Near- and Far-Field Excitation of Topological Plasmonic Metasurfaces
Abstract
:1. Introduction
2. Methods
3. Optical Response of Bulk and Edge States
4. Circularly-Polarized Point Sources
5. Far-Field Circularly-Polarized Excitations
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
2D | Two Dimensional |
FWHM | Full Width at Half Maximum |
LDOS | Local Density of States |
MWLWA | Meier–Wokaun Long Wavelength Approximation |
NP | Nanoparticle |
OAM | Orbital Angular Momentum |
Appendix A. Honeycomb Lattice: Optical Response of Bulk Modes
Appendix B. Edge States with Losses
Appendix C. Edge State Eigenmodes
Appendix D. Directionality of Modes in a Photonic Crystal
Appendix E. Propagation along the Interface with Losses
Appendix F. Far Field Excitations: Power through Left and Right Channels
References
- Rider, M.S.; Palmer, S.J.; Pocock, S.R.; Xiao, X.; Arroyo Huidobro, P.; Giannini, V. A perspective on topological nanophotonics: Current status and future challenges. J. Appl. Phys. 2019, 125, 120901. [Google Scholar] [CrossRef]
- Haldane, F.D.M.; Raghu, S. Possible Realization of Directional Optical Waveguides in Photonic Crystals with Broken Time-Reversal Symmetry. Phys. Rev. Lett. 2008, 100, 013904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raghu, S.; Haldane, F.D.M. Analogs of quantum-Hall-effect edge states in photonic crystals. Phys. Rev. A 2008, 78, 033834. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Chong, Y.; Joannopoulos, J.D.; Soljačić, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 2009, 461, 772–775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, D.; Christensen, T.; Soljačić, M.; Fang, N.X.; Lu, L.; Zhang, X. Infrared Topological Plasmons in Graphene. Phys. Rev. Lett. 2017, 118, 245301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, D.; Yu, R.; Xu, H.; García de Abajo, F.J. Topologically protected Dirac plasmons in a graphene superlattice. Nat. Commun. 2017, 8, 1243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makwana, M.P.; Craster, R.V. Geometrically navigating topological plate modes around gentle and sharp bends. Phys. Rev. B 2018, 98, 184105. [Google Scholar] [CrossRef] [Green Version]
- Wong, S.; Saba, M.; Hess, O.; Oh, S.S. Gapless unidirectional photonic transport using all-dielectric kagome lattices. Phys. Rev. Res. 2020, 2, 012011. [Google Scholar] [CrossRef] [Green Version]
- Proctor, M.; Huidobro, P.A.; Maier, S.A.; Craster, R.V.; Makwana, M.P. Manipulating topological valley modes in plasmonic metasurfaces. Nanophotonics 2020, 9, 657–665. [Google Scholar] [CrossRef]
- Saba, M.; Wong, S.; Elman, M.; Oh, S.S.; Hess, O. Nature of topological protection in photonic spin and valley Hall insulators. Phys. Rev. B 2020, 101, 054307. [Google Scholar] [CrossRef] [Green Version]
- Orazbayev, B.; Fleury, R. Quantitative robustness analysis of topological edge modes in C6 and valley-Hall metamaterial waveguides. Nanophotonics 2019, 8, 1433–1441. [Google Scholar] [CrossRef]
- Wu, L.H.; Hu, X. Scheme for Achieving a Topological Photonic Crystal by Using Dielectric Material. Phys. Rev. Lett. 2015, 114, 223901. [Google Scholar] [CrossRef] [PubMed]
- De Paz, M.B.; Vergniory, M.G.; Bercioux, D.; García-Etxarri, A.; Bradlyn, B. Engineering fragile topology in photonic crystals: Topological quantum chemistry of light. Phys. Rev. Res. 2019, 1, 032005. [Google Scholar] [CrossRef] [Green Version]
- Proctor, M.; Huidobro, P.A.; Bradlyn, B.; de Paz, M.B.; Vergniory, M.G.; Bercioux, D.; Garcia-Etxarri, A. On the robustness of topological corner modes in photonic crystals. arXiv 2020, arXiv:2007.10624. [Google Scholar]
- Proctor, M.; Craster, R.V.; Maier, S.A.; Giannini, V.; Huidobro, P.A. Exciting Pseudospin-Dependent Edge States in Plasmonic Metasurfaces. ACS Photonics 2019, 6, 2985–2995. [Google Scholar] [CrossRef] [Green Version]
- Oh, S.S.; Lang, B.; Beggs, D.M.; Huffaker, D.L.; Saba, M.; Hess, O. Chiral Light-matter Interaction in Dielectric Photonic Topological Insulators. In Proceedings of the CLEO Pacific Rim Conference 2018; Optical Society of America: Washington, DC, USA, 2018; p. Th4H.5. [Google Scholar] [CrossRef] [Green Version]
- Smirnova, D.; Kruk, S.; Leykam, D.; Melik-Gaykazyan, E.; Choi, D.Y.; Kivshar, Y. Third-Harmonic Generation in Photonic Topological Metasurfaces. Phys. Rev. Lett. 2019, 123, 103901. [Google Scholar] [CrossRef] [Green Version]
- Barik, S.; Miyake, H.; DeGottardi, W.; Waks, E.; Hafezi, M. Two-dimensionally confined topological edge states in photonic crystals. New J. Phys. 2016, 18, 113013. [Google Scholar] [CrossRef]
- Barik, S.; Karasahin, A.; Flower, C.; Cai, T.; Miyake, H.; DeGottardi, W.; Hafezi, M.; Waks, E. A topological quantum optics interface. Science 2018, 359, 666–668. [Google Scholar] [CrossRef] [Green Version]
- Yves, S.; Fleury, R.; Berthelot, T.; Fink, M.; Lemoult, F.; Lerosey, G. Crystalline metamaterials for topological properties at subwavelength scales. Nat. Commun. 2017, 8, 16023. [Google Scholar] [CrossRef]
- Parappurath, N.; Alpeggiani, F.; Kuipers, L.; Verhagen, E. Direct observation of topological edge states in silicon photonic crystals: Spin, dispersion, and chiral routing. Sci. Adv. 2020, 6. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Hwang, M.; Ji, Z.; Wang, Y.; Modi, G.; Agarwal, R. Z2 Photonic Topological Insulators in the Visible Wavelength Range for Robust Nanoscale Photonics. Nano Lett. 2020, 20, 1329–1335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maier, S.A. Plasmonics: Fundamentals and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Weber, W.H.; Ford, G.W. Propagation of optical excitations by dipolar interactions in metal nanoparticle chains. Phys. Rev. B 2004, 70, 125429. [Google Scholar] [CrossRef] [Green Version]
- Moroz, A. Depolarization field of spheroidal particles. J. Opt. Soc. Am. B 2009, 26, 517–527. [Google Scholar] [CrossRef]
- Meier, M.; Wokaun, A. Enhanced fields on large metal particles: Dynamic depolarization. Opt. Lett. 1983, 8, 581–583. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.U.; D’Archangel, J.; Sundheimer, M.L.; Tucker, E.; Boreman, G.D.; Raschke, M.B. Optical dielectric function of silver. Phys. Rev. B 2015, 91, 235137. [Google Scholar] [CrossRef] [Green Version]
- García de Abajo, F.J. Colloquium: Light scattering by particle and hole arrays. Rev. Mod. Phys. 2007, 79, 1267–1290. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Zhang, R.Y.; Xiao, M.; Han, D.; Chan, C.T.; Wen, W. The existence of topological edge states in honeycomb plasmonic lattices. New J. Phys. 2016, 18, 103029. [Google Scholar] [CrossRef] [Green Version]
- Linton, C.M. Lattice Sums for the Helmholtz Equation. SIAM Rev. 2010, 52, 630–674. [Google Scholar] [CrossRef] [Green Version]
- Kolkowski, R.; Koenderink, A.F. Lattice Resonances in Optical Metasurfaces With Gain and Loss. Proc. IEEE 2020, 108, 795–818. [Google Scholar] [CrossRef]
- Koenderink, A.F.; Polman, A. Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains. Phys. Rev. B 2006, 74, 033402. [Google Scholar] [CrossRef] [Green Version]
- Zhen, Y.R.; Fung, K.H.; Chan, C.T. Collective plasmonic modes in two-dimensional periodic arrays of metal nanoparticles. Phys. Rev. B 2008, 78, 035419. [Google Scholar] [CrossRef] [Green Version]
- Pocock, S.R.; Xiao, X.; Huidobro, P.A.; Giannini, V. Topological Plasmonic Chain with Retardation and Radiative Effects. ACS Photonics 2018, 5, 2271–2279. [Google Scholar] [CrossRef]
- Pocock, S.R.; Huidobro, P.A.; Giannini, V. Bulk-edge correspondence and long-range hopping in the topological plasmonic chain. Nanophotonics 2019, 8, 1337–1347. [Google Scholar] [CrossRef]
- Merchiers, O.; Moreno, F.; González, F.; Saiz, J.M. Light scattering by an ensemble of interacting dipolar particles with both electric and magnetic polarizabilities. Phys. Rev. A 2007, 76, 043834. [Google Scholar] [CrossRef] [Green Version]
- Gorlach, M.A.; Ni, X.; Smirnova, D.A.; Korobkin, D.; Zhirihin, D.; Slobozhanyuk, A.P.; Belov, P.A.; Alù, A.; Khanikaev, A.B. Far-field probing of leaky topological states in all-dielectric metasurfaces. Nat. Commun. 2018, 9, 909. [Google Scholar] [CrossRef] [Green Version]
- Blanco de Paz, M.; Devescovi, C.; Giedke, G.; Saenz, J.J.; Vergniory, M.G.; Bradlyn, B.; Bercioux, D.; García-Etxarri, A. Tutorial: Computing Topological Invariants in 2D Photonic Crystals. Adv. Quantum Technol. 2020, 3, 1900117. [Google Scholar] [CrossRef]
- Lodahl, P.; Mahmoodian, S.; Stobbe, S.; Rauschenbeutel, A.; Schneeweiss, P.; Volz, J.; Pichler, H.; Zoller, P. Chiral quantum optics. Nature 2017, 541, 473–480. [Google Scholar] [CrossRef]
- Kariyado, T.; Hu, X. Topological States Characterized by Mirror Winding Numbers in Graphene with Bond Modulation. Sci. Rep. 2017, 7, 16515. [Google Scholar] [CrossRef]
- Cherqui, C.; Bourgeois, M.R.; Wang, D.; Schatz, G.C. Plasmonic Surface Lattice Resonances: Theory and Computation. Accounts Chem. Res. 2019, 52, 2548–2558. [Google Scholar] [CrossRef]
- Yves, S.; Berthelot, T.; Lerosey, G.; Lemoult, F. Locally polarized wave propagation through crystalline metamaterials. Phys. Rev. B 2020, 101, 035127. [Google Scholar] [CrossRef] [Green Version]
- Baranov, D.G.; Savelev, R.S.; Li, S.V.; Krasnok, A.E.; Alù, A. Modifying magnetic dipole spontaneous emission with nanophotonic structures. Laser Photonics Rev. 2017, 11, 1600268. [Google Scholar] [CrossRef]
- Alaee, R.; Gurlek, B.; Albooyeh, M.; Martín-Cano, D.; Sandoghdar, V. Quantum Metamaterials with Magnetic Response at Optical Frequencies. Phys. Rev. Lett. 2020, 125, 063601. [Google Scholar] [CrossRef] [PubMed]
- Ballantine, K.E.; Ruostekoski, J. Optical Magnetism and Huygens’ Surfaces in Arrays of Atoms Induced by Cooperative Responses. arXiv 2020, arXiv:2002.12930. [Google Scholar]
- García-Etxarri, A.; Gómez-Medina, R.; Froufe-Pérez, L.S.; López, C.; Chantada, L.; Scheffold, F.; Aizpurua, J.; Nieto-Vesperinas, M.; Sáenz, J.J. Strong magnetic response of submicron Silicon particles in the infrared. Opt. Express 2011, 19, 4815–4826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, M.; Rho, J. Quantum Hall phase and chiral edge states simulated by a coupled dipole method. Phys. Rev. B 2020, 101, 195105. [Google Scholar] [CrossRef]
- Deng, W.M.; Chen, X.D.; Zhao, F.L.; Dong, J.W. Transverse angular momentum in topological photonic crystals. J. Opt. 2017, 20, 014006. [Google Scholar] [CrossRef] [Green Version]
- Deng, W.M.; Chen, X.D.; Chen, W.J.; Zhao, F.L.; Dong, J.W. Vortex index identification and unidirectional propagation in Kagome photonic crystals. Nanophotonics 2019, 8, 833–840. [Google Scholar] [CrossRef]
- Chen, X.D.; Zhao, F.L.; Chen, M.; Dong, J.W. Valley-contrasting physics in all-dielectric photonic crystals: Orbital angular momentum and topological propagation. Phys. Rev. B 2017, 96, 020202. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.D.; Shi, F.L.; Liu, H.; Lu, J.C.; Deng, W.M.; Dai, J.Y.; Cheng, Q.; Dong, J.W. Tunable Electromagnetic Flow Control in Valley Photonic Crystal Waveguides. Phys. Rev. Appl. 2018, 10, 044002. [Google Scholar] [CrossRef] [Green Version]
- Ye, L.; Yang, Y.; Hang, Z.H.; Qiu, C.; Liu, Z. Observation of valley-selective microwave transport in photonic crystals. Appl. Phys. Lett. 2017, 111, 251107. [Google Scholar] [CrossRef]
- Chervy, T.; Azzini, S.; Lorchat, E.; Wang, S.; Gorodetski, Y.; Hutchison, J.A.; Berciaud, S.; Ebbesen, T.W.; Genet, C. Room Temperature Chiral Coupling of Valley Excitons with Spin-Momentum Locked Surface Plasmons. ACS Photonics 2018, 5, 1281–1287. [Google Scholar] [CrossRef]
- Hu, G.; Hong, X.; Wang, K.; Wu, J.; Xu, H.X.; Zhao, W.; Liu, W.; Zhang, S.; Garcia-Vidal, F.; Wang, B.; et al. Coherent steering of nonlinear chiral valley photons with a synthetic Au–WS2 metasurface. Nat. Photonics 2019, 13, 467–472. [Google Scholar] [CrossRef]
- Sun, L.; Wang, C.Y.; Krasnok, A.; Choi, J.; Shi, J.; Gomez-Diaz, J.S.; Zepeda, A.; Gwo, S.; Shih, C.K.; Alù, A.; et al. Separation of valley excitons in a MoS2 monolayer using a subwavelength asymmetric groove array. Nat. Photonics 2019, 13, 180–184. [Google Scholar] [CrossRef]
- COMSOL AB, Stockholm. RF Module—COMSOL Multiphysics, v. 5.4. Available online: https://uk.comsol.com/support/knowledgebase/1223 (accessed on 27 August 2020).
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Proctor, M.; Xiao, X.; Craster, R.V.; Maier, S.A.; Giannini, V.; Arroyo Huidobro, P. Near- and Far-Field Excitation of Topological Plasmonic Metasurfaces. Photonics 2020, 7, 81. https://doi.org/10.3390/photonics7040081
Proctor M, Xiao X, Craster RV, Maier SA, Giannini V, Arroyo Huidobro P. Near- and Far-Field Excitation of Topological Plasmonic Metasurfaces. Photonics. 2020; 7(4):81. https://doi.org/10.3390/photonics7040081
Chicago/Turabian StyleProctor, Matthew, Xiaofei Xiao, Richard V. Craster, Stefan A. Maier, Vincenzo Giannini, and Paloma Arroyo Huidobro. 2020. "Near- and Far-Field Excitation of Topological Plasmonic Metasurfaces" Photonics 7, no. 4: 81. https://doi.org/10.3390/photonics7040081
APA StyleProctor, M., Xiao, X., Craster, R. V., Maier, S. A., Giannini, V., & Arroyo Huidobro, P. (2020). Near- and Far-Field Excitation of Topological Plasmonic Metasurfaces. Photonics, 7(4), 81. https://doi.org/10.3390/photonics7040081