Unidirectional Optical Kerr Transmittance in Hierarchical Carbon/Platinum Nanostructures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Nanosecond Transmittance and Bidirectional Two-Wave Mixing Experiments
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Di Ventra, M.; Evoy, S.; Heflin, J. Carbon Nanotubes. In Introduction to Nanoscale Science and Technology; Kluwer Academic Publishers: Ottawa, ON, Canada, 2004; Volume 1, pp. 137–181. [Google Scholar]
- Zhao, Q.; Wood, J.R.; Wagner, H.D. Stress fields around defects and fibers in a polymer using carbon nanotubes as sensors. Appl. Phys. Lett. 2001, 78, 1748–1750. [Google Scholar] [CrossRef]
- Ma, L.; Wang, J.; Yip, J.; Ding, F. Mechanism of Transition-Metal Nanoparticle Catalytic Graphene Cutting. J. Phys. Chem. Lett. 2014, 5, 1192–1197. [Google Scholar] [CrossRef] [PubMed]
- Kamino, T.; Yaguchi, T.; Konno, M.; Hashimoto, T. In situ high temperature TEM observation of interaction between multi-walled carbon nanotube and in situ deposited gold nano-particles. J. Electron. Microsc. 2005, 54, 461–465. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Zhang, X.; Li, Y.; Liu, H.; Wang, Y.; Chang, Q.; Song, Y. Saturable absorption and reverse saturable absorption in platinum nanoparticles. Opt. Commun. 2005, 251, 429–433. [Google Scholar] [CrossRef]
- Islam, M.A.; Bhuiya, M.A.K.; Islam, M.S. A review on chemical synthesis process of platinum nanoparticles. Asia Pac. J. Energy Environ. 2014, 1, 107–120. [Google Scholar] [CrossRef]
- Sharma, G.; Kumar, D.; Kumar, A.; Al-Muhtaseb, A.H.; Pathania, D.; Naushad, M.; Mola, G.T. Revolution from monometallic to trimetallic nanoparticle composites, various synthesis methods and their applications: A review. Mater. Sci. Eng. C 2017, 71, 1216–1230. [Google Scholar] [CrossRef]
- Iolanda, D.B.; Avvisati, G.; Chen, C.; Avila, J.; Asensio, M.C.; Hu, K.; Ito, Y.; Hines, P.; Lipton-Duffin, J.; Rintoul, L.; et al. Topology and doping effects in three-dimensional nanoporous graphene. Carbon 2018, 131, 258–265. [Google Scholar]
- Gao, Y.; Shiue, R.-J.; Gan, X.; Li, L.; Peng, C.; Meric, I.; Wang, L.; Szep, A.; Walker Jr., D.; Hone, J.; et al. High-Speed Electro-Optic Modulator Integrated with Graphene-Boron Nitride Heterostructure and Photonic Crystal Nanocavity. Nano Lett. 2015, 15, 2001–2005. [Google Scholar] [CrossRef] [Green Version]
- Wagner, P.; Ivanovskaya, V.V.; Rayson, M.J.; Briddon, P.R.; Ewels, C.P. Mechanical properties of nanosheets and nanotubes investigated using a new geometry independent volume definition. J. Phys. Condens. Matter. 2013, 25, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Vigueras-Santiago, E.; Hernández-Lopez, S.; Camacho-Lopez, M.A.; Reyes-Contreras, D.; Farías-Mancilla, R.; Flores-Gallardo, S.G.; Hernández-Escobar, C.A.; Zaragoza-Contreras, E.A. Optical properties of carbon nanostructures produced by laser irradiation on chemically modified multi-walled carbon nanotubes. Opt. Laser Technol. 2016, 84, 53–58. [Google Scholar] [CrossRef]
- Fazelzadeh, S.A.; Ghavanloo, E. Nonlocal anisotropic elastic shell model for vibrations of single-walled carbon nanotubes with arbitrary chirality. Compos. Struct. 2012, 94, 1016–1022. [Google Scholar] [CrossRef]
- Baloch, K.H.; Voskanian, N.; Bronsgeest, M.; Cumings, J. Remote Joule heating by a carbon nanotube. Nat. Nanotechnol. 2012, 7, 316–319. [Google Scholar] [CrossRef] [PubMed]
- Sinha, N.; Yeow, J.T.-W. Carbon Nanotubes for Biomedical Applications. IEEE Trans. Nanobiosci. 2005, 4, 180–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torti, S.V.; Byrne, F.; Whelan, O.; Levi, N.; Ucer, B.; Schmid, M.; Torti, F.M.; Akman, S.; Liu, J.; Ajayan, P.M.; et al. Thermal ablation therapeutics based on CN(x) multi-walled nanotubes. Int. J. Nanomed. 2007, 2, 707–714. [Google Scholar]
- Paul, R.; Maity, A.; Mitra, A.; Kumbhakar, P.; Mitra, A. Synthesis and study of optical and electrical characteristics of a hybrid structure of single wall carbon nanotubes and silver nanoparticles. J. Nanopart. Res. 2011, 13, 5749–5757. [Google Scholar] [CrossRef]
- BelBruno, J.J. Nanomaterials in sensors. Nanomaterials 2013, 3, 572–573. [Google Scholar] [CrossRef]
- García-Merino, J.A.; Jiménez-Marín, E.; Mercado-Zúñiga, C.; Trejo-Valdez, M.; Vargas-García, J.R.; Torres-Torres, C. Quantum and bistable magneto-conductive signatures in multiwall carbon nanotubes decorated with bimetallic Ni and Pt nanoparticles driven by phonons. OSA Contin. 2019, 2, 1285–1295. [Google Scholar] [CrossRef]
- Hernández-Acosta, M.A.; Martínez-Gutiérrez, H.; Martínez-González, C.L.; Torres-SanMiguel, C.R.; Trejo-Valdez, M.; Torres-Torres, C. Fractional and chaotic electrical signatures exhibited by random carbon nanotube networks. Phys. Scr. 2018, 93, 125801. [Google Scholar] [CrossRef]
- Yoshida, K.; Arai, S.; Sasaki, Y.; Tanaka, N. Catalytic oxidation of carbon nanotubes with noble metal nanoparticles. Micron 2015, 76, 19–22. [Google Scholar] [CrossRef]
- Ispasoiu, R.G.; Balogh, L.; Varnavski, O.P.; Tomalia, D.A.; Goodson, T., III. Large optical limiting from novel metal—Dendrimer nanocomposite materials. J. Am. Chem. Soc. 2000, 122, 11005–11006. [Google Scholar] [CrossRef]
- Qu, S.; Song, Y.; Liu, H.; Wang, Y.; Gao, Y.; Liu, S.; Zhang, X.; Li, Y.; Zhu, D. A theoretical and experimental study on optical limiting in platinum nanoparticles. Opt. Commun. 2002, 203, 283–288. [Google Scholar] [CrossRef]
- Henglein, A.; Ershov, B.G.; Malow, M. Absorption spectrum and some chemical reactions of colloidal platinum in aqueous solution. J. Phys. Chem. 1995, 99, 14129–14136. [Google Scholar] [CrossRef]
- Philip, R.; Kumar, G.R.; Sandhyarani, N.; Pradeep, T. Picosecond optical nonlinearity in monolayer-protected gold, silver, and gold-silver alloy nanoclusters. Phys. Rev. B Cov. Cond. Matt. Mat. Phys. 2000, 62, 13160–13166. [Google Scholar] [CrossRef] [Green Version]
- Maiti, A. Application of carbon nanotubes as electromechanical sensors-Results from first-principles simulations. Phys. Status Solidi B 2001, 226, 87–93. [Google Scholar] [CrossRef]
- Mercado-Zúñiga, C.; Torres-Torres, C.M.; Torres-Mancera, T.; Vargas-García, J.R.; Torres-Martínez, R. Dynamically configurable nonlinear optical switching based on vertically aligned carbon nanotubes. Mater. Res. 2016, 19, 52–58. [Google Scholar]
- Wildgoose, G.G.; Banks, C.E.; Compton, R.G. Nanoparticles and Related Materials Supported on Carbon Nanotubes: Methods and Applications. Nano Micro Small J. 2006, 2, 182. [Google Scholar] [CrossRef] [PubMed]
- You, J.W.; Bongou, S.R.; Bao, Q.; Panoiu, N.C. Nonlinear optical properties and applications of 2D materials theoretical and experimental aspects. Nanophotonics 2019, 8, 63–97. [Google Scholar] [CrossRef]
- Singh, E.; Srivastava, R.; Kumar, U.; Katheria, A.D. Carbon Nanotube A Review on Introduction, Fabrication Techniques and Optical Applications. AIP Conf. Proc. 2017, 4, 120–126. [Google Scholar]
- Yamashita, S. Nonlinear optics in carbon nanotube, graphene, and related 2D materials. APL Photonics 2019, 4, 034301. [Google Scholar] [CrossRef] [Green Version]
- Elim, H.I.; Zhu, Y.; Sow, C.H. Length Dependence of Ultrafast Optical Nonlinearities in Vertically Aligned Multiwalled Carbon Nanotube Films. J. Phys. Chem. 2016, 120, 17733–17738. [Google Scholar] [CrossRef]
- Ko, W.Y.; Su, J.W.; Guo, C.H.; Lin, K.J. Extraordinary mechanical flexibility in composite thin films composed of bimetallic AgPt nanoparticle-decorated multi-walled carbon nanotubes. Carbon 2012, 50, 2244–2251. [Google Scholar] [CrossRef]
- Park, S.J.; Ok, J.G.; Park, H.J.; Lee, K.T.; Lee, J.H.; Kim, J.D.; Chog, E.; Baac, H.W.; Kang, S.; Guo, L.J.; et al. Modulation of the effective density and refractive index of carbon nanotube forests via nanoimprint lithography. Carbon 2017, 129, 8–14. [Google Scholar] [CrossRef]
- Jiménez-Marín, E.; Torres-Torres, C.; Mercado-Zúñiga, C.; Vargas-García, J.R.; Trejo-Valdez, M.; Cervantes-Sodi, F.; Torres-Martínez, R. Interferometrically-controlled electrical currents in carbon nanotubes coated by platinum nanoparticles. Opt. Laser Technol. 2016, 85, 35–40. [Google Scholar] [CrossRef]
- Mercado-Zúñiga, C.; Torres-Torres, C.; Trejo-Valdez, M.; Torres-Martínez, R.; Tarrago-Velez, S.; Cervantes-Sodi, F.; Vargas-García, J.R. Mechanooptic regulation of photoconduction in functionalized carbon nanotubes decorated with platinum. Int. J. Photoenergy 2014, 542658. [Google Scholar] [CrossRef]
- Piña-Díaz, A.J.; Torres-Torres, D.; Trejo-Valdez, M.; Torres-SanMiguel, C.R.; Martínez-González, C.L.; Torres-Torres, C. Decision making two-wave mixing with rotating TiO2-supported Au-Pt nanoparticles. Opt. Laser Technol. 2019, 119, 105638. [Google Scholar] [CrossRef]
- Castro-Chacón, J.H.; Khomenko, A.V.; Rangel-Rojo, R. Phase matched vectorial three-wave mixing in isotropic Kerr media. Opt. Commun. 2009, 282, 1422–1426. [Google Scholar] [CrossRef]
- Boyd, R.W. Nonlinear Optics; Academic Press: San Diego, CA, USA, 2009. [Google Scholar]
- Bornacelli, J.; Torres-Torres, C.; Silva-Pereyra, H.G.; Rodríguez-Fernández, L.; Avalos-Borja, M.; Cheang-Wong, J.C.; Oliver, A. Nanoscale influence on photoluminescence and third order nonlinear susceptibility exhibited by ion-implanted Pt nanoparticles in Silica. Methods Appl. Fluoresc. 2017, 5, 025001. [Google Scholar] [CrossRef]
- Dresselhaus, M.S.; Dresselhaus, G.; Saito, R. Physics of carbon nanotubes. Carbon 1995, 33, 883–891. [Google Scholar] [CrossRef]
- Qian, D.; Wagner, G.J.; Liu, W.K.; Yu, M.F.; Ruoff, R.S. Mechanics of carbon nanotubes. Appl. Mech. Rev. 2002, 55, 495–533. [Google Scholar] [CrossRef]
- Li, C.; Chou, T.W. A structural mechanics approach for the analysis of carbon nanotubes. Int. J. Solids Struct. 2003, 40, 2487–2499. [Google Scholar] [CrossRef]
- Fan, C.W.; Liu, Y.Y.; Hwu, C. Finite element simulation for estimating the mechanical properties of multi-walled carbon nanotubes. Appl. Phys. A 2009, 95, 819–831. [Google Scholar] [CrossRef]
- Brown-Theodore, L.; Le May, H.E., Jr.; Bursten-Bruce, E. Chemestry: The Central Science, 11st ed.; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 1997; Volume 8, pp. 412–413. [Google Scholar]
- Yakobson, B.I.; Brabec, C.J.; Bernholc, J. Nanomechanics of carbon nanotubes: Instabilities beyond linear response. Phys. Rev. Lett. 1996, 76, 2511–2514. [Google Scholar] [CrossRef] [PubMed]
- Odegard, G.M.; Gates, T.S.; Nicholson, L.M.; Wise, K.E. Equivalent–Continuum Modeling with Application to Carbon Nanotubes; National Aeronautics and Space Administration, Langley Research Center: Hampton, VA, USA, 2002; pp. 1–13.
- Robertson, D.H.; Brenner, D.W.; Mintmire, J.W. Energetics of nanoscale graphitic tubules. Phys. Rev. Lett. B 1992, 45, 12592–12595. [Google Scholar] [CrossRef] [Green Version]
- Popov, E.P. Stability of Equilibrium: Columns. In Mechanics of Materials; Loret, B., Subhash, G., Eds.; Prentice Hall Inc.: Upper Saddle River, NJ, USA, 1990; pp. 574–578. [Google Scholar]
- He, X.Q.; Eisenberger, M.; Liew, K.M. The effect of van der Waals interaction modelling on the vibration characteristics of multi-walled carbon nanotubes. J. Appl. Phys. 2006, 100, 124317. [Google Scholar] [CrossRef]
- Strozzi, M.; Pellicano, F. Linear vibrations of triple-walled carbon nanotubes. Math. Mech. Solids 2018, 23, 1456–1481. [Google Scholar] [CrossRef]
- Wong, E.W.; Sheehan, P.E.; Lieber, C.M. Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Sciences 1997, 277, 1971–1975. [Google Scholar] [CrossRef]
- Popov, V.N.; Van Doren, V.E.; Balkanski, M. Elastic properties of single-walled carbon nanotubes. Phys. Rev. B 2000, 61, 3078–3084. [Google Scholar] [CrossRef]
- Kudin, K.N.; Scuseria, G.E.; Yakobson, B.I. C2F, BN and C nanoshell elasticity from ab initio computations. Phys. Rev. B 2001, 64, 235406. [Google Scholar] [CrossRef]
- Shimamoto, D.; Sakurai, T.; Itoh, M.; Kim, Y.; Hayashi, T.; Endo, M. Nonlinear optical absorption and reflection of single wall carbon nanotube thin films by Z-scan technique. Appl. Phys. Lett. 2008, 92, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Feria-Reyes, E.; Torres-Torres, C.; Martínez-Gutiérrez, H.; Morales-Bonilla, S.; Torres-Martínez, R.; Trejo-Valdez, M.; Urriolagoitia-Calderón, G. Mechano-optical modulation and optical limiting by multiwall carbon nanotubes. J. Mod. Opt. 2013, 60, 1321–1326. [Google Scholar] [CrossRef]
- Hernández-Acosta, M.A.; Martines-Arano, H.; Soto-Ruvalcaba, L.; Martínez-González, C.L.; Martínez-Gutiérrez, H.; Torres-Torres, C. Fractional thermal transport and twisted light induced by an optical two-wave mixing in single-wall carbon nanotubes. Int. J. Thermal Sci. 2020, 147, 106136. [Google Scholar] [CrossRef]
- García-Merino, J.A.; Martínez-González, C.L.; Torres-SanMiguel, C.R.; Trejo-Valdez, M.; Martínez-Gutiérrez, H.; Torres-Torres, C. Photothermal, photoconductive and nonlinear optical effects induced by nanosecond pulse irradiation in multi-wall carbon nanotubes. Mat. Sci. Eng. B 2015, 194, 27–33. [Google Scholar] [CrossRef]
- Anand, B.; Kaniyoor, A.; Sai, S.S.S.; Philip, R.; Ramaprabhu, S. Enhanced optical limiting in functionalized hydrogen exfoliated graphene and its metal hybrids. J. Matt. Chem. C 2013, 15, 2773–2780. [Google Scholar] [CrossRef]
- Ruoff, R.S.; Qian, D.; Liu, W.K. Mechanical properties of carbon nanotubes: Theoretical predictions and experimental measurements. C. R. Phys. 2003, 4, 993–1008. [Google Scholar] [CrossRef]
- Roche, S. Carbon Nanotubes: Exceptional mechanical and electronic properties. Ann. Chim. Sci. Mater. 2000, 25, 529–532. [Google Scholar] [CrossRef]
- Geng, Y.; Liu, M.Y.; Li, J.; Shi, X.; Kim, J. Effects of surfactant treatment on mechanical and electrical properties of CNT/epoxy nanocomposites. Compos. Part A Appl. Sci. Manuf. 2008, 39, 1876–1883. [Google Scholar] [CrossRef]
- Ku-Herrera, J.J.; La Saponara, V.; Avilés, F. Selective damage sensing in multiscale hierarchical composites by tailoring the location of carbon nanotubes. J. Intell. Mater. Syst. Struct. 2018, 29, 553–562. [Google Scholar] [CrossRef]
ρ Related to Pt Nanoparticles Incorporated to [m2/W] | n2 [m2/W] | β [m/W] | |
---|---|---|---|
0 | −1.46 × 10−15 | - | 2.21 × 10−9 |
0.1 | −4.03 × 10−15 | 3.1 × 10−9 | 6.10 × 10−9 |
0.2 | −5.62 × 10−15 | 5.9 × 10−9 | 8.53 × 10−9 |
0.3 | −6.08 × 10−15 | 10.9 × 10−9 | 9.25 × 10−9 |
Sample Incidence | n2 (cm2/W) | β (cm/W) |
---|---|---|
Forward MWCNT/Pt-MWCNT | −1.12 × 10−11 | - |
Backward Pt-MWCNT/MWCNT | - | 4.9 × 10−7 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morales-Bonilla, S.; Mercado-Zúñiga, C.; Campos-López, J.P.; Carrillo-Delgado, C.; Martínez-González, C.L.; Torres-Torres, C. Unidirectional Optical Kerr Transmittance in Hierarchical Carbon/Platinum Nanostructures. Photonics 2020, 7, 54. https://doi.org/10.3390/photonics7030054
Morales-Bonilla S, Mercado-Zúñiga C, Campos-López JP, Carrillo-Delgado C, Martínez-González CL, Torres-Torres C. Unidirectional Optical Kerr Transmittance in Hierarchical Carbon/Platinum Nanostructures. Photonics. 2020; 7(3):54. https://doi.org/10.3390/photonics7030054
Chicago/Turabian StyleMorales-Bonilla, Samuel, Cecilia Mercado-Zúñiga, Juan Pablo Campos-López, César Carrillo-Delgado, Claudia Lizbeth Martínez-González, and Carlos Torres-Torres. 2020. "Unidirectional Optical Kerr Transmittance in Hierarchical Carbon/Platinum Nanostructures" Photonics 7, no. 3: 54. https://doi.org/10.3390/photonics7030054
APA StyleMorales-Bonilla, S., Mercado-Zúñiga, C., Campos-López, J. P., Carrillo-Delgado, C., Martínez-González, C. L., & Torres-Torres, C. (2020). Unidirectional Optical Kerr Transmittance in Hierarchical Carbon/Platinum Nanostructures. Photonics, 7(3), 54. https://doi.org/10.3390/photonics7030054