Structural, Optical and Electrical Characterizations of Midwave Infrared Ga-Free Type-II InAs/InAsSb Superlattice Barrier Photodetector †
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Fabrication and Characterizations of Ga-Free T2SL Structure
3.2. Fabrication and Characterizations of Ga-Free T2SL Barrier Detector
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Manissadjian, A.; Rubaldo, L.; Rebeil, Y.; Kerlain, A.; Brellier, D.; Mollard, L. Improved IR detectors to swap heavy systems for SWaP. In Proceedings of the SPIE Infrared Technology and Applications XXXVIII, Baltimore, MD, USA, 31 May 2012; Volume 8353, p. 835334. [Google Scholar]
- Reibel, Y.; Taalat, R.; Brunner, A.; Rubaldo, L.; Augey, T.; Kerlain, A.; Péré-Laperne, N.; Manissadjian, A.; Gravrand, O.; Castelein, P.; et al. Infrared SWAP Detectors: Pushing the limits. In Proceedings of the SPIE Infrared Technology and Applications XLI, Baltimore, MD, USA, 11 June 2015; Volume 9451, p. 945110. [Google Scholar]
- Klipstein, P.; Aronov, D.; Ben Ezra, M.; Barkai, I.; Berkowicz, E.; Brumer, M.; Fraenkel, R.; Glozman, A.; Grossman, S.; Jacobsohn, E.; et al. Recent progress in InSb based quantum detectors in Israel. Infrared Phys. Technol. 2013, 59, 172–181. [Google Scholar] [CrossRef]
- Rogalski, A.; Kopytko, M.; Martyniuk, P.; Hu, W. Comparison of performance limits of HOT HgCdTe photodiodes with 2D material infrared photodetectors. Opto-Electron. Rev. 2020, 28, 82–92. [Google Scholar]
- Maimon, S.; Wicks, G.W. nBn detector, an infrared detector with reduced dark current and higher operating temperature. Appl. Phys. Lett. 2006, 89, 151109. [Google Scholar] [CrossRef]
- Klipstein, P. “XBn” barrier photodetectors for high sensitivity and high operating temperature infrared sensors. In Proceedings of the SPIE Defense and Security Conference, Orlando, FL, USA, 21 March 2008; Volume 6940, p. 69402. [Google Scholar]
- Klipstein, P.; Klin, O.; Grossman, S.; Snapi, N.; Lukomsky, I.; Aronov, D.; Yassen, M.; Glozman, A.; Fishman, T.; Berkowicz, E.; et al. XBn barrier photodetectors based on InAsSb with high operating temperatures. Opt. Eng. 2011, 50, 061002. [Google Scholar] [CrossRef] [Green Version]
- Klipstein, P. XBnn and XBpp infrared detectors. J. Cryst. Growth 2015, 425, 351–356. [Google Scholar] [CrossRef]
- Taalat, R.; Rodriguez, J.-B.; Delmas, M.; Christol, P. Influence of the period thickness and composition on the electro-optical properties of type-II InAs/GaSb midwave infrared superlattice photodetectors. J. Phys. D Appl. Phys. 2013, 47, 015101. [Google Scholar] [CrossRef]
- Razeghi, M.; Nguyen, B.-M. Band gap tunability of Type II Antimonide-based superlattices. Phys. Procedia 2010, 3, 1207–1212. [Google Scholar] [CrossRef] [Green Version]
- Höglund, L.; Naureen, S.; Diel, W.; Smuk, S.; Ivanov, R.; Delmas, M.; Evans, D.; Rihtnesberg, D.; Almqvist, S.; Becanovic, S.; et al. Type-II superlattice SWaP IDDCA production at IRnova. In Proceedings of the SPIE Infrared Technology and Applications XLVI, Online Only, CA, USA, 16 June 2020; Volume 11407, p. 114070. [Google Scholar]
- Svensson, S.; Donetsky, D.; Wang, D.; Hier, H.; Crowne, F.; Belenky, G. Growth of type II strained layer superlattice, bulk InAs and GaSb materials for minority lifetime characterization. J. Cryst. Growth 2011, 334, 103–107. [Google Scholar] [CrossRef]
- Chen, G.; Haddadi, A.; Hoang, A.-M.; Chevallier, R.; Razeghi, M. Demonstration of type-II superlattice MWIR minority carrier unipolar imager for high operation temperature application. Opt. Lett. 2015, 40, 45–47. [Google Scholar] [CrossRef]
- Schuler-Sandy, T.; Klein, B.; Casias, L.; Mathews, S.; Kadlec, C.; Tian, Z.; Plis, E.; Myers, S.; Krishna, S. Growth of InAs–InAsSb SLS through the use of digital alloys. J. Cryst. Growth 2015, 425, 29–32. [Google Scholar] [CrossRef]
- Olson, B.V.; Shaner, E.A.; Kim, J.K.; Klem, J.F.; Hawkins, S.D.; Murray, L.M.; Prineas, J.P.; Flatté, M.E.; Boggess, T.F. Time-resolved optical measurements of minority carrier recombination in a mid-wave infrared InAsSb alloy and InAs/InAsSb superlattice. Appl. Phys. Lett. 2012, 101, 092109. [Google Scholar] [CrossRef]
- Rhiger, D.R.; Smith, E.P.; Kolasa, B.P.; Kim, J.K.; Klem, J.F.; Hawkins, S.D. Analysis of III–V Superlattice nBn Device Characteristics. J. Electron. Mater. 2016, 45, 4646–4653. [Google Scholar] [CrossRef]
- Durlin, Q.; Perez, J.P.; Rossignol, R.; Rodriguez, J.B.; Cerutti, L.; Delacourt, B.; Rothman, J.; Cervera, C.; Christol, P. InAs/InAsSb superlattice structure tailored for detection of the full midwave infrared spectral domain. In Proceedings of the SPIE Quantum Sensing and Nano Electronics and Photonics XIV, San Francisco, CA, USA, 27 January 2017; Volume 10111, p. 1011112. [Google Scholar]
- Ting, D.Z.; Soibel, A.; Khoshakhlagh, A.; Rafol, S.B.; Keo, S.; Höglund, L.; Fisher, A.M.; Luong, E.M.; Gunapala, S.D. Mid-wavelength high operating temperature barrier infrared detector and focal plane array. Appl. Phys. Lett. 2018, 113, 021101. [Google Scholar] [CrossRef]
- Michalczewski, K.; Tsai, T.Y.; Martyniuk, P.; Wu, C.H. Demonstration of HOT photoresponse of MWIR T2SLs InAs/InAsSb photoresistors. Bull. Pol. Acad. Sci. Tech. Sci. 2019, 67, 141–145. [Google Scholar]
- Ariyawansa, G.; Duran, J.; Reyner, C.; Scheihing, J. InAs/InAsSb Strained-Layer Superlattice Mid-Wavelength Infrared Detector for High-Temperature Operation. Micromachines 2019, 10, 806. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.; Li, J.; Dehzangi, A.; Razeghi, M. Mid-wavelength infrared high operating temperature pBn photodetectors based on type-II InAs/InAsSb superlattice. AIP Adv. 2020, 10, 025018. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.; Li, J.; Dehzangi, A.; Razeghi, M. High Performance InAs/InAsSb Type-II Superlattice Mid-Wavelength Infrared Photodetectors with Double Barrier. Infrared Phys. Technol. 2020, 109, 103439. [Google Scholar] [CrossRef]
- Deng, G.; Chen, D.; Yang, S.; Yang, C.; Yuan, J.; Yang, W.; Zhang, Y. High operating temperature pBn barrier mid-wavelength infrared photodetectors and focal plane array based on InAs/InAsSb strained layer superlattices. Opt. Express 2020, 28, 17611. [Google Scholar] [CrossRef]
- Zavala-Moran, U.; Alchaar, R.; Perez, J.; Rodriguez, J.; Bouschet, M.; Compean, V.; De Anda, F.; Christol, P. Antimonide-based Superlattice Infrared Barrier Photodetectors. In Proceedings of the 8th International Conference on Photonics, Optics and Laser Technology, Valletta, Malta, 27–29 February 2020; Volume 1, pp. 45–51. [Google Scholar]
- Krizman, G.; Carosella, F.; Philippe, A.; Ferreira, R.; Rodriguez, J.B.; Perez, J.P.; Christol, P.; de Vaulchier, L.-A.; Guldner, Y. InAs/InAsSb type 2 superlattices band parameters determination via magnetoabsorption and kp modeling. In Proceedings of the SPIE Photonic West Conference, San Francisco, CA, USA, 2 March 2020; Volume 11274, p. 1127408. [Google Scholar]
- Steenbergen, E.; Massengale, J.; Ariyawansa, G.; Zhang, Y.-H. Evidence of carrier localization in photoluminescence spectroscopy studies of mid-wavelength infrared InAs/InAs1−Sb type-II superlattices. J. Lumin. 2016, 178, 451–456. [Google Scholar] [CrossRef] [Green Version]
- Webster, P.T.; Riordan, N.A.; Liu, S.; Steenbergen, E.H.; Synowicki, R.A.; Zhang, Y.-H.; Johnson, S.R. Measurement of InAsSb bandgap energy and InAs/InAsSb band edge positions using spectroscopic ellipsometry and photoluminescence spectroscopy. J. Appl. Phys. 2015, 118, 245706. [Google Scholar] [CrossRef] [Green Version]
- Cervera, C.; Jaworowicz, K.; Aït-Kaci, H.; Chaghi, R.; Rodriguez, J.-B.; Ribet-Mohamed, I.; Christol, P. Temperature dependence performances of InAs/GaSb superlattice photodiode. Infrared Phys. Technol. 2011, 54, 258–262. [Google Scholar] [CrossRef]
- Donetsky, D.; Belenky, G.; Svensson, S.; Suchalkin, S. Minority carrier lifetime in type-II InAs/GaSb strained-layer superlattices and bulk HgCdTe materials. Appl. Phys. Let. 2010, 97, 052108. [Google Scholar] [CrossRef]
- Delmas, M.; Rodriguez, J.-B.; Christol, P. Electrical modeling of InAs/GaSb superlattice mid-wavelength infrared pin photodiode to analyze experimental dark current characteristics. J. Appl. Phys. 2014, 116, 113101. [Google Scholar] [CrossRef] [Green Version]
- Tsai, C.-Y.; Zhang, Y.; Ju, Z.; Zhang, Y.-H. Study of vertical hole transport in InAs/InAsSb type-II superlattices by steady-state and time-resolved photoluminescence spectroscopy. Appl. Phys. Lett. 2020, 116, 201108. [Google Scholar] [CrossRef]
- Casias, L.K.; Morath, C.P.; Steenbergen, E.H.; Umana-Membreno, G.A.; Webster, P.T.; Logan, J.V.; Kim, J.K.; Balakrishnan, G.; Faraone, L.; Krishna, S. Vertical carrier transport in strain-balanced InAs/InAsSb type-II superlattice material. Appl. Phys. Lett. 2020, 116, 182109. [Google Scholar] [CrossRef]
- Cervera, C.; Rodriguez, J.-B.; Chaghi, R.; Aït-Kaci, H.; Christol, P. Characterization of midwave infrared InAs/GaSb superlattice photodiode. J. Appl. Phys. 2009, 106, 024501. [Google Scholar] [CrossRef]
- Tennant, W.E.; Lee, N.; Zandian, M.; Piquette, E.; Carmody, M. MBE HgCdTe Technology: A Very General Solution to IR Detection, Described by “Rule 07”, a Very Convenient Heuristic. J. Electron. Mater. 2008, 37, 1406–1410. [Google Scholar] [CrossRef]
HRXRD Δa/a | AFM RMS | PL λpeak @ 150 K | PL FWHM | TRPL Lifetime |
---|---|---|---|---|
≤0.1% | ≤0.15 nm | 5 µm | ≤0.30 meV | ≥800 ns |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zavala-Moran, U.; Bouschet, M.; Perez, J.P.; Alchaar, R.; Bernhardt, S.; Ribet-Mohamed, I.; de Anda-Salazar, F.; Christol, P. Structural, Optical and Electrical Characterizations of Midwave Infrared Ga-Free Type-II InAs/InAsSb Superlattice Barrier Photodetector. Photonics 2020, 7, 76. https://doi.org/10.3390/photonics7030076
Zavala-Moran U, Bouschet M, Perez JP, Alchaar R, Bernhardt S, Ribet-Mohamed I, de Anda-Salazar F, Christol P. Structural, Optical and Electrical Characterizations of Midwave Infrared Ga-Free Type-II InAs/InAsSb Superlattice Barrier Photodetector. Photonics. 2020; 7(3):76. https://doi.org/10.3390/photonics7030076
Chicago/Turabian StyleZavala-Moran, U., M. Bouschet, J. P. Perez, R. Alchaar, S. Bernhardt, I. Ribet-Mohamed, F. de Anda-Salazar, and P. Christol. 2020. "Structural, Optical and Electrical Characterizations of Midwave Infrared Ga-Free Type-II InAs/InAsSb Superlattice Barrier Photodetector" Photonics 7, no. 3: 76. https://doi.org/10.3390/photonics7030076
APA StyleZavala-Moran, U., Bouschet, M., Perez, J. P., Alchaar, R., Bernhardt, S., Ribet-Mohamed, I., de Anda-Salazar, F., & Christol, P. (2020). Structural, Optical and Electrical Characterizations of Midwave Infrared Ga-Free Type-II InAs/InAsSb Superlattice Barrier Photodetector. Photonics, 7(3), 76. https://doi.org/10.3390/photonics7030076