High-Peak Power Frequency Modulation Pulse Generation in Cascaded Fiber Configurations with Inscribed Fiber Bragg Grating Arrays
Abstract
:1. Introduction
2. Fibers with Inscribed FBG Arrays
3. Soliton-Like FM Pulse Temporal Compression in Fibers with Inscribed FBGs
4. Amplification and Temporal Compression of FM Pulses in a Cascade of Active and Passive Fibers
5. Generation of High Repetition Rate Trains of Soliton-Like Pulses
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Geddes, C.G.R.; Toth, C.; Van Tilborg, J.J.; Esarey, E.; Schroeder, C.; Bruhwiler, D.; Nieter, C.; Cary, J.; Leemans, W.P. High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nat. Cell Biol. 2004, 431, 538–541. [Google Scholar] [CrossRef]
- Veisz, L.; Schmid, K.; Tavella, F.; Benavides, S.; Tautz, R.; Herrmann, D.; Buck, A.; Hidding, B.; Marcinkevičius, A.; Schramm, U.; et al. Laser-driven electron acceleration in plasmas with few-cycle pulses. Comptes. Rendus. Phys. 2009, 10, 140–147. [Google Scholar] [CrossRef]
- Buck, A.; Wenz, J.; Xu, J.; Khrennikov, K.; Schmid, K.; Heigoldt, M.; Mikhailova, J.M.; Geissler, M.; Shen, B.; Krausz, F.; et al. Shock-Front Injector for High-Quality Laser-Plasma Acceleration. Phys. Rev. Lett. 2013, 110, 185006. [Google Scholar] [CrossRef] [PubMed]
- Caldwell, A.; Lotov, K.; Pukhov, A.; Simon, F. Proton-driven plasma-wakefield acceleration. Nat. Phys. 2009, 5, 363–367. [Google Scholar] [CrossRef] [Green Version]
- Renninger, W.H.; Wise, F.W. Optical solitons in graded-index multimode fibres. Nat. Commun. 2013, 4, 1719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krupa, K.; Tonello, A.; Barthélémy, A.; Couderc, V.; Shalaby, B.M.; Bendahmane, A.; Millot, G.; Wabnitz, S. Observation of geometric parametric instability induced by the periodic spatial self-imaging of multimode waves. Phys. Rev. Lett. 2016, 116, 183901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krupa, K.; Tonello, A.; Shalaby, B.M.; Fabert, M.; Barthélémy, A.; Millot, G.; Wabnitz, S.; Couderc, V. Spatial beam self-cleaning in multimode fibres. Nat. Photonics 2017, 11, 237. [Google Scholar] [CrossRef] [Green Version]
- Ahsan, A.S.; Agrawal, G.P. Graded-index solitons in multimode fibers. Opt. Lett. 2018, 43, 3345–3348. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, G.P. Invite paper: Self-imaging in multimode graded-index fibers and its impact on the nonlinear phenomena. Opt. Fiber Technol. 2019, 50, 309–316. [Google Scholar] [CrossRef]
- Filippov, V.; Chamorovskii, Y.; Kerttula, J.; Golant, K.; Pessa, M.; Okhotnikov, O.G. Double clad tapered fiber for high power applications. Opt. Express 2008, 16, 1929–1944. [Google Scholar] [CrossRef]
- Trikshev, A.I.; Kurkov, A.S.; Tsvetkov, V.B.; Filatova, S.A.; Kertulla, J.; Filippov, V.; Chamorovskiy, Y.K.; Okhotnikov, O.G. A 160 W single-frequency laser based on an active tapered double-clad fiber amplifier. Laser Phys. Lett. 2013, 10, 065101. [Google Scholar] [CrossRef]
- Andrianov, A.V.; Koptev, M.Y.; Anashkina, E.; Murav’Ev, S.V.; Kim, A.V.; Lipatov, D.S.; Velmiskin, V.; Levchenko, A.E.; Bubnov, M.M.; Likhachev, M.E. Tapered erbium-doped fibre laser system delivering 10 MW of peak power. Quantum Electron. 2019, 49, 1093–1099. [Google Scholar] [CrossRef]
- Kuznetsov, A.G.; Kharenko, D.S.; Babin, S.A. Amplification of dissipative solitons with a polarisation-maintaining tapered fibre amplifier. Quantum Electron. 2018, 48, 1105–1108. [Google Scholar] [CrossRef]
- Dong, L.; Peng, X.; Li, J. Leakage channel optical fibers with large effective area. J. Opt. Soc. Am. B 2007, 24, 1689–1697. [Google Scholar] [CrossRef]
- Kivshar, Y.S.; Agrawal, G.P. Optical Solitons: From Fibers to Photonic Crystals; Academic Press: New York, NY, USA, 2003; p. 125. [Google Scholar]
- Agrawal, G.P. Nonlinear Fiber Optics, 4th ed.; Springer: New York, NY, USA, 2007; p. 530. [Google Scholar]
- Litchinitser, N.; Eggleton, B.; Patterson, D. Fiber Bragg gratings for dispersion compensation in transmission: Theoretical model and design criteria for nearly ideal pulse recompression. J. Light. Technol. 1997, 15, 1303–1313. [Google Scholar] [CrossRef] [Green Version]
- Lenz, G.; Eggleton, B.J. Adiabatic Bragg soliton compression in nonuniform grating structures. J. Opt. Soc. Am. B 1998, 15, 2979–2985. [Google Scholar] [CrossRef]
- Lenz, G.; Eggleton, B.J.; Litchinitser, N. Pulse compression using fiber gratings as highly dispersive nonlinear elements. J. Opt. Soc. Am. B 1998, 15, 715–721. [Google Scholar] [CrossRef]
- Qian, L.; Senthilnathan, K.; Nakkeeran, K.; Wai, P.K.A. Nearly chirp and pedestal free pulse compression in nonlinear fiber Bragg gratings. J. Opt. Soc. Am. B 2009, 26, 432–443. [Google Scholar]
- Qui, L.; Wai, P.K.A.; Senthilnathan, K.; Nakkeeran, K. Modeling self-similar optical pulse compression in nonlinearfiber bragg grating using coupled mode equation. J. Lightwave Technol. 2011, 29, 1293–1305. [Google Scholar]
- Vasil’Ev, S.A.; Medvedkov, O.I.; Korolev, I.G.; Bozhkov, A.S.; Kurkov, A.S.; Dianov, E.M. Fibre gratings and their applications. Quantum Electron. 2005, 35, 1085–1103. [Google Scholar] [CrossRef]
- Kablukov, S.I.; Zlobina, E.A.; Skvortsov, M.I.; Nemov, I.N.; Wolf, A.; Dostovalov, A.V.; Babin, S.A. Mode selection in a directly diode-pumped Raman fibre laser using FBGs in a graded-index multimode fibre. Quantum Electron. 2016, 46, 1106–1109. [Google Scholar] [CrossRef]
- Zlobina, E.A.; Kablukov, S.; Wolf, A.; Dostovalov, A.V.; Babin, S.A. Nearly single-mode Raman lasing at 954 nm in a graded-index fiber directly pumped by a multimode laser diode. Opt. Lett. 2016, 42, 9–12. [Google Scholar] [CrossRef] [PubMed]
- Zlobina, E.A.; Kablukov, S.; Skvortsov, M.I.; Nemov, I.N.; Babin, S.A. 954 nm Raman fiber laser with multimode laser diode pumping. Laser Phys. Lett. 2016, 13, 035102. [Google Scholar] [CrossRef]
- Wolf, A.A.; Dostovalov, A.V.; Wabnitz, S.; Babin, S.A. Femtosecond writing of refractive index structures in multimode and multicore optical fibres. Quantum Electron. 2018, 48, 1128–1131. [Google Scholar] [CrossRef]
- Wolf, A.; Dostovalov, A.; Bronnikov, K.; Babin, S. Arrays of fiber Bragg gratings selectively inscribed in different cores of 7-core spun optical fiber by IR femtosecond laser pulses. Opt. Express 2019, 27, 13978–13990. [Google Scholar] [CrossRef]
- Mizunami, T.; Djambova, T.; Niiho, T.; Gupta, S. Bragg gratings in multimode and few-mode optical fibers. J. Light. Technol. 2000, 18, 230–235. [Google Scholar] [CrossRef]
- Sang, X.; Yu, C.; Yan, B. Bragg gratings in multimode optical fibers and their applications. J. Optoelectron. Adv. Mater. 2006, 8, 1616. [Google Scholar]
- Liu, Y.; Lit, J.; Gu, X.; Wei, L. Fiber comb filters based on UV-writing Bragg gratings in graded-index multimode fibers. Opt. Express 2005, 13, 8508–8513. [Google Scholar] [CrossRef] [Green Version]
- Kashyap, R. Fiber Bragg Gratings; Academic Press: Cambridge, MA, USA, 1999. [Google Scholar]
- Kurkov, A.S.; Grukh, D.A.; Medvedkov, O.I.; Paramonov, V.M.; Dianov, E.M.; Yashkov, M.V.; Vechkanov, N.I.; Guryanov, A.N. Multimode fiber lasers based on Bragg gratings and double-clad Yb-doped fibers. Laser Phys. Lett. 2004, 1, 473–475. [Google Scholar] [CrossRef]
- Jha, R.; Villatoro, J.; Badenes, G. Ultrastable in reflection photonic crystal fiber modal interferometerfor accurate refractive index sensing. Appl. Phys. Lett. 2008, 93, 191106. [Google Scholar] [CrossRef]
- Okawara, C.; Saijyou, K. Fiber optic interferometric hydrophone using fiber Bragg grating with wavelength division multiplexing. Acoust. Sci. Technol. 2008, 29, 232–234. [Google Scholar] [CrossRef] [Green Version]
- Cusano, A.; Cutolo, A.; Albert, J. (Eds.) Fiber Bragg Grating Sensors: Recent Advancements. In Industrial Applications and Market Exploitation; Bentham Science Publishers: Beijing, China, 2011. [Google Scholar]
- Medvedkov, O.I.; Vasiliev, S.A.; Gnusin, P.I.; Dianov, E.M. Photosensitivity of optical fibers with extremely high germanium concentration. Opt. Mater. Express 2012, 2, 1478–1489. [Google Scholar] [CrossRef]
- Leal-Juniora, A.G.; Díaza, C.A.R.; Frizeraa, A.C.; Anselmo, F.; Marquesb, C.; Ribeiroa, M.R.N.; José Pontes, M. Simultaneous measurement of pressure and temperature with a single FBG embedded in a polymer diaphragm. Opt. Laser Technol. 2019, 112, 77–84. [Google Scholar] [CrossRef]
- Allsop, T.; Mou, C.; Neal, R.; Kundrát, V.; Wang, C.; Kalli, K.; Webb, D.; Liu, X.; Davey, P.; Culverhouse, P.; et al. Generation of a Conjoint Surface Plasmon by an Infrared Nano-Antenna Array. Adv. Photonics Res. 2021, 2, 2000003. [Google Scholar] [CrossRef]
- Eggleton, B.J.; Slusher, R.E.; de Sterke, C.M.; Krug, P.A.; Sipe, J.E. Bragg Grating Solitons. Phys. Rev. Lett. 1996, 76, 1627–1630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eggleton, B.; de Sterke, C.; Aceves, A.; Sipe, J.; Strasser, T.; Slusher, R. Modulational instability and tunable multiple soliton generation in apodized fiber gratings. Opt. Commun. 1998, 149, 267–271. [Google Scholar] [CrossRef]
- Serkin, V.N.; Hasegawa, A. Novel Soliton Solutions of the Nonlinear Schrödinger Equation Model. Phys. Rev. Lett. 2000, 85, 4502–4505. [Google Scholar] [CrossRef]
- Melchor, G.M.; Granados, M.A.; Corro, G.H. On the problem of ideal amplification of optical solitons. Quantum Electron. 2002, 32, 1020–1028. [Google Scholar] [CrossRef]
- Korobko, D.A.; Okhotnikov, O.G.; Zolotovskii, I.O. High-repetition-rate pulse generation and compression in dispersion decreasing fibers. JOSA B 2013, 30, 2377–2386. [Google Scholar] [CrossRef]
- Korobko, D.A.; Okhotnikov, O.G.; Stoliarov, D.A.; Sysoliatin, A.A.; Zolotovskii, I.O. Highly Nonlinear Dispersion Increasing Fiber for Femtosecond Pulse Generation. J. Light. Technol. 2015, 33, 3643–3648. [Google Scholar] [CrossRef]
- Dostovalov, A.; Wolf, A.; Parygin, A.; Zyubin, V.; Babin, S. Femtosecond point-by-point inscription of Bragg gratings by drawing a coated fiber through ferrule. Opt. Express 2016, 24, 16232–16237. [Google Scholar] [CrossRef] [PubMed]
Cascade Element | Length | Nonlinearity | Dispersion | Dispersion | Gain |
---|---|---|---|---|---|
DDF fiber | 1370 | 0.001 | 0 | ||
FBG fiber 1 | 0.3 | 0.001 | 6 | ||
FBG fiber 2 | 0.3 | 0.001 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abramov, A.; Zolotovskii, I.; Kamynin, V.; Prikhodko, V.; Tregubov, A.; Stoliarov, D.; Yavtushenko, M.; Fotiadi, A. High-Peak Power Frequency Modulation Pulse Generation in Cascaded Fiber Configurations with Inscribed Fiber Bragg Grating Arrays. Photonics 2021, 8, 471. https://doi.org/10.3390/photonics8110471
Abramov A, Zolotovskii I, Kamynin V, Prikhodko V, Tregubov A, Stoliarov D, Yavtushenko M, Fotiadi A. High-Peak Power Frequency Modulation Pulse Generation in Cascaded Fiber Configurations with Inscribed Fiber Bragg Grating Arrays. Photonics. 2021; 8(11):471. https://doi.org/10.3390/photonics8110471
Chicago/Turabian StyleAbramov, Aleksei, Igor Zolotovskii, Vladimir Kamynin, Victor Prikhodko, Aleksei Tregubov, Dmitrii Stoliarov, Marina Yavtushenko, and Andrei Fotiadi. 2021. "High-Peak Power Frequency Modulation Pulse Generation in Cascaded Fiber Configurations with Inscribed Fiber Bragg Grating Arrays" Photonics 8, no. 11: 471. https://doi.org/10.3390/photonics8110471
APA StyleAbramov, A., Zolotovskii, I., Kamynin, V., Prikhodko, V., Tregubov, A., Stoliarov, D., Yavtushenko, M., & Fotiadi, A. (2021). High-Peak Power Frequency Modulation Pulse Generation in Cascaded Fiber Configurations with Inscribed Fiber Bragg Grating Arrays. Photonics, 8(11), 471. https://doi.org/10.3390/photonics8110471