluorophore) and
DAPI (nuclei) channels together, and performs a series of image processing steps to prepare the
images for segmentation. A deep learning algorithm, Cellpose, is then utilized to segment the cells,
and all designated ROIs are tracked and registered across each time frame using Fiji macro scripts.
Automated statistical analysis is then performed on all registered cells using R language. Each line in
the graph represents a registered cell over the designated image time. BetaBuddy’s original script
was modified to analyze the cells at each of the designated timepoints in the photobiomodulation
experiment (t = 0, 5, 10, and 15 min). Cells were monitored in 2 min time windows at 5 s intervals.

2.5. Calcium Spike Detection

Automated calcium spike detection was performed separately for all timepoints of
each trial. To maintain consistency with the original experiment, calcium spikes were
defined by 10% increases in fluorescence intensity.

The automated algorithms provided an opportunity for more sophisticated normaliza-
tion and background subtraction procedures. Therefore, a threshold based on a moving
average, as reported in the previously published results [33], was no longer needed. In-
stead, the algorithm was used to locate all intensity peaks over time for each individual
cell. Calcium spikes were then defined using two parameters: (1) an identified peak had
an increase in fluorescence intensity ≥ 10% from its immediately preceding measured
timepoint and/or (2) the net change between two identified peaks in activity was ≥10%.
An example 2 min imaging period highlighting these spikes for each cell type is illustrated
in Figure 2.
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Figure 2. Calcium spike analysis. All cells were stained with Fluo-8 (green) to measure calcium
intensity. Nucblue was used for nuclear staining (blue). Each registered ROI is outlined in white.
Spikes in fluorescence intensity are automatically detected for each registered ROI. Spiking activity is
calculated for each 2 min imaging period. A representative sample of calcium intensity fluctuations
is shown at t = 15 min for one experiment set of α-cells (a) and another of β-cells (b). Two 2 min
acquisitions of Fluo-8 images at 5 s intervals in multiple cells are shown, respectively. Red dots
indicate a designated calcium spike.

2.6. Fold-Change Determination

The fold-change increases were calculated for each trial for both β- and α-cells. The
activity at each timepoint was defined as the number of calcium spikes divided by the
number of cells over time and normalized by the calcium spikes at t = 0 prior to stimulation.
The fold-rise in calcium activity was averaged over all trials at each timepoint (t = 0, 5, 10,
and 15 min).

3. Results
3.1. Dataset Reanalysis

Using BetaBuddy, more ROIs were identified with respect to the number of cells used
in the original calculations. With manual segmentation, the identification of ROIs can be
more challenging, biased, and exceedingly more time-consuming. Thus, a representative
sample is often used to carry out reproducible calculations throughout all timepoints. With
BetaBuddy, nearly every cell within each frame is registered for statistical calculation and
could likely affect the overall results in changing fluorescence intensity patterns. To provide
a quantitative comparison, the number of ROIs determined manually and by BetaBuddy
was monitored for each experiment set. As shown in Figure 3, there was a significant
difference in the number of ROIs determined between the manual and automated analyses.
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Figure 3. Improving ROI detection. (a) Average number of ROIs detected for all βTC6 experiments.
Labels represent the percent change between the manual and automated analyses. (b) Average ROIs
identified in αTC1 experiments with percent change.

The mean percent change between the number of ROIs analyzed between the two
methods was 133% for the βTC6 cells and 221% for the αTC1 cells, which were fluorescently
monitored and recorded in 18 or 10 independent experiments, respectively. This comparison
provides convincing evidence that calcium dynamics in islet cells are more accurately
represented by the computer vision machine learning pipeline.

The automated cell segmentation and statistical analysis of calcium dynamics deter-
mined significant increases in activity for both the βTC6 and αTC1 cells in response to
PBM. The reanalyzed results were, in general, in agreement with the previously reported,
manually analyzed results, but with subtle differences. The magnitude of increase in
calcium spiking activity was previously reported as ~3-fold. Figure 4 shows the newly
reanalyzed results using BetaBuddy, indicating that such increases were <~3-fold.
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Figure 4. Validation of results. Significant increases in calcium activity found in the original exper-
iment (a) using manual analysis were generally confirmed by applying BetaBuddy (b). While the
magnitude of increases appears to have been overestimated manually, the overall trend of PBM-
induced calcium spiking in both cell types is validated, with a few subtle differences (see text). An
ANOVA test was performed; * p < 0.05, ** p < 0.01, and *** p < 0.001.

The difference was subtle, and it reassured the investigators that hand-drawn cell
segmentation and analysis were reasonable but likely to be less accurate and obviously
more laborious. More interestingly, however, unlike the α-cells, the β-cells did not exhibit a
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significant increase in calcium activity until after 10 min following the PBM treatment. This
subtlety was not noticeable in the manual analysis. Moreover, the calcium activity in the
α-cells increased within 5 min following PBM but did not further increase. This contrasts
with the previous results, which showed that the calcium activity in the α-cells appeared to
steadily increase over the 15 min observation time.

3.2. Wavelength Dependency

Further investigations were conducted following the original 810 nm experiments
to obtain insights into cell-type-dependent responses to 1064 nm laser therapy. While
maintaining the same fluence as in the original experiments (9 J/cm2), cells were stimulated
using the 1064 nm laser at 300 mW/cm2 for 30 s and 200 mW/cm2 for 45 s. The results are
summarized and shown in Figure 5.

Photonics 2025, 12, x FOR PEER REVIEW 8 of 16 
 

 

(a) (b) 

Figure 4. Validation of results. Significant increases in calcium activity found in the original exper-
iment (a) using manual analysis were generally confirmed by applying BetaBuddy (b). While the 
magnitude of increases appears to have been overestimated manually, the overall trend of PBM-
induced calcium spiking in both cell types is validated, with a few subtle differences (see text). An 
ANOVA test was performed; * p < 0.05, ** p < 0.01, and *** p < 0.001. 

The difference was subtle, and it reassured the investigators that hand-drawn cell 
segmentation and analysis were reasonable but likely to be less accurate and obviously 
more laborious. More interestingly, however, unlike the α-cells, the β-cells did not exhibit 
a significant increase in calcium activity until after 10 min following the PBM treatment. 
This subtlety was not noticeable in the manual analysis. Moreover, the calcium activity in 
the α-cells increased within 5 min following PBM but did not further increase. This con-
trasts with the previous results, which showed that the calcium activity in the α-cells ap-
peared to steadily increase over the 15 min observation time. 

3.2. Wavelength Dependency 

Further investigations were conducted following the original 810 nm experiments to 
obtain insights into cell-type-dependent responses to 1064 nm laser therapy. While main-
taining the same fluence as in the original experiments (9 J/cm2), cells were stimulated 
using the 1064 nm laser at 300 mW/cm2 for 30 s and 200 mW/cm2 for 45 s. The results are 
summarized and shown in Figure 5. 

(a) (b) 

Figure 5. Cell-type responses to 1064 nm PBM. (a) The application of the 1064 nm laser with a
300 mW/cm2 intensity resulted in a significant increase in calcium activity in the β-cells at t = 15 min.
Significant inhibition of calcium activity was present at all timepoints in the α-cells. (b) Applying
a 200 mW/cm2 intensity with the 1064 nm laser resulted in the inhibition of calcium activity when
compared to the control for both cell types. The data represent the mean ± SEM of fold-rise in
calcium spiking activity for the β- and α-cells from 12 and 9 independent experiments, respectively.
Approximately 500 to 600 cells were segmented and analyzed in each experiment. * p < 0.05.

PBM significantly increased the calcium activity of the β-cells at the 15 min timepoint
with the application of a 300 mW/cm2 intensity. This finding is not totally inconsistent
with the results we obtained using 810 nm (see Figure 4), although the fold-rise in calcium
spiking activity decreased modestly. Interestingly, no significant increase was observed
when the laser intensity was reduced to 200 mW/cm2 but applied for a longer duration
(e.g., 30 vs. 45 s) to maintain the same fluence (Figure 5a). The wavelength dependence was
more pronounced in the α-cells. Neither of the two laser intensities we used were capable of
increasing the calcium activity in this cell type. In fact, the PBM-induced calcium activities
in the α-cells appeared to be inhibited when 1064 nm photostimulation was applied.

4. Discussion
The changes in calcium activity observed are consistent with our previous understand-

ing of CCO absorption spectra. CCO absorbs strongly at ~800 nm [24,25], and thus more
robust responses in calcium dynamics should be expected when carrying out stimulation
with an 810 nm laser. At 1064 nm, its absorption coefficient is reduced by ~3-fold [27],
which provides a simple explanation of the wavelength-dependent modulation of calcium
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dynamics in islet cells. While the fluence was fixed at 9 J/cm2, we varied the laser inten-
sity and time duration to assess whether the islet cell physiology depends on the rate of
photoenergy delivery. Consistent with a generally accepted paradigm in the literature,
a stronger light intensity applied for a short time duration is more effective in inducing
photostimulatory responses. It is interesting to note that our results may be indicative of
a biphasic dose response. Multiple studies have demonstrated that changing the fluence
resulted in an oscillation between stimulatory or inhibitory responses at varying wave-
lengths [39], and longer wavelengths tend to be more effective at lower doses [26,39]. Our
findings partially confirm this trend at 1064 nm. However, a longer duration of treatment
at a lower irradiance (e.g., 200 mW/cm2) resulted in an inhibitory effect on calcium activity,
especially when compared to the stimulatory effect observed at 300 mW/cm2 in the β-cells.

The calcium dynamics studies we performed were monitored and recorded for 15 min
following PBM stimulation. Therefore, we next assessed the PBM effects over a longer
observation time period. In a set of proliferation studies, alamarBlue was used to evaluate
the viability of β- and α-cells after 24 h in response to PBM therapy. Again, the fluence
was fixed at 9 J/cm2 for both 810 and 1064 nm photostimulation. For the β-cells, a single
PBM treatment at 0 h increased the cell viability when using both the 810 nm and 1064 nm
lasers. However, the application of the 810 nm laser demonstrated greater cell viability as
compared to the control, unexposed cells (Figure 6). Again, this finding is in agreement
with and can be explained by a higher absorption of CCO at 810 nm. In contrast, the
same PBM treatment induced no statistically significant difference in α-cell viability. Such
cell-type dependence is not readily understood, nor is it easily explained by differential
absorption, and this reiterates the challenges of (1) having to optimize PBM for different cell
types and (2) establishing generalized photocoupling mechanisms. To further compound
this challenge, we chose to treat the cells with two PBM treatments at 0 and 6 h. These
two treatments applied within 6 h of each other displayed an inhibitory effect on β-cells
(Figure 6). This is reminiscent of the biphasic dose response that is well characterized
in pharmacodynamics [39]. Interestingly, no PBM treatment was capable of increasing
cell viability in the α-cells. The PBM treatment frequency may have to be optimized for
different cell/tissue types, in addition to optimizing the PBM parameters, including the
wavelength, fluence, and energy deposit rate.

The potential benefits of PBM therapy continue to be encouraging and are reinforced
by new information that is being obtained through computational methods. Although we
found that hand segmentation and manual analysis led to similar conclusions, automated
methods are best for implementation in future experiments for multiple reasons. First, with
machine learning techniques, we are able to segment and analyze more cells, thus increasing
accuracy. Second, automated pipelines are faster and more efficient for batch analysis. The
time requirement for one set of data is reduced from tens of hours over a few days to
less than 15 min, and the results are no longer subject to human biases. Third, through
automated methods, we have the capability to now explore cell–cell communication,
including the cell feedback mechanisms of pancreatic cells through calcium signaling.
Finally, as proposed below, these faster, more accurate results can provide a basis for
formulating novel working models to determine photocoupling mechanisms that are likely
cell-type-dependent, which further illustrates the utility of implementing a computer
vision pipeline.

The development and application of the automated pipeline offer the capability to
effortlessly determine the active population of cells. Consistent with our previous defi-
nition [33], any cell that spikes at least once within a given experiment was considered
active. Because each cell was not only segmented but registered, tracking individual cells
over the 15 min observation period was straightforward. As shown in Figure 7, we are
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now able to monitor PBM effects using multiple independent samples and observe trends
in the active populations. Again, this illustrates one of the advantages of using an auto-
mated pipeline over manual analysis. More in-depth analyses are underway to determine
coupling mechanisms that might explain a plausible increase in the active cell populations.
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Figure 6. Biphasic Response of PBM on cell viability. β- and α-cells were treated with PBM, and
fluorescence intensity was measured with an AlamarBlue assay over a 24 h period. Each experimental
condition contained a control, a single initial PBM treatment, and a double PBM treatment at 0 and 6 h.
The relative fluorescence intensity following the application of 1064 nm laser therapy was quantified
for β-cells (a) and α-cells (b), respectively. The cell-type-dependent responses are also displayed
post-treatment with an 810 nm laser (c,d). At both wavelengths, β-cells exhibited an increase in cell
viability with a single PBM treatment, with a significant difference (p < 0.05) at t = 4 h and t = 8 h
with the 1064 nm laser. Two treatments within 6 h appeared to negate such PBM-induced responses.
No PBM treatment led to any significant difference in α-cells. The initial cell seeding density was
5 × 105 cells/well. The data represent the mean ± SEM of n = 4 independent experiments.

Trial-specific data can better highlight the cell-type-dependent response to PBM. New
but physiologically significant results are now made possible because we implemented a
computer vision pipeline that is proven to be capable of elucidating a subtle but important
cell-type dependence when cells are treated with photostimulation. The two major cell types
found in islet cell population are α- and β-cells. These two cell types are known to work
to oppose one another. β-cells produce insulin to lower the blood glucose concentration,
whereas α-cells respond to hypoglycemia and produce glucagon to signal the liver to release
and elevate the glucose level. Two counteracting hormones are produced in these different
cell types, but, nonetheless, they are found in close proximity to each other [40]. Recent
mathematical modeling suggests that there could be a paracrine feedback mechanism
through which glucagon produced by α-cells may produce a stimulatory effect on adjacent
cells (e.g., β-cells) [41]. This feedback mechanism may involve paracrine or cell–cell
communication, which is known to depend on calcium dynamics [42]. Based on the newly
discovered results using the machine learning pipeline, a working model is proposed in
Figure 8, in which external photostimulation affects more than one cell type in the islet.
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Figure 7. Effects of photobiomodulation on active cell population. Upon receiving PBM treatment, the
percentage of active cells in the cell population tends to increase with respect to the pre-stimulation
control. Shown in the figure is a representative sample of βTC6 cells with the application of 1064 nm
laser therapy at a 300 mW laser power. The dashed line is the mean of all the trials (n = 14 with
approximately 1 × 104 cells).
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generation of ATP in the mitochondria facilitates the closure of KATP channels, initiating the entry of
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levels. We postulate that stimulated β-cells in the active mode mediate such an insulin increase,
thus lowering blood glucose levels. The role of PBM-induced calcium spiking in α-cells is less clear.
Two competing hypotheses include a paracrine interaction between the two different cell types or
an anti-correlation between enhanced calcium spiking and glucagon secretion. Since PBM-induced
glucagon secretion was demonstrated to depend on the extracellular glucose concentration [33], a
challenge remains to develop a more complex network of signaling mechanisms. While detailed cell-
type-dependent photocoupling mechanisms are being further investigated, a computer vision-based
automated pipeline has demonstrated its potential to discover novel islet physiology that may lead
to the optimization of a non-biological therapeutic approach to pre-treating isolated islets prior to
transplantation to type I diabetic patients.

Since the amount of insulin secretion has been shown to increase with enhanced
calcium spiking [33], the active β-cell population is presumed to respond to PBM and
increase insulin secretion. In contrast, α-cells behave differently, and elevated calcium
spiking in glucagon-secreting cells likely produces different effects. Unlike β-cells, α-
cells are electrically active even in the absence of glucose [44]. However, both α- and
β-cells possess ATP-sensitive potassium channels (KATP) that regulate calcium channels
and the subsequent release of metabolic hormones from islet cells. This highlights an
islet physiology conundrum in that the same channels appear to operate in a cell-type-
dependent manner. Two competing hypotheses are testable. First, calcium spiking in
α-cells is independent of KATP channels. This hypothesis can be validated by measuring the
ATP level in α-cells in response to PBM. Second, alternatively, or perhaps more interestingly,
calcium spiking in α-cells exhibits an anti-correlation with glucagon secretion. While this
alternative hypothesis is consistent with the established feedback mechanism between
insulin and glucagon for the regulation of glucose homeostasis, such a potential negative
feedback mechanism may also depend on the extracellular glucose environment [44], as
well as cell-to-cell communication through calcium spiking between adjacent cells. It
should be noted here that there are other potential mechanisms that warrant more studies.
For example, light-sensitive molecules (e.g., ion channels) that are preferentially expressed
in different cell types can indeed respond to PBM in different manners, but they remain
speculative and not fully understood.

The complexity of glucose homeostasis is yet to be fully elucidated, but such inter-
pretation is beyond the scope of this paper. However, it should be re-emphasized that the
computer vision algorithms are capable of generating interesting and unexpected results
that could otherwise be overlooked. We have demonstrated the successful implementation
of a computer vision pipeline that led us to perform in-depth analyses of a large body
of existing cell images without having to revert to tedious manual methods. In addition,
we applied the same pipeline to newly acquired data to examine wavelength dependence
and further illuminate a potential photocoupling mechanism(s). Finally, the application of
photostimulation to a whole islet is underway to validate the utility of phototherapy for im-
proving the viability and functionality of isolated islet cells prior to clinical transplantation.

5. Conclusions
While manual segmentation methods have been proven to be acceptable, automated

analysis appears to be the most viable option for future work. Computer vision pipelines
are faster and more efficient for batch analysis of large datasets. Furthermore, automated
methods are able to identify and segment more cells within individual images and can
register each cell for detailed analyses that could lead to the potential discovery of the
physiology of islet cells.

Using these new methods, we were able to identify substantially more cells than in the
previous analysis and monitor changes on a cell-by-cell basis. From this analysis, we can
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conclude that the findings from the original experiment using manual segmentation were
generally validated, and the application of photobiomodulation significantly increases
calcium activity in both βTC6 and αTC1 cells. However, these stimulatory effects are
modulated by a biphasic dose response and necessitate optimal parameters for PBM
application. This has significant implications for precision medicine in the future, as
it suggests that, in addition to existing variables, including wavelength, fluence, mode,
and exposure rate, and dose–response relationships, cell-type dependence must also be
considered when refining parameters for these therapies. Consequently, future studies
should account for such variables in their analyses. Moreover, there are a multitude of other
NIR wavelengths that have been used for PBM therapies, including studies for diabetes
mellitus. These wavelengths range from ~660 nm to 980 nm [21,26]. Our current studies can
provide a rapid and accurate experimental and analytical platform to further explore and
validate wavelength dependence. The subtle but important differences in the apparent cell-
type-dependent calcium dynamics may lead to the optimization of photostimulation so that
it specifically targets whole islets and regulates the insulin secretion feedback mechanisms.
Future work will include the application of image processing algorithms using intact whole
islets. The targeted analysis of complex biosystems with improved accuracy is expected to
lead to a better characterization of viable islets. This step highlights the utility of automated
segmentation and analysis for islet transplantation in patients with type I diabetes.
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