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Abstract: To acquire images with higher accuracy of wide-field telescopes, deformable mirrors
with more than 100 actuators are used, making the telescope alignment more complex and time-
consuming. Furthermore, the position of the obscuration caused by the secondary mirror in the
experiment system is changed with the difference of fields of view, making the response matrix of
the deformable mirror different in various fields of view. To solve this problem, transfer functions
corresponding to different fields of view are calculated according to the wavefront edge check and
boundary conditions. In this paper, a model-based method combined with the stochastic parallel
gradient descent (SPGD) algorithm is used. The experiment results show that our method can correct
the aberrations with a high accuracy in both on-axis and off-axis fields, indicating that the effective
actuators are well chosen corresponding to different fields of view.

Keywords: wide field of view; telescope alignment; deformable mirror; model-based method;
SPGD algorithm

1. Introduction

Telescopes with wide fields of view are studied to explore a wider range of space.
However, the final image quality is determined by telescope alignment accuracy. To correct
the wavefront aberrations and acquire a high-resolution image, an adaptive element such
as a deformable mirror (DM) [1] is usually employed. The higher the accuracy of the
optical system that is required, the more actuators of deformable mirrors that are needed.
Furthermore, the alignment of telescopes becomes more complex and time-consuming
with the increase of actuators of deformable mirrors.

There are several methods used to correct the aberrations with the deformable mir-
ror. All these methods can be classified into three categories: the direct wavefront sensor
method [2,3], such as interferometers and Shack–Hartmann wavefront sensors; the wave-
front sensor method based on images, such as the phase diversity method (PD) [4] and
the phase retrieval method (PR) [5,6]; and the wavefront sensor-less method [7], which
employs optimization algorithms such as genetic algorithm (GA) [8,9], the hill climbing
method [10,11], the simulated annealing method (SA) [12], and the stochastic parallel gradi-
ent descent (SPGD) method [13,14] to correct the aberrations according to merit functions.
Compared with the direct wavefront sensor method and the wavefront sensor method
based on images, the wavefront sensor-less method has the advantages of a concise system
and simple principles as the correction processes do not require wavefront sensors to
measure the aberrations and do not need wavefront reconstructions.

The wavefront sensor-less method can be divided into the model-free algorithm and
the model-based algorithm [15,16]. The model-free algorithm is the most widely used
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method in previous works. However, the model-free algorithm may converge slowly,
and sometimes it may get stuck in the local optimum, especially for deformable mirrors
with more than 100 actuators. To solve this problem, the model-based algorithm was
created. Different from the model-free algorithm, the model-based algorithm can converge
much faster with only N+1 iterations, where N is the number of corrected aberration
terms [17]. Therefore, this kind of control algorithm has a great potential in real-time
wavefront correction fields.

In this paper, a telescope with a wide field of view is aligned using a model-based
method combined with the SPGD algorithm. A model-based method is used due to the
large number of actuators, which may decrease the efficiency of the algorithm. In this
paper, a deformable mirror with 357 actuators in the optical system is set as the entrance
pupil with a tilted angle of 12.5◦. As a result, the obscuration of the system caused by the
secondary mirror in the position of the exit pupil changes with the different fields of view,
making the response matrix of the deformable mirror different in various fields of view.
The effective actuators corresponding to different fields of view are various, which means
the transfer functions of the deformable mirror corresponding to different fields of view
are changed. To solve this problem, transfer functions are calculated according to the fields
of view. The process is introduced in detail in the Section 2.

The paper is organized as follows: in Section 2, the principle of the model-based
method combined with the SPGD algorithm is introduced, and the transfer functions of
the deformable mirror corresponding to different fields of view are analyzed; in Section 3,
an experiment using the model-based SPGD algorithm with a Cassegrain telescope and a
357-element deformable mirror is described; and in Section 4, the conclusions are given.

2. Theory
2.1. The Model-Based Method Combined with the SPGD Algorithm

For wide field of view optical systems, the image quality in each field of view should
satisfy the requirements of the applications. As a result, the higher the accuracy of the
optical system that is required, the more actuators of the deformable mirror that are needed.
The model-free methods based on the optimization of voltages of actuators become more
complex and time-consuming. To improve the alignment efficiency, a model-based method
combined with the SPGD algorithm is employed.

The SPGD algorithm is an iteration control method [18–20]. It applies small random
perturbations to all control parameters simultaneously, and then evaluates the gradient
variation of merit functions (J) [21]. The iterative formula of the SPGD algorithm is as
follows [22].

zk+1 = zk − γ× δJk × δzk (1)

where, γ is the gain coefficient, the sign of which is determined by merit functions. δz
is a small random perturbation, which has identical amplitudes and satisfies Bernoulli
probability distribution. δJ is the variation of merit functions. J is the merit function, such
as strehl ratio, root mean square radius (RMS), encircled energy, and so on. k is the number
of iterations, and z is the control variables.

For telescope optical systems with a point source at infinity, the input phase aberrations
can be described by the function Φ(ρ,θ). Here, (ρ,θ) are the polar coordinates in the pupil
plane. The phase of the deformable mirror which is used to compensate for the aberrations
of telescope optical systems can be expressed by the function Ψ(ρ,θ). The phase aberrations
including the input phase aberrations Φ(ρ,θ) and the phase aberrations of deformable
mirrors Ψ(ρ,θ) can be described by a series of N Zernike polynomials [23], and each item
can be expressed as Zn(ρ,θ).

Φ(ρ, θ) = ∑ N
n=1anzn(ρ, θ) (2)

Ψ(ρ, θ) = ∑ N
n=1bnzn(ρ, θ) (3)

where, an and bn are the coefficients of the Zernike modes.
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The residual aberrations of the input wavefront whose aberrations are compensated by
the deformable mirror can be represented by function R(ρ,θ) and R(ρ,θ) = Φ(ρ,θ) − Ψ(ρ,θ) [24].
According to the Fourier diffraction theory, the signal obtained by the detector can be
expressed as follows [23].

F = I0

∣∣∣∣ 1
π

∫ 2π

θ=0

∫ 1

ρ=0
exp{jR(ρ, θ)}ρdρdθ

∣∣∣∣2 (4)

where, I0 is the incident light power.
Here, we define cn as the coefficients of the residual wavefront error, and cn = an − bn.

As a result, the far-field image can be expressed as follows [25].

F
(→

c
)
= I0

∣∣∣∣ 1
π

∫ 2π

θ=0

∫ 1

ρ=0
exp{j ∑ N

n=1cnZn(ρ, θ)}ρdρdθ

∣∣∣∣2 = I0 f
(→

c
)

(5)

where,
→
c = [c1 c2 . . . . . . cn]

T . f
(→

c
)

can be approximately expressed as follows due to
the orthogonality of the Zernike modes [25].

f
(→

c
)
≈ 1−

∣∣∣→c ∣∣∣2 (6)

From the above equation, we know that the global maximum can be obtained when
the coefficient

→
c is 0.

As a result, the SPGD algorithm aims at optimizing the parameter
→
c to attain a

minimum. Experiments are carried out according to the principle of the alignment method.

2.2. Transfer Functions of the Deformable Mirror Corresponding to Different Fields of View

For some telescopes, the large fields of view are obtained by scanning. For example,
to acquire a 3◦ field of view, a telescope with a 1◦ field of view should scan at least three
times. To solve this problem, a telescope with a wide field of view 3.2◦ is designed, which
can look at the 3◦ field of view without scanning. However, the image quality in off-axis
fields is poor, which cannot satisfy the requirement of resolutions. Therefore, a deformable
mirror is employed to correct the aberrations.

In this paper, experiments are carried out using a wide-field optical system, whose
entrance pupil is set at the deformable mirror with a tilted angle of 12.5◦. Thus, the
obscuration caused by the secondary mirror shifts with changes of fields of view, leading to
the various effective actuators corresponding to different fields of view. This is because the
voltages of actuators obscured by the secondary mirror are usually very large, which have
no sense for aberration correction and may introduce high order aberrations. Therefore, the
effective actuators must be calculated corresponding to the different fields of view. That
means the transfer functions of the deformable mirror for different fields of view are not
the same.

The telescope is a wide-field system with a field of view of Φ3.2◦. The positions of
obscuration are different with the changes of fields of view.

In Figure 1, wavefront maps corresponding to different fields of view between −1.6◦

and 1.6◦ are shown. The wavefront maps show that the image quality in the on-axis field
of view is good with 0.0029λ (λ = 0.55 µm) wavefront RMS. However, image qualities in
other fields of view become worse, especially the images in the edge fields of view. In
this paper, the aberrations are corrected using the deformable mirror. The figure indicates
that the obscuration centers of the wavefront maps change with the difference of fields of
view. To measure the offsets of obscuration accurately, edge check and circle fitting are
implemented. The results are shown in Table 1.
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Figure 1. Wavefront corresponding to different fields of view.

Table 1. Results of the circle fitting corresponding to wavefront in different fields of view.

Field cxout/mm cyout/mm cxin/mm cyin/mm Standard Deviation/mm

(0◦, −1.6◦) 18.58 18.47 18.58 20.88 2.41
(0◦, −1.2◦) 18.58 18.47 18.58 20.42 1.95
(0◦, −0.8◦) 18.58 18.47 18.58 19.77 1.30

(0◦, 0◦) 18.58 18.47 18.58 18.45 0.02
(0◦, 0.8◦) 18.58 18.47 18.58 17.13 1.34
(0◦, 1.2◦) 18.58 18.47 18.58 16.48 1.99
(0◦, 1.6◦) 18.58 18.47 18.58 16.09 2.38

In Table 1, (cxout, cyout) is the center of the exit pupil, while (cxin, cyin) is the center of
the obscuration caused by the secondary mirror. Positions of the obscuration are different
with the changes of fields of view. The effective actuators corresponding to different fields of
view are not the same. As a result, there are various transfer functions related to the different
fields of view. Thus, the aberrations may not be corrected precisely when aberrations are
corrected in the off-axis fields of view using the transfer function corresponding to the
on-axis field of view. To analyze the effect of transfer function changes, simulations are
implemented. Three kinds of misalignments with different aberrations are given based on
the Zernike polynomial, and the different Zernike coefficients are shown in Table 2.

Table 2. Zernike coefficients corresponding to three misalignments.

Zernike Order Z4/λ Z5/λ Z6/λ Z7/λ Z8/λ Z11/λ

Misalignment 1 1 1 −1 −1 1 1
Misalignment 2 0.3 −0.2 0.8 0.1 −0.6 −0.5
Misalignment 3 −0.1 0.4 −0.5 0.2 0.3 −0.2

Here, the defocus aberration (Z4), the astigmatism aberrations (Z5) and (Z6), the
coma aberrations (Z7) and (Z8), and the spherical aberration (Z11) are given. Three
misalignments are simulated.

The aberrations cannot be corrected precisely if the transfer functions of the de-
formable mirror do not match with the fields of view. The root mean square (rms) of
the residual wavefront error is calculated after aberrations are corrected using transfer
functions corresponding to different fields of view. The corrected results are compared in
Figure 2.
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Figure 2. The residual wavefront errors after aberration correction using different transfer functions.

Figure 2 shows the residual wavefront aberrations corresponding to misalignments 1,
2, and 3 in different fields of view when the aberrations are corrected using the transfer
functions of the deformable mirror in fields of view (0◦, −1.2◦), (0◦,0◦), and (0◦, 1.2◦). The
image in the first column in Figure 2 shows the residual wavefront aberrations using the
transfer function in the field of view (0◦, −1.2◦). The results show that the aberrations in
field of view (0◦, −1.2◦) are well corrected, with residual wavefront errors as 0.0425λ for
misalignment 1, 0.0126λ for misalignment 2, and 0.0048λ for misalignment 3. However,
aberrations in other fields of view are not well compensated. The second column and the
third column show the residual aberrations corresponding to different fields of view when
the aberrations are corrected using the transfer functions of the deformable mirror in fields
of view (0◦, 0◦) and (0◦, 1.2◦). The results show that aberrations can be well corrected when
the transfer function corresponding to the field of view is used, and the aberrations remain
large when the transfer functions do not match with the fields of view. This is because the
effective actuators of the deformable mirror are not selected correctly. The large residual
wavefront error is caused by the actuators which should not work or need to work but did
not in the effective region of the field of view.

To solve this problem, the edge check results of the wavefront at the position of the
exit pupil are used to calculate the transfer functions of the deformable mirror to match
with different fields of view. The aberrations are also corrected using the effective transfer
functions chosen by the corresponding fields of view. The results are shown in Figure 3.

Figure 3 shows the aberration corrected results using the transfer functions corre-
sponding to each field of view in the condition of three kinds of misalignments. That
means, for aberrations correction in the field (0◦, −1.6◦), the transfer function of the de-
formable mirror is calculated according to the exit pupil in the field (0◦, −1.6◦), and for
aberrations correction in the field (0◦, 1.6◦), the transfer function of the deformable mirror
is calculated according to the exit pupil in the field (0◦, 1.6◦). In this case, the residual wave-
front errors corresponding to different fields of view for three kinds of misalignments are
less than 0.05λ, indicating that the aberrations are well compensated when the right transfer
functions matching with the fields of view are used. As a result, the transfer functions of
the deformable mirror should be employed according to different fields of view.
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The second mirror is supported by trusses which are evenly distributed. As a result,
the exit pupil in conjugate position contains the shadow of trusses. The voltages calculated
based on the transfer functions of the deformable mirror may exist large numbers in
the position of the edge and trusses. To solve this problem, a threshold is set to filtrate
the voltages.

As shown in Figure 4, the transfer functions of the deformable mirror are calculated
with the following processes. Firstly, the transfer function in the on-axis field of view which
can also be the called response matrix of the deformable mirror should be measured using
the auto-collimation method or wavefront sensor method. If the wavefront sensor method
is used, a parallel light source and a wavefront sensor with a collimating system as well as
a down-collimator should be used. Moreover, the collimating system should be aligned
first. However, the auto-collimation method only requires an interferometer and a flat
mirror. As a result, the transfer function is measured by the auto-collimation method with
a 4D interferometer in this paper. Secondly, the fields of view are determined according to
the centroid positions of the images obtained on the detector. Because the telescope is a
system with a wide field of view, images in both on-axis and off-axis fields of view should
be corrected. As the figure shows, the image quality in different fields of view is corrected.
Thirdly, the effective actuators corresponding to different fields of view are chosen using
the wavefront edge check. The effective actuators are different for the reason that positions
of the obscuration caused by the secondary mirror become various with the changes of
fields of view. The actuators in the shadow range should not be used when the aberrations
are corrected. Then, the transfer functions corresponding to different fields of view should
be generated according to the effective actuators. Finally, the telescope is aligned using the
model-based method combined with the SPGD algorithm.
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3. Experiments

In this paper, a telescope with a wide field of view 3.2◦ is employed. The F# is 13.6,
and the effective optical aperture is 60 mm to avoid the effect of atmosphere turbulence. To
correct the aberrations in different fields of view, a deformable mirror with 357 actuators
is employed. The aberrations caused by the deformable mirror are calibrated, and flat
voltages which can compensate for the aberrations of deformable mirror are calculated.
To acquire high resolution images in both the on-axis field and the off-axis fields, several
fields of view are corrected. In this paper, four correction examples are given.

3.1. Experiment System

For the model-based optimization method, the control variables are coefficients of the
Zernike modes. The experiment system and correction processes are shown in Figure 5.

The experiment system includes a deformable mirror, a primary mirror, and a sec-
ondary mirror. The deformable mirror is the entrance pupil, which can change the surface
morphology using the actuators controlled by the DM controller. The model-based method
combined with the SPGD algorithm is introduced in this figure. The image of the optical
system is acquired by the detector, of which the merit function (J) is calculated. If the
merit function satisfies the image quality requirement, the telescope alignment is finished.
Otherwise, the model-based method will be carried out to correct the aberrations. The
variables of the alignment process are Zernike coefficients (Z = [z1, z2, . . . . . . , zN]) and N
stands for the items of the Zernike modes. In this paper, 37 Zernike items are calculated,
which means N is equal to 37. M is the response matrix of the deformable mirror, which
can be calculated according to the method described in Section 2.2. U is the voltages of the
deformable mirror actuators, which can be expressed as U = [u1, u2, . . . . . . , um]. Here, m is
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the number of actuators. In this paper, a deformable mirror with 357 actuators is used, so m
is equal to 357. Then, each Zernike coefficient is disturbed by a small stochastic disturbance
δz, and the merit function is calculated after each disturbance until all the Zernike modes
are optimized. To improve the accuracy of the estimations, binary-side perturbation is
used. The new Zernike coefficients are calculated by the iterative formula zn = zn − γδJδz.
After all the Zernike coefficients are optimized, the new voltages of the deformable mirror
corresponding to different actuators are calculated by equation U = M*Z. The surface
morphology of the deformable mirror changes when the voltages U are updated. These
processes should be repeated until the image quality obtained by the detector satisfies
the criterion.
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To match the resolution of the optical system, a splicing screen with sixteen computer
monitors arranged in a 4× 4 pattern is employed. The resolution of each computer monitor
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is 3840 pixels × 2160 pixels, and the size of each pixel is 0.15 mm, satisfying the resolution
demands of the optical system and the detection system. The point sources are simulated
using monitors with 4 K resolution positioned 25 m away from the optical system. Because
the brightness of the monitors is not enough, the images obtained by the detector are
badly affected by noise. For this reason, strehl ratio is used as the merit function. In the
experiments, four targets with aberrations are corrected. The target distribution is shown
in Figure 6.
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As shown in the figure, the red rectangles are four effective field areas. The red points
are the targets, according to which the aberrations should be compensated. The other white
points are the images in the adjacent fields of view. The point targets are displayed with
computer monitors whose intensities are not very strong and the distance between the
objects and the optical system is 25 m, which is too far to be detected. Also, the stray light
from the environment is strong. As a result, the images acquired by the detector have a
high level of noise. To correct the aberrations of the optical system using the model-based
SPGD algorithm, firstly, the noise images should be preprocessed. Secondly, to avoid the
effect of noise on the convergence speed and stability, the strehl ratio should be used as the
merit function.

3.2. Experiment Results

In this paper, the normalized strehl ratio is employed as the merit function to decrease
the effect of the noise. For different fields of view, the convergence curves are shown in
Figure 7.

As can be seen from Figure 7, the alignment processes for different fields of view
converge after 30 to 50 iterations and the normalized strehl ratio settles above 0.9. The speed
of convergence depends on the parameters of the SPGD algorithm, such as disturbance,
gain, merit functions, and so on.

The radius and the root mean square radius (RMS) of the far field images are also
calculated to analyze the image quality. The RMS is defined by the following equation [26].

RMS =

s √
(x− x0)

2 + (y− y0)
2 I(x, y)dxdy

s
I(x, y)dxdy

(7)

x0 =

s
x · I(x, y)dxdys

I(x, y)dxdy
, y0 =

s
y · I(x, y)dxdys

I(x, y)dxdy
(8)

where, (x,y) are the coordinates of the images. I(x,y) is the intensity, and (x0, y0) are the
centroids of images.
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Three targets in each field of view are calculated. The targets in red boxes are the
objects according to which aberrations are corrected, while the targets in blue boxes are the
objects in the adjacent fields of view. The root mean square radius (RMS) and the radius of
the misaligned images and corrected images are shown in Table 3.

Table 3. Root mean square radius (RMS) and radius of misaligned and corrected images.

RMS

Field
Object 1 Object 2 Object 3

Misaligned
Images

Corrected
Images

Misaligned
Images

Corrected
Images

Misaligned
Images

Corrected
Images

1 0.2123 0.1217 0.1961 0.0926 0.2301 0.0810
2 0.2311 0.0667 0.1822 0.0823 0.1917 0.0936
3 0.2554 0.1082 0.2796 0.0997 0.2632 0.0994
4 0.2643 0.0834 0.3646 0.0888 0.3232 0.0839

Radius/pixels

Field
Object 1 Object 2 Object 3

Misaligned
Images

Corrected
Images

Misaligned
Images

Corrected
Images

Misaligned
Images

Corrected
Images

1 9 5 9 4 11 3
2 11 3 7 3 9 4
3 14 4 17 4 18 4
4 14 3 18 3 16 3

As can be seen from the results, the aberrations are well corrected using the model-
based SPGD algorithm. Both the RMS and radius of spots are decreased. The image quality
after correction satisfies the requirement with residual wavefront errors less than 0.1λ.
Furthermore, not only are the aberrations in the corrected field of view well compensated,
but also the aberrations in the neighbor fields of view are corrected. This is because these
fields of view are in the isoplanatic region.

4. Conclusions

For wide field of view telescopes, the aberrations in both on-axis field and off-axis
fields should be corrected. This paper focuses on two problems of the telescope alignment.
One problem is the position of the obscuration caused by the secondary mirror changes
with different fields of view, making the transfer functions of the deformable mirror change
with the fields of view. The other problem is that the deformable mirror has more than
100 actuators, making the alignment process more complex and time-consuming.

To solve the first problem, the transfer functions corresponding to different fields of
view are calculated according to the wavefront edge check at the position of the exit pupil.
To solve the second problem, a model-based method combined with the SPGD algorithm
is used to correct the aberrations to improve the convergence efficiency. The experiment
results show that the aberrations are well compensated whether the images are in the
on-axis field or in the off-axis fields, verifying that the effective actuators are well chosen
corresponding to different fields of view and the showing the feasibility of our method.
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