Review of Specialty Fiber Based Brillouin Optical Time Domain Analysis Technology
Abstract
:1. Introduction
2. Principle of BOTDA Technology
3. Reviews on Specialty Fiber Based BOTDA Technology
3.1. Sensor Performance Enhancements and Breakthroughs
3.2. Discriminative Sensing of Temperature and Strain
3.3. Multiplexed Distributed Sensing Systems of BOTDA and Other Distributed Fiber Sensor Technologies
3.4. Distributed Sensing of Other Parameters
4. Prospects and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Nomenclature
Symbols | Description |
The central frequency shifts of the Brillouin spectra peaks | |
Temperature coefficients of the Brillouin peak 1, 2, respectively | |
Strain coefficients of the Brillouin peak 1, 2, respectively | |
Temperature change | |
Strain change | |
The shift of the Brillouin gain spectrum | |
The shift of the Raman gain spectrum | |
Strain coefficient of the Brillouin sensing system | |
Temperature coefficient of the Brillouin sensing system | |
Strain coefficient of the Raman sensing system | |
Temperature coefficient of the Raman sensing system |
References
- Liu, Y.; Li, H.; Wang, Y.; Men, Y.; Xu, Q. Damage detection of tunnel based on the high-density cross-sectional curvature obtained using strain data from BOTDA sensors. Mech. Syst. Signal Process. 2021, 158, 107728. [Google Scholar] [CrossRef]
- Xu, J.; Dong, Y.; Li, H. Research on fatigue damage detection for wind turbine blade based on high-spatial-resolution DPP-BOTDA. In Proceedings of the SPIE 9061, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, San Diego, CA, USA, 10–13 March 2014. [Google Scholar] [CrossRef]
- Zhang, D.; Yang, Y.; Xu, J.; Ni, L.; Li, H. Structural Crack Detection Using DPP-BOTDA and Crack-Induced Features of the Brillouin Gain Spectrum. Sensors 2020, 20, 6947. [Google Scholar] [CrossRef]
- Jamioy, C.A.G.; Lopez-Higuera, J.M. Brillouin Distributed Fiber Sensors: An Overview and Applications. J. Sens. 2012, 2012, 204121. [Google Scholar] [CrossRef] [Green Version]
- Motil, A.; Bergman, A.; Tur, M. State of the art of Brillouin fiber-optic distributed sensing. Opt. Laser Technol. 2016, 78, 81–103. [Google Scholar] [CrossRef]
- Feng, C.; Kadum, J.E.; Schneider, T. The State-of-the-Art of Brillouin Distributed Fiber Sensing; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y. High-Performance Distributed Brillouin Optical Fiber Sensing. Photonic Sens. 2021, 11, 69–90. [Google Scholar] [CrossRef]
- Lu, P.; Lalam, N.; Badar, M.; Liu, B.; Chorpening, B.T.; Buric, M.P.; Ohodnicki, P. Distributed optical fiber sensing: Review and perspective. Appl. Phys. Rev. 2019, 6, 041302. [Google Scholar] [CrossRef]
- Bao, X.; Zhou, Z.; Wang, Y. Review: Distributed time-domain sensors based on Brillouin scattering and FWM enhanced SBS for temperature, strain and acoustic wave detection. PhotoniX 2021, 2, 14. [Google Scholar] [CrossRef]
- Bai, Z.; Yuan, H.; Liu, Z.; Xu, P.; Gao, Q.; Williams, R.; Kitzler, O.; Mildren, R.; Wang, Y.; Lu, Z. Stimulated Brillouin scattering materials, experimental design and applications: A review. Opt. Mater. 2018, 75, 626–645. [Google Scholar] [CrossRef]
- Dragic, P.; Ballato, J. A Brief Review of Specialty Optical Fibers for Brillouin-Scattering-Based Distributed Sensors. Appl. Sci. 2018, 8, 1996. [Google Scholar] [CrossRef] [Green Version]
- Bastianini, F.; Di Sante, R.; Falcetelli, F.; Marini, D.; Bolognini, G. Optical Fiber Sensing Cables for Brillouin-Based Distributed Measurements. Sensors 2019, 19, 5172. [Google Scholar] [CrossRef] [Green Version]
- Soto, M.A.; Ramírez, J.A.; Thévenaz, L. Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration. Nat. Commun. 2016, 7, 10870. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Wang, L.; Guo, N.; Zhao, Z.; Yu, C.; Lu, C. Deep neural networks assisted BOTDA for simultaneous temperature and strain measurement with enhanced accuracy. Opt. Express 2019, 27, 2530–2543. [Google Scholar] [CrossRef] [PubMed]
- Bai, Q.; Wang, Q.; Wang, D.; Wang, Y.; Gao, Y.; Zhang, H.; Zhang, M.; Jin, B. Recent Advances in Brillouin Optical Time Domain Reflectometry. Sensors 2019, 19, 1862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobyakov, A.; Sauer, M.; Chowdhury, D. Stimulated Brillouin scattering in optical fibers. Adv. Opt. Photonics 2009, 2, 1–59. [Google Scholar] [CrossRef]
- Fortier, C.; Fatome, J.; Pitois, S.; Smektala, F.; Millot, G.; Troles, J.; Desevedavy, F.; Houizot, P.; Brilland, L.; Traynor, N. Experimental investigation of Brillouin and Raman scattering in a 2SG sulfide glass microstructured chalcogenide fiber. Opt. Express 2008, 16, 9398–9404. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Gyger, F.; Thévenaz, L. Intense Brillouin amplification in gas using hollow-core waveguides. Nat. Photonics 2020, 14, 700–708. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Gyger, F.; Thévenaz, L. Giant Brillouin Amplification in Gases. Opt. Photonics News 2020, 31, 33. [Google Scholar] [CrossRef]
- Beugnot, J.-C.; Sylvestre, T.; Alasia, D.; Maillotte, H.; Laude, V.; Monteville, A.; Provino, L.; Traynor, N.; Mafang, S.F.; Thévenaz, L. Complete experimental characterization of stimulated Brillouin scattering in photonic crystal fiber. Opt. Express 2007, 15, 15517–15522. [Google Scholar] [CrossRef] [PubMed]
- Iyer, A.; Xu, W.; Antonio-Lopez, J.E.; Correa, R.A.; Renninger, W.H. Ultra-low Brillouin scattering in anti-resonant hollow-core fibers. APL Photonics 2020, 5, 096109. [Google Scholar] [CrossRef]
- Dong, Y.; Qiu, L.; Lu, Y.; Teng, L.; Wang, B.; Zhu, Z. Sensitivity-Enhanced Distributed Hydrostatic Pressure Sensor Based on BOTDA in Single-Mode Fiber with Double-Layer Polymer Coatings. J. Lightwave Technol. 2020, 38, 2564–2571. [Google Scholar] [CrossRef]
- Gu, H.; Dong, H.; Zhang, G.; He, J.; Pan, H. Effects of Polymer Coatings on Temperature Sensitivity of Brillouin Frequency Shift Within Double-Coated Fibers. IEEE Sens. J. 2012, 13, 864–869. [Google Scholar] [CrossRef]
- Lu, X.; Soto, M.A.; Thevenaz, L. Impact of the Fiber Coating on the Temperature Response of Distributed Optical Fiber Sensors at Cryogenic Ranges. J. Lightwave Technol. 2017, 36, 961–967. [Google Scholar] [CrossRef] [Green Version]
- McElhenny, J.E.; Pattnaik, R.; Toulouse, J. Polarization dependence of stimulated Brillouin scattering in small-core photonic crystal fibers. J. Opt. Soc. Am. B 2008, 25, 2107–2115. [Google Scholar] [CrossRef] [Green Version]
- Bao, X.; Webb, D.J.; Jackson, D.A. Combined distributed temperature and strain sensor based on Brillouin loss in an optical fiber. Opt. Lett. 1994, 19, 141–143. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Yan, L.; Zhang, X.; Pan, W. Temperature and Strain Discrimination in BOTDA Fiber Sensor by Utilizing Dispersion Compensating Fiber. IEEE Sens. J. 2018, 18, 7100–7105. [Google Scholar] [CrossRef]
- Lee, C.; Chiang, P.; Chi, S. Utilization of a dispersion-shifted fiber for simultaneous measurement of distributed strain and temperature through Brillouin frequency shift. IEEE Photonics Technol. Lett. 2001, 13, 1094–1096. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Bao, X. Brillouin Spectrum in LEAF and Simultaneous Temperature and Strain Measurement. J. Lightwave Technol. 2011, 30, 1053–1059. [Google Scholar] [CrossRef]
- Leon, S.J. Linear Algebra with Applications; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2006. [Google Scholar]
- Zhang, H.; Yuan, Z.; Liu, Z.; Gao, W.; Dong, Y. Simultaneous measurement of strain and temperature using a polarization-maintaining photonic crystal fiber with stimulated Brillouin scattering. Appl. Phys. Express 2016, 10, 012501. [Google Scholar] [CrossRef]
- Zou, L.; Bao, X.; Chen, L. Brillouin scattering spectrum in photonic crystal fiber with a partially germanium-doped core. Opt. Lett. 2003, 28, 2022–2024. [Google Scholar] [CrossRef]
- Zou, L.; Bao, X.; Afshar, S.; Chen, L. Dependence of the brillouin frequency shift on strain and temperature in a photonic crystal fiber. Opt. Lett. 2004, 29, 1485–1487. [Google Scholar] [CrossRef] [Green Version]
- Li, A.; Wang, Y.; Fang, J.; Li, M.-J.; Kim, B.Y.; Shieh, W. Few-mode fiber multi-parameter sensor with distributed temperature and strain discrimination. Opt. Lett. 2015, 40, 1488–1491. [Google Scholar] [CrossRef]
- Fang, J.; Milione, G.; Stone, J.; Peng, G.; Li, M.-J.; Ip, E.; Li, Y.; Ji, P.N.; Huang, Y.-K.; Huang, M.-F.; et al. Multi-parameter distributed fiber sensing with higher-order optical and acoustic modes. Opt. Lett. 2019, 44, 1096–1099. [Google Scholar] [CrossRef]
- Zaghloul, M.A.S.; Wang, M.; Milione, G.; Li, M.-J.; Li, S.; Huang, Y.-K.; Wang, T.; Chen, K.P. Discrimination of Temperature and Strain in Brillouin Optical Time Domain Analysis Using a Multicore Optical Fiber. Sensors 2018, 18, 1176. [Google Scholar] [CrossRef] [Green Version]
- Mizuno, Y.; Hayashi, N.; Tanaka, H.; Wada, Y.; Nakamura, K. Brillouin scattering in multi-core optical fibers for sensing applications. Sci. Rep. 2015, 5, 11388. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Dang, Y.; Tang, M.; Li, B.; Gan, L.; Fu, S.; Wei, H.; Tong, W.; Shum, P.; Liu, D. Spatial-division multiplexed Brillouin distributed sensing based on a heterogeneous multicore fiber. Opt. Lett. 2016, 42, 171. [Google Scholar] [CrossRef]
- Ding, M.; Mizuno, Y.; Nakamura, K. Discriminative strain and temperature measurement using Brillouin scattering and fluorescence in erbium-doped optical fiber. Opt. Express 2014, 22, 24706–24712. [Google Scholar] [CrossRef] [PubMed]
- Deroh, M.; Sylvestre, T.; Chretien, J.; Maillotte, H.; Kibler, B.; Beugnot, J.-C. Towards athermal Brillouin strain sensing based on heavily germania-doped core optical fibers. APL Photonics 2019, 4, 030801. [Google Scholar] [CrossRef]
- McElhenny, J.E.; Pattnaik, R.K.; Toulouse, J.; Saitoh, K.; Koshiba, M. Unique characteristic features of stimulated Brillouin scattering in small-core photonic crystal fibers. J. Opt. Soc. Am. B 2008, 25, 582–593. [Google Scholar] [CrossRef]
- Zou, W.; He, Z.; Hotate, K. Experimental investigation on Brillouin scattering property in highly nonlinear photonic crystal fiber with hybrid core. Opt. Express 2012, 20, 11083–11090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.-J.; Li, S.; Derick, J.A.; Stone, J.S.; Chow, B.C.; Bennett, K.W.; Sutherlin, D.M. Dual core optical fiber for distributed Brillouin fiber sensors. In Proceedings of the Asia Communications and Photonics Conference 2014, Shanghai, China, 11–14 November 2014; p. AW4I.3. [Google Scholar] [CrossRef]
- Zhao, Z.; Soto, M.A.; Tang, M.; Thévenaz, L. Distributed shape sensing using Brillouin scattering in multi-core fibers. Opt. Express 2016, 24, 25211–25223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zou, W.; He, Z.; Hotate, K. Complete discrimination of strain and temperature using Brillouin frequency shift and birefringence in a polarization-maintaining fiber. Opt. Express 2009, 17, 1248–1255. [Google Scholar] [CrossRef]
- Zhao, Z.; Tang, M.; Lu, C. Distributed multicore fiber sensors. Opto-Electron. Adv. 2020, 3, 19002401–19002417. [Google Scholar] [CrossRef] [Green Version]
- Kishida, K.; Yamauchi, Y.; Guzik, A. Study of optical fibers strain-temperature sensitivities using hybrid Brillouin-Rayleigh system. Photonic Sens. 2013, 4, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Dang, Y.; Zhao, Z.; Tang, M.; Zhao, C.; Gan, L.; Fu, S.; Liu, T.; Tong, W.; Shum, P.P.; Liu, D. Towards large dynamic range and ultrahigh measurement resolution in distributed fiber measurement resolution in distributed fiber. Opt. Express 2017, 25, 20183–20193. [Google Scholar] [CrossRef] [PubMed]
- Alahbabi, M.N.; Cho, Y.T.; Newson, T.P. Simultaneous temperature and strain measurement with combined spontaneous Raman and Brillouin scattering. Opt. Lett. 2005, 30, 1276–1278. [Google Scholar] [CrossRef] [PubMed]
- Muanenda, Y.; Oton, C.J.; Di Pasquale, F. Application of Raman and Brillouin Scattering Phenomena in Distributed Optical Fiber Sensing. Front. Phys. 2019, 7, 155. [Google Scholar] [CrossRef]
- Zhao, Z.; Dang, Y.; Tang, M.; Duan, L.; Wang, M.; Wu, H.; Fu, S.; Tong, W.; Shum, P.P.; Liu, D. Spatial-division multiplexed hybrid Raman and Brillouin optical time-domain reflectometry based on multi-core fiber. Opt. Express 2016, 24, 25111–25118. [Google Scholar] [CrossRef]
- Minardo, A.; Bernini, R.; Zeni, L. Bend-Induced Brillouin Frequency Shift Variation in a Single-Mode Fiber. IEEE Photonics Technol. Lett. 2013, 25, 2362–2364. [Google Scholar] [CrossRef]
- Wu, H.; Tang, M.; Wang, M.; Zhao, C.; Zhao, Z.; Wang, R.; Liao, R.; Fu, S.; Yang, C.; Tong, W.; et al. Few-mode optical fiber based simultaneously distributed curvature and temperature sensing. Opt. Express 2017, 25, 12722. [Google Scholar] [CrossRef]
- Shen, L.; Wu, H.; Zhao, C.; Zhang, R.; Tong, W.; Fu, S.; Tang, M. Distributed curvature sensing based on a bending loss-resistant ring-core fiber. Photonics Res. 2020, 8, 165. [Google Scholar] [CrossRef]
- Teng, L.; Dong, Y.K.; Zhou, D.; Jiang, T.; Zhou, D.W. Temperature-compensated distributed hydrostatic pressure Brillouin sensor using a thin-diameter and polarization-maintaining photonics crystal fiber. In Proceedings of the Asia-Pacific Optical Sensors Conference 2016, Shanghai, China, 11–14 October 2016; p. W4A.55. [Google Scholar] [CrossRef]
- Vedadi, A.; Alasia, D.; Lantz, E.; Maillotte, H.; Thevenaz, L.; Gonzalez-Herraez, M.; Sylvestre, T. Brillouin Optical Time-Domain Analysis of Fiber-Optic Parametric Amplifiers. IEEE Photonics Technol. Lett. 2007, 19, 179–181. [Google Scholar] [CrossRef]
- Alishahi, F.; Vedadi, A.; Denisov, A.; Soto, M.A.; Mehrany, K.; Bres, C.S.; Thevenaz, L. Highly sensitive dispersion map extraction from highly nonlinear fibers using BOTDA probing of parametric amplification. In Proceedings of the 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC, Munich, Germany, 12–16 May 2013; p. 1. [Google Scholar] [CrossRef] [Green Version]
- Alishahi, F.; Vedadi, A.; Shoaie, A.; Mehrany, K.; Salehi, J.A. Low resolution distributed measurement of fiber optical parametric amplifiers gain. In Proceedings of the Optical Fiber Communication Conference 2012, Los Angeles, CA, USA, 4–8 March 2012; p. JW2A.30. [Google Scholar]
- Zhang, H.; Teng, L.; Dong, Y. Distributed Salinity Sensor with a Polymide-Coated Photonic Crystal Fiber Based on Brillouin Dynamic Grating. J. Lightwave Technol. 2020, 38, 5219–5224. [Google Scholar] [CrossRef]
- Bernini, R.; Persichetti, G.; Catalano, E.; Zeni, L.; Minardo, A. Refractive index sensing by Brillouin scattering in side-polished optical fibers. Opt. Lett. 2018, 43, 2280–2283. [Google Scholar] [CrossRef] [PubMed]
- Delepine-Lesoille, S.; Bertrand, J.; Lablonde, L.; Pheron, X. Distributed Hydrogen Sensing with Brillouin Scattering in Optical Fibers. IEEE Photonics Technol. Lett. 2012, 24, 1475–1477. [Google Scholar] [CrossRef]
- Leparmentier, S.; Auguste, J.-L.; Humbert, G.; Pilorget, G.; Lablonde, L.; Delepine-Lesoille, S. Study of the hydrogen influence on the acoustic velocity of single-mode fibers by Rayleigh and Brillouin backscattering measurements. In Proceedings of the 24th International Conference on Optical Fibre Sensors, Curitiba, Brazil, 28 September–2 October 2015; Volume 9634, p. 963432. [Google Scholar] [CrossRef]
- Delepine-Lesoille, S.; Girard, S.; Landolt, M.; Bertrand, J.; Planes, I.; Boukenter, A.; Marin, E.; Humbert, G.; Leparmentier, S.; Auguste, J.-L.; et al. France’s State of the Art Distributed Optical Fibre Sensors Qualified for the Monitoring of the French Underground Repository for High Level and Intermediate Level Long Lived Radioactive Wastes. Sensors 2017, 17, 1377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Approaches | Specialty Fiber Type | Temperature Coefficient | Strain Coefficient | CN of the Sensor Matrix |
---|---|---|---|---|
Multi-peak BGS due to multiple acoustic modes | PCFs with a partially germanium-doped core | |||
[32,33] | ||||
Peak 1 | 0.96 | 0.048 | ||
Peak 2 | 1.25 | 0.055 | 346 | |
Large effective area fiber (LEAF) [29] | 260 (peak1 BFS, peak1 BGS) | |||
Peak 1 BFS | 1.18 | 0.055 | 270 (peak2 BFS, peak2 BGS) | |
Peak 1 BGS linewidth | −0.111 | −0.00059 | 2580 (peak1 BFS, peak2 BFS) | |
Peak 2 BFS | 1.2 | 0.055 | 260 (peak1 BFS, peak2 BGS) | |
Peak 2 BGS linewidth | −0.118 | −0.00091 | 270 (peak1 BGS, peak2 BFS) 836 (peak1 BGS, peak2 BGS) | |
Multi-peak BGS due to multiple optical modes | Circular core few mode fiber (FMF) [34] | |||
LP01 | 1.0169 | 0.05924 | 221 | |
LP11 | 0.99099 | 0.04872 | ||
Multi-peak BGS due to multiple acoustic modes and optical modes | Elliptical core FMF [35] | 96 (LP01–P1, LP01–P2) | ||
LP01-P1 | 1.242 | 0.0613 | 107 (LP11e–P1, LP11e–P2) | |
LP01-P2 | 1.278 | 0.0364 | 1133 (LP01–P1, LP11e–P1) | |
LP11e-P1 | 1.287 | 0.0658 | 119 (LP01–P1, LP11e–P2) | |
LP11e-P2 | 1.501 | 0.0484 | 88 (LP01–P2, LP11e–P1) 538 (LP01–P2, LP11e–P2) | |
Multiple core/fibers | Different fiber deployment [26] | 1.2 ± 0.2 | 0.054 ± 0.7 | 44 |
Dual core fiber [36] | 95 | |||
Core 1 | 0.971 | 0.0532 | ||
Core 2 | 0.9593 | 0.0729 | ||
Multicore fiber (MCF) [37] | 380 | |||
Central core | 1.08 | 0.0485 | ||
Outer core | 1.03 | 0.0517 | ||
MCF with heterogeneous cores [38] | ||||
Central core | 1.05 ± 0.0095 | 0.0485 | ||
Outer core | 1.15 ± 0.0343 | 0.0485 | 501 | |
BFS and birefringence | Polarization-maintaining photonic crystal fiber (PM-PCF) [31] | |||
Birefringence | −40 °C to −15 °C: 27.4 | −0.154 | −40 °C to −15 °C: 495 | |
−15 °C to 5 °C: 8 | −15 °C to 5 °C: 115 | |||
5 °C to 80 °C: 0 | 5 °C to 80 °C: 7 | |||
BFS | 1.15 | 0.049 | ||
BFS and fluorescence | Erbium-doped optical fiber [39] | 28,303 | ||
Fluorescence intensity ratio | 5.6 × 10−4/°C | 0 | ||
BFS | 0.87 | 0.0479 | ||
Athermal/atensic optical fibers | Highly Ge dope fibers [40] | 0.07 | 0.0214 | Not applicable |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, D.J.J.; Humbert, G.; Dong, H.; Zhang, H.; Hao, J.; Sun, Q. Review of Specialty Fiber Based Brillouin Optical Time Domain Analysis Technology. Photonics 2021, 8, 421. https://doi.org/10.3390/photonics8100421
Hu DJJ, Humbert G, Dong H, Zhang H, Hao J, Sun Q. Review of Specialty Fiber Based Brillouin Optical Time Domain Analysis Technology. Photonics. 2021; 8(10):421. https://doi.org/10.3390/photonics8100421
Chicago/Turabian StyleHu, Dora Juan Juan, Georges Humbert, Hui Dong, Hailiang Zhang, Jianzhong Hao, and Qizhen Sun. 2021. "Review of Specialty Fiber Based Brillouin Optical Time Domain Analysis Technology" Photonics 8, no. 10: 421. https://doi.org/10.3390/photonics8100421
APA StyleHu, D. J. J., Humbert, G., Dong, H., Zhang, H., Hao, J., & Sun, Q. (2021). Review of Specialty Fiber Based Brillouin Optical Time Domain Analysis Technology. Photonics, 8(10), 421. https://doi.org/10.3390/photonics8100421