Supplymentary Materials

Nonlinear Optical Study in a Set of Dibenzylideneacetone Derivatives with Potential for Optical Frequency Conversion

Francisco A. Santos ^{1,2}, Luis M.G. Abegão ^{3,*}, Ruben D. Fonseca ⁴, Aline M. Alcântara ⁵, Cleber R. Mendonça ⁶, Márcio A. R. C. Alencar ^{1,2}, Marcelo S. Valle ⁵, Kenji Kamada ⁷, Leonardo De Boni ⁶ and José J. Rodrigues Jr. ^{1,2}

- ¹ Departamento de Física, Universidade Federal de Sergipe, 49100-000 São Cristovão, SE, Brazil; assis2091@academico.ufs.br (F.A.S.); marca.ufs@gmail.com (M.A.R.C.A.); joatan@ufs.br (J.J.R.J.)
- ² Laboratório de Corrosão e Nanotecnologia, Núcleo de Petróleo e Gás, Universidade Federal de Sergipe, 49100-000 São Cristovão, SE, Brazil
- ³ Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, 300 Cedar Street, New Haven, CO 06520, USA
- ⁴ Universidad popular del Cesar, Departamento de Fisica, Barrio Sabana, 2000004 Valledupar, Cesar, Colombia; rubenzfonseca@gmail.com
- ⁵ Departamento de Ciências Naturais, Universidade Federal de São João del Rei, MG 36301-160, Brazil; alinealcantara97@hotmail.com (A.M.A.); marcelovalle@gmail.com (M.S.V.)
- ⁶ Instituto de Física de São Carlos, Universidade de São Paulo, CP 369, São Carlos, SP 13560-970, Brazil; crmendon@ifsc.usp.br (C.R.M.); deboni@ifsc.usp.br (L.D.B.)
- ⁷ IFMRI, National Institute of Advanced Industrial Science and Technology, Ikeda, Osaka 563-8577, Japan; k.kamada@aist.go.jp
- * Correspondence: luis.abegao@yale.edu, lma@campus.fct.unl.pt

Received: 30 November 2019; Accepted: 6 January 2020; Published: date

1. Results of RMN characterization

(1*E*,4*E*)-1,5-bis(2'-methoxyphenyl)penta-1,4-dien-3-one (2-DMDBA): ¹H NMR, 500 MHz, CDCl₃, **3.8**9 (6H, s, 2 x OCH₃), 6.91 (2H, d, *J* = 8.2 Hz, H3'), 6.97 (2H, t, *J* = 7.5 Hz, H5'), 7.16 (2H, d, *J* = 16.3 Hz, H2, H4), 7.35 (2H, dt, *J* = 8.2 Hz, *J* = 1.6 Hz, H4'), 7.60 (2H, dd, *J* = 1.6 Hz, *J* = 7.5 Hz, H6'), 8.05 (2H, d, *J* = 16.3 Hz, H1, H5). NMR ¹³C, 125 MHz, CDCl₃, 5.7 (OCH₃), 111.4 (C3'), 120.9 (C5'), 124.2 (C1'), 126.5 (C2, C4), 128.9, 131.7 (C4', C6'), 138.4 (C1, C5), 158.8 (C2'), 190.2 (C3).

(1*E*,4*E*)-1,5-bis(4-methoxyphenyl)penta-1,4-dien-3-one (4-DMDBA): ¹H NMR, 500 MHz, CDCl₃, **3.8**2 (6H, s, 2 x OCH₃), 6.90 (4H, d, *J* = 8.8 Hz, H3', H5'), 6.93 (2H, d, *J* = 15.7 Hz, H2, H4), 7.54 (4H, d, *J* = 8.8 Hz, H2', H6'), 7.67 (2H, d, *J* = 15.7 Hz, H1, H5). NMR ¹³C, 125 MHz, CDCl₃, 55.4 (OCH), 114.4 (C3'), 123.5 (C2', C6'), 127.7 (C1), 130.1 (C2, C4), 142.7 (C1, C5), 161.6 (C4'), 188.9 (C3).

Figure S3. ¹H NMR spectra of compound 4-DMDBA.

Figure S4. ¹³C NMR spectra of compound 4-DMDBA.

(1*E*,4*E*)-1,5-bis(4'-fluorophenyl)penta-1,4-dien-3-one (4-DFDBA). NMR ¹H, 500 MHz, CDCl₃, 6.96 (2H, d, *J* = 15.7 Hz, H2), 7.08 (4H, t, *J* = 8.5 Hz, H2'), 7.58 (4H, td, *J* = 8.5 Hz, *J* = 2.2 Hz, H3'), 7.67 (2H, d, *J* = 15.7 Hz, H1). NMR ¹³C, 125 MHz, CDCl₃, 116.3 (d, *J* = 21,1 Hz, C3'), 125.3 (C2), 130.5 (d, *J* = 8.0 Hz, C2'), 131.2 (d, *J* = 3.0 Hz, C1'), 142.3 (s, C1), 164.2 (d, *J* = 252.0 Hz, C4'), 188.6 (C=O).

Figure S5. ¹H NMR spectra of compound 4-DFDBA.

Figure S6. ¹³C NMR spectra of compound 4-DFDBA.

2. Optimized geometries

Sample: 4-DBDBA					Sample: 2-DMDBA			
Solve	ent (PCM, so	olvent=Dichl	loromethane)	Solv	vent (PCM, so	olvent=Dichl	oromethane)	
0	0.00000	2.39749	-0.00002	0	-0.00011	1.60353	0.33867	
С	0.00000	1.17118	-0.00006	С	0.00001	0.39203	0.15922	
С	1.24850	0.38736	-0.00010	С	1.24960	-0.38503	0.04365	
Н	1.15252	-0.69129	-0.00020	Η	1.14963	-1.45105	-0.11867	
С	2.44222	0.98808	-0.00000	С	2.44246	0.21010	0.12689	
Н	2.43533	2.07428	0.00011	Η	2.44116	1.28405	0.26690	
С	3.75746	0.36512	-0.00001	С	3.75148	-0.42708	0.04285	
С	3.95320	-1.02291	-0.00015	С	3.91439	-1.81123	0.05613	
Н	3.10223	-1.69153	-0.00027	Н	3.03967	-2.44274	0.13982	
С	5.21624	-1.56100	-0.00015	С	5.16283	-2.39751	-0.01945	
С	6.33802	-0.72769	-0.00001	С	6.28565	-1.59020	-0.10851	
0	7.53661	-1.35223	-0.00002	Η	7.27166	-2.03385	-0.16706	
С	6.16990	0.65043	0.00014	С	6.16415	-0.21069	-0.11994	

Н	7.01856	1.31791	0.00025	Н	7.05176	0.39985	-0.18919
Н	5.36671	-2.63277	-0.00026	Η	5.26090	-3.47479	-0.00367
С	4.88767	1.17669	0.00013	С	4.90582	0.37520	-0.04428
Н	4.76385	2.25314	0.00024	С	-1.24941	-0.38513	0.04257
С	-1.24850	0.38736	-0.00005	Н	-1.14918	-1.45104	-0.12028
Н	-1.15252	-0.69129	-0.00005	С	-2.44238	0.20981	0.12577
С	-2.44222	0.98808	-0.00003	С	-3.75137	-0.42729	0.04068
С	-3.75746	0.36512	-0.00002	С	-4.90587	0.37512	-0.04316
С	-4.88767	1.17669	0.00004	С	-6.16419	-0.21070	-0.11976
Н	-4.76385	2.25314	0.00007	Н	-7.05192	0.39995	-0.18648
С	-6.16990	0.65043	0.00006	С	-6.28552	-1.59024	-0.11255
Н	-7.01856	1.31791	0.00010	Η	-7.27152	-2.03382	-0.17180
С	-6.33802	-0.72769	0.00001	С	-5.16253	-2.39769	-0.02682
0	-7.53661	-1.35223	0.00002	Η	-5.26046	-3.47503	-0.01444
С	-5.21624	-1.56100	-0.00006	С	-3.91413	-1.81151	0.04970
Н	-5.36671	-2.63277	-0.00010	Η	-3.03929	-2.44321	0.13057
С	-3.95320	-1.02291	-0.00007	Η	-2.44119	1.28364	0.26676
Н	-3.10223	-1.69153	-0.00013	Ο	-4.70944	1.71361	-0.05141
Н	-2.43533	2.07428	-0.00002	Ο	4.70916	1.71363	-0.05666
С	8.71307	-0.55635	0.00015	С	-5.83898	2.57066	-0.11456
Н	9.54563	-1.25378	0.00012	Η	-5.44504	3.58270	-0.09671
Н	8.76285	0.06985	0.89290	Η	-6.49543	2.42047	0.74452
Н	8.76296	0.07006	-0.89246	Η	-6.39936	2.41498	-1.03822
С	-8.71307	-0.55635	0.00011	С	5.83854	2.57064	-0.12313
Н	-9.54563	-1.25379	0.00012	Η	5.44447	3.58269	-0.10823
Н	-8.76295	0.06999	-0.89254	Н	6.39840	2.41215	-1.04663
Н	-8.76286	0.06992	0.89282	Η	6.49550	2.42323	0.73603

Table S2. Optimized geometries for 4-DFDBA.

Sample: 4-DFDBA					Sample: PNA (Reference Sample)			
Solve	ent (PCM, sc	lvent=Dichl	oromethane)	Solvent (PCM, solvent=Dichloromethane)				
0	0.00000	2.34044	0.00033	0	2.73482	1.07542	0.00355	
С	0.00000	1.11684	0.00015	0	2.73482	-1.07542	0.00365	
С	-1.25072	0.33187	0.00011	Ν	2.14738	0.00000	0.00200	
Н	-1.15460	-0.74660	-0.00001	Ν	-3.43167	0.00000	-0.03027	
С	-2.44116	0.93411	0.00017	С	-1.35557	1.21195	-0.00395	
Н	-2.43577	2.01995	0.00019	С	0.01886	1.21159	-0.00253	
С	-3.75926	0.30622	0.00014	С	0.70676	0.00000	-0.00175	
С	-3.94343	-1.07916	0.00101	С	0.01886	-1.21159	-0.00257	
Н	-3.08926	-1.74270	0.00185	С	-1.35557	-1.21195	-0.00400	
С	-5.20947	-1.62832	0.00088	С	-2.07356	0.00000	-0.00313	
С	-6.29615	-0.77678	-0.00013	Н	-1.89495	2.15121	-0.00573	
F	-7.53439	-1.31189	-0.00025	Н	0.56940	2.14155	-0.00120	
С	-6.16562	0.59303	-0.00096	Н	0.56940	-2.14155	-0.00127	
Н	-7.04509	1.22234	-0.00170	Н	-1.89495	-2.15121	-0.00581	
Н	-5.36381	-2.69880	0.00156	Η	-3.93735	0.85549	0.13092	
С	-4.88833	1.12559	-0.00079	Η	-3.93735	-0.85550	0.13089	
Н	-4.76293	2.20119	-0.00142					
С	1.25072	0.33187	-0.00000					
Η	1.15460	-0.74660	-0.00019					
С	2.44116	0.93412	0.00011					
С	3.75926	0.30622	0.00000					

С	4.88833	1.12559	0.00029
Н	4.76293	2.20119	0.00057
С	6.16562	0.59303	0.00022
Н	7.04509	1.22234	0.00044
С	6.29615	-0.77678	-0.00015
F	7.53439	-1.31189	-0.00022
С	5.20946	-1.62832	-0.00045
Н	5.36381	-2.69880	-0.00074
С	3.94344	-1.07916	-0.00037
Н	2.43577	2.01995	0.00032
Н	3.08926	-1.74270	-0.00061

3. Z-Scan signatures

Figure S7. Open aperture Z-scan signature for 4-DFDBA in dichloromethane solution when excited with a femtosecond pulse tuned at 610 nm, where the circles represent the experimental values and the solid line is the fitting obtained with Equation 3.

Figure S8. Open aperture Z-scan signature for 2-DMDBA in dichloromethane solution when excited with a femtosecond pulse tuned at 580 nm and 690nm, where the symbols represent the experimental values while the solid line is the fitting obtained with Equation 3.

Figure S9. Open aperture Z-scan signature for 4-DMDBA in dichloromethane solution when excited with a femtosecond pulse tuned at 660 nm, where the squares represent the experimental values while the solid line is the fitting obtained with Equation 3.

4. Frequencies transitions and oscillator strength

Sample: 4-DMDBA, DCM								
CAM-B3LYP/6-311+G(d,p)				B3LYP/6-311+G(d,p)				
excited state	eV	nm	f	excited state	eV	nm	f	
1	3.5247	351.76	1.9539	1	2.9351	422.42	1.7770	
2	3.5897	345.39	0.0000	2	3.1758	390.41	0.0000	
3	4.0499	306.14	0.1342	3	3.4042	364.21	0.0949	
4	4.8441	255.95	0.0065	4	4.2055	294.81	0.0019	
5	4.8446	255.92	0.0065	5	4.2066	294.74	0.0006	
6	5.4575	227.18	0.0614	6	4.5742	271.05	0.1424	
7	5.5995	221.42	0.0323	7	4.6842	264.68	0.3044	
8	5.6380	219.91	0.2790	8	4.8208	257.18	0.2544	
9	5.6998	217.52	0.2552	9	4.8496	255.66	0.0391	
10	5.9405	208.71	0.0000	10	4.9366	251.15	0.0007	
11	5.9522	208.30	0.0152	11	4.9941	248.26	0.0403	
12	5.9833	207.22	0.0274	12	5.0219	246.89	0.0001	
13	6.0530	204.83	0.1932	13	5.1185	242.23	0.0066	
14	6.2353	198.84	0.0002	14	5.1332	241.53	0.0419	
15	6.3638	194.83	0.0000	15	5.4669	226.79	0.0000	
		9	ample: 4-DN	/IDBA, DCM				
	M062X/6-3	11+G(d,p)						
excited state	eV	nm	f					
1	3.5387	350.36	1.9404					
2	3.5441	349.84	0.0000					
3	4.0275	307.84	0.1258					
4	4.8753	254.31	0.0072					
5	4.8763	254.26	0.0063					
6	5.4321	228.24	0.0826					
7	5.5784	222.26	0.0127					
8	5.6362	219.98	0.2324					
9	5.6996	217.53	0.3680					
10	5.8164	213.16	0.0000					
11	5.8721	211.14	0.0235					
12	5.9603	208.02	0.0103					
13	6.0591	204.62	0.1737					
14	6.1792	200.65	0.0000					
15	6.2806	197.41	0.0000					

 Table S3. Excited states, transition energy, and oscillator strength for 4-DMDBA.

Table S4. Excited states, transition energy, and oscillator strength for 2-DMDBA.

	Sample: 2-DMDBA, DCM									
С	AM-B3LYP/	6-311+G(d,p)		B3LYP/6-3	11+G(d,p)				
excited state	eV	nm	f	excited state	eV	nm	f			
1	3.4746	356.83	1.3807	1	2.8905	428.93	1.3152			
2	3.5288	351.35	0.2004	2	3.0920	400.98	0.0000			
3	3.9178	316.47	0.0136	3	3.2370	383.02	0.0024			
4	4.4997	275.54	0.0706	4	3.6751	337.36	0.2091			
5	4.5844	270.45	0.1642	5	3.7990	326.36	0.1061			

6	5.3243	232.86	0.0521	6	4.3739	283.46	0.0217
7	5.4645	226.89	0.0787	7	4.4522	278.48	0.2402
8	5.7542	215.47	0.1667	8	4.8137	257.56	0.0001
9	5.8226	212.94	0.0133	9	4.9871	248.61	0.1179
10	6.0369	205.38	0.0000	10	5.0111	247.42	0.0367
11	6.0470	205.03	0.0007	11	5.2644	235.52	0.0203
12	6.0745	204.11	0.0009	12	5.2966	234.08	0.0139
13	6.2902	197.11	0.1632	13	5.4872	225.95	0.0475
14	6.3581	195.00	0.0857	14	5.5012	225.38	0.3330
15	6.3649	194.79	0.8528	15	5.5756	222.37	0.0000
		Ç	Sample: 2-DM	IDBA, DCM	[
	M062X/6-3	11+G(d,p)	2				
excited	eV	nm	f				
1	3 4439	360.01	0.3762				
2	3.5807	346.26	1.1680				
3	3.9438	314.38	0.0204				
4	4.5446	272.82	0.0791				
5	4.6150	268.66	0.1494				
6	5.3271	232.74	0.0554				
7	5.4531	227.37	0.1078				
8	5.7797	214.52	0.1066				
9	5.8554	211.74	0.0316				
10	5.9251	209.25	0.0011				
11	5.9699	207.68	0.0012				
12	6.2206	199.31	0.0022				
13	6.2417	198.64	0.0750				
14	6.2598	198.06	0.0068				
15	6.3241	196.05	0.0246				

Table S5. Excited states, transition energy, and oscillator strength for 4-DFDBA.

Sample: 4-DFDBA, DCM								
С	AM-B3LYP/	6-311+G(d,p)	B3LYP/6-311+G(d,p)				
excited state	eV	nm	f	excited state	eV	nm	f	
1	3.5388	350.35	0.0000	1	3.1246	396.80	0.0000	
2	3.7929	326.88	1.7155	2	3.2232	384.66	1.5370	
3	4.2944	288.71	0.1330	3	3.6737	337.49	0.0941	
4	4.9541	250.26	0.0028	4	4.2336	292.86	0.0112	
5	4.9549	250.23	0.0000	5	4.2337	292.85	0.0078	
6	5.6484	219.50	0.1222	6	4.8076	257.89	0.1402	
7	5.7635	215.12	0.0387	7	4.8882	253.64	0.2483	
8	5.9291	209.11	0.1929	8	4.9368	251.15	0.0001	
9	5.9737	207.55	0.3146	9	5.0385	246.07	0.2301	
10	6.1562	201.40	0.0001	10	5.1061	242.82	0.0027	
11	6.2603	198.05	0.0002	11	5.2552	235.93	0.0000	
12	6.3921	193.97	0.2477	12	5.3643	231.13	0.0696	
13	6.4316	192.77	0.0000	13	5.3680	230.97	0.0004	
14	6.5116	190.40	0.0091	14	5.3992	229.63	0.0003	
15	6.6793	185.62	0.4753	15	5.6863	218.04	0.0000	

			Sample: 4-D	FDBA, DCM
	M062X/6-3	11+G(d,p)		
excited state	eV	nm	f	
1	3.4934	354.91	0.0000	
2	3.8129	325.17	1.7050	
3	4.2759	289.96	0.1246	
4	4.9794	248.99	0.0017	
5	4.9812	248.90	0.0000	
6	5.6297	220.23	0.1450	
7	5.7465	215.76	0.0275	
8	5.9149	209.61	0.1402	
9	5.9604	208.01	0.3983	
10	6.2712	197.70	0.0001	
11	6.2803	197.42	0.0000	
12	6.3109	196.46	0.0000	
13	6.3744	194.50	0.0085	
14	6.4126	193.35	0.1857	
15	6.6299	187.01	0.0000	

Table S6. Spectroscopic parameters obtained through the SOS fitting of the experimental TPA spectra.

SOS parameters	4-DMDBA	2-DMDBA	4-DFDBA
μ_{0k} (D)	7.30	6.88	6.85
μ_{kf} (D)	8.58	6.73	6.10
$\mu_{kf'}(D)$	9.41	7.80	2.03
$\mu_{kf^{\prime\prime}}(D)$	-	4.51	-
$\boldsymbol{\omega_{0k}}$ (×10 ¹⁵ rad Hz)	5.40	5.32	5.29
$\boldsymbol{\omega_{kf}}$ (×10 ¹⁵ rad Hz)	5.67	5.34	6.12
ω_{kf'} (×10¹⁵ rad Hz)	7.54	6.28	8.04
$oldsymbol{\omega_{kf^{\prime\prime}}}$ (×10 ¹⁵ rad Hz)	-	6.86	-
Γ_{0k} (×10 ¹⁴ rad Hz)	3.87	3.92	4.10
Γ_{0f} (×10 ¹⁴ rad Hz)	3.59	3.24	5.40
$\Gamma_{0f'}$ (×10 ¹⁴ rad Hz)	4.73	4.11	3.64
Γ_{0f}'' (×10 ¹⁴ rad Hz)	-	4.41	-