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Abstract: Peripheral retinal imaging is a unique approach for assessing and monitoring ocular
diseases. In this paper, we proposed a design for an optical coherence tomography system to
accomplish ultrawide field (>120◦) retinal imaging without montages. Scanning of the sample arm
was achieved via two ellipsoidal mirrors. The optical design software Zemax and an eye model
were used to estimate the inherent aberrations in the system and the optical performance of retinal
imaging. Simulation results of the aberrations in the designed system indicated that the designed
system can achieve an unprecedented imaging field of view (FOV) while maintaining acceptable
resolution without sacrificing the working distance. This work suggests that ultrawide field optical
coherence tomography retinal imaging is achievable, which is highly important for the diagnosis and
treatment of ocular—especially peripheral—retinopathy.

Keywords: ultra-wide field; optical coherence tomography; retinal imaging system

1. Introduction

Optical coherence tomography (OCT) is a biomedical optical imaging technology
developed in the 1990s [1]. Based on the principle of low coherence interference, this
technique allows high-resolution depth information to be obtained. Due to the transparency
of the eye, ophthalmological applications, especially retinal imaging, were not only the
earliest but are also the most successful clinical applications [2]. Although OCT imaging
technology has been widely used in ophthalmology, it is used mainly to visualize the
central area of the retina and rarely used to visualize the peripheral area of the retina.

In fact, many vision-threatening pathologies, including retinal tears, holes, detach-
ments, etc., occur in the peripheral retina [3], and the development of some central ocular
diseases (such as diabetic retinopathy) is closely related to the state of the peripheral
retina [4]. However, only a few existing OCT techniques can successfully achieve high-
quality imaging of the peripheral retina. Currently, the field of view (FOV) of commercial
OCT imaging equipment is generally in the range of 30~55◦. Wide field OCT imaging
technology has only recently attracted people’s attention. The most typical method used for
wide field retinal imaging is the montage method. In 2011, the first work on the montage
of an OCT dataset was presented [5]; images with an FOV of 50◦ × 35◦ were obtained.
Since that study, many stitched OCT techniques have appeared sequentially [6–8]. Based
on this method, ultrawide field (up to 200◦) OCT retinal images are currently available [8].
However, this method has considerable limitations. First, it can be performed only by
experienced physicians. Second, the rotation of the steering head or patient limits the
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range and speed of imaging. Third, image processing is time-consuming, and the image
quality depends on the accuracy of registration. In general, the registration error of large
FOV stitching is 45–60 µm [5]. In 2011, Huber et al. achieved 70◦ ultrawide field retinal
imaging in a single shot using a doublet similar to a Plössl eyepiece design in the sample
arm [9]. Due to the limitation of the optical power of the lens, the FOV was greatly limited
such that the maximum FOV was approximately 70◦. In addition, because of the inherent
optical properties of the spherical lens, the aberration at the edge of the image was very
large. Later, a research group used the Volk Super Pupil XL commercial fundus lens as the
eyepiece in the sample arm and accomplished 100◦ ultrawide field retinal imaging [10].
The main defect in this scheme was that the working distance was very small (4–5 mm),
which causes the patient great discomfort. Recently, Izatt et al. added adaptive optics (AO)
to a wide field retinal OCT system [11], thereby improving the quality of the obtained OCT
images. However, addition of an AO system greatly increases the cost and sampling time
of the system. Moreover, the imaging FOV is also limited by the design of the eyepieces. In
laser fundus imaging technology, a design based on an ellipsoidal scanning structure was
adopted to obtain fundus images with an ultrawide FOV [12].

In this paper, we proposed a design of an OCT system (mainly the sample arm)
based on two ellipsoidal mirrors and carried out a simulation with the optical design
software Zemax. In addition, based on an eye model, the aberration in the designed system
was compared with that in the conventional system. The designed system accomplished
ultrawide field retinal imaging over a span of greater than 110◦ in the vertical direction and
200◦ in the horizontal direction. Moreover, this system overcame the problem of severe
aberration without reducing the working distance.

2. Design of the Ultrawide Field OCT Retinal Imaging System
2.1. Definition of the FOV

Currently, there is no clear definition of the FOV of an OCT imaging system. Here,
we provide a general reference for the FOV of a point scanning OCT system. Generally, a
point scanning system includes a scanning device based on a mechanical rotating reflector,
such as a galvanometer. When light beams at different angles enter the eye, the center rays
of all scanning beams pass through a common point (see Figure 1, point “P”), which can
be called the pivot point [10]. Considering the limitation of the pupil size of the eye and
maximization of the scanning range, the pivot point in the OCT system is usually located
at the pupil or node point of the eye. Therefore, when comparing the imaging range of
OCT systems, it is important to determine the location of the pivot point. For the same
incidence angle, the actual imaging range is larger when the pivot point is located at the
pupil than at the node point.
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Figure 1. Schematic illustrating the definition of the FOV for the point scanning OCT system.

The angle between the most marginal imaging beams is defined as the FOV of a
traditional fundus camera [13], which is essentially consistent with that of OCT systems.
In 1926, the Carl Zeiss company produced the first commercially available fundus camera
with a 20◦ FOV. Later, they standardized 30◦ as the “normal” FOV of the fundus camera.
Subsequently, an imaging angle greater than this standard was defined as “wide field” or
“wide angle”. This definition can also be applied to OCT; in 2015, a study by the Diabetic
Retinopathy Clinical Research Network clearly defined that an FOV of greater than 100◦ in
a fundus photograph was called an “ultrawide field” [14].
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2.2. Resolution of the OCT System

OCT provides depth-resolved information of the sample based on coherence gat-
ing; its axial resolution is decoupled from its lateral resolution. The axial resolution of
OCT is primarily determined by the bandwidth of the light source, as illustrated by the
following equation:

∆L = (2ln(2)/π) · (λc
2/∆λ) (1)

where λc and ∆λ are the central wavelength and the optical bandwidth of the source,
respectively [15].

The lateral resolution depends on the wavelength (λ) and beam size (d) as well as the
objective’s focal length (f) and can be given as shown below:

∆d = 4λf/πd (2)

A high axial resolution can be guaranteed by selecting a light source with a wide
bandwidth. Therefore, we mainly discuss the lateral resolution of the system. Next, we
present the design of the ultrawide field OCT retinal imaging system and a lateral resolution
analysis of the system through Zemax simulation.

2.3. System Design

The design of the sample arm is the main concern because the sample arm is the
determinant of an ultrawide FOV. The rest of the system can be configured similar to a
conventional OCT system, as shown in Figure 2.
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Figure 2. Configuration diagram of the SD OCT system. BLS: broadband light source, C: coupler, CL:
collimator lens, DCE: dispersion compensation element, M: mirror, L: lens, OG: optical grating, D:
detector, CP: computer.

A schematic diagram of the designed sample arm is shown in Figure 3. The key
elements are two ellipsoidal mirrors with appropriate focal lengths and relative positions.
Considering the working distance and the physiological structure of the human body, the
two ellipsoid formulas for ellipsoidal mirrors no. 1 and no. 2 were selected as follows:

(x2/2002) + (y2/195.62) = 1 (3)

(x2/2082) + (y2/1732) = 1 (4)

The scanning system in sample arm is presented in Figure 3, where the long axes of
the two ellipsoidal mirrors are collinear. The first focal point of ellipsoidal mirror no. 2 (F3)
was located at the second focal point of ellipsoidal mirror no. 1 (F2). The two scanning
galvanometer were located at F1 and F2/F3. The eye was positioned at the second focal
point of ellipsoidal mirror no. 2 (F4). The parallel beams from the collimator first passed
through a coupling lens (“Lens” in Figure 3), which had a focal length of 200 mm and
was located 148.151 mm from F1. Then, the beams were reflected sequentially by rotating
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mirror no. 1, ellipsoidal mirror no. 1, rotating mirror no. 2 and ellipsoidal mirror no. 2.
Finally, the beams entered the eye in parallel and were focused on the retina. When the
rotating mirrors were scanning, ultrawide field retinal imaging was achieved. Ray tracing
(as shown in Figure 3) showed that this system can generate a retinal image with an FOV
of up to 110◦ in the vertical direction (upper to lower). Scanning of rotating mirror no. 2
performed imaging in the horizontal direction (nasal to temporal). If the scanning angle of
the rotating mirror is large enough, the horizontal imaging range can cover up to 200◦ (not
shown in Figure 3). In addition, the system does not require pupil dilation.
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Figure 3. Design diagram of the sample arm.

3. Simulation Methods

The optical design software Zemax was used to perform optical simulations for the
designed system. The incident spot diameter was set to 25.75 mm. Three wavelengths,
760 nm, 860 nm and 960 nm, were selected as the working wavelengths. An eye model
presented by the Izatt group in 2015 [16] was selected. Only an ideal lens with a focal
length of 16.05 mm (the focal length of the eye) was used to study the inherent aberrations
in the system. Since the eye model cannot be applied in reverse, the total aberration in the
retinal imaging system was evaluated by using the ideal lens and wavefront differences
(Zernike standard coefficients) generated from the eye model. The input parameters of the
Lens Data Editor in Zemax are shown in Supplementary Materials. Figure 4 shows the 3D
layout and shaded model (in the vertical shaded model, only beams in the central FOV are
displayed to avoid occlusion).
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4. Results and Comparison
4.1. Inherent Aberration in the System

As mentioned before, an ideal lens with the aberration of eye instead of the eye
structure was used to study the inherent aberration in the system. The pupil diameter of
the eye was set to 4 mm. The spot sizes of the designed system in the vertical direction are
shown in Figure 5. The spot diameter in the designed system does not change with the
FOV in the horizontal direction. Figure 6 shows the variation curves of the spot diameter
with the FOV according to the obtained data.
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As showed in Figures 5 and 6, in the vertical direction the spot size of the designed
system increased with the FOV and stay within 20 µm within a 120-degree field of view.
Due to the ellipsoidal imaging, the spot size in the horizontal direction remained constant
(12.871 µm) as the FOV changed.

In the designed system, the spot size in the central region was approximately 12.871 µm.
The main advantage of the designed system was that it could achieve an ultrawide field
that could not be achieved by the conventional system; in addition, the inherent aberration
in the designed system can be guaranteed to be relatively small for all FOVs. The Zernike
standard coefficients and wavefront maps of the designed system in the central FOV and
the edge FOVs (±55◦ in the vertical direction) are shown in Table 1 and Figure 7. The data
in Table 1 indicate that defocus, 45◦ astigmatism and vertical coma were also the main
aberrations in this system. During the design process, the defocus aberration in the central
FOV was minimized. Therefore, the defocus values for the edge FOVs, especially the −55◦

FOV, were larger than those for the central FOV. In the central FOV, the resolution was
affected mainly by the vertical coma, consistent with the imaging characteristics of the
ellipsoidal mirror. The wavefront maps in Figure 7 intuitively show that the wavefronts in
the edge FOVs were comparable to that in the central FOV in the designed system. This
designed system sacrificed the resolution in the central FOV but increased the FOV by 57%.
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Table 1. Zernike standard coefficients in the designed system.

Order
Zernike Standard Coefficients/Waves

Aberration Meaning
−55◦ 0◦ +55◦

4 −0.85054148 −0.03969461 −0.12081888 Defocus
5 0.00000000 0.00000000 0.00000000 Oblique astigmatism
6 −0.02730028 −0.00247943 −0.00020895 45◦ astigmatism
7 0.08704811 0.08029944 0.02916162 Vertical coma
8 0.00000000 0.00000000 0.00000000 Horizontal coma
9 −0.00087236 −0.00002330 −0.00000153 Tilted trefoil

10 0.00000000 0.00000000 0.00000000 Horizontal trefoil

Photonics 2021, 8, x FOR PEER REVIEW 6 of 10 
 

 

As showed in Figure 5 and Figure 6, in the vertical direction the spot size of the de-

signed system increased with the FOV and stay within 20 μm within a 120-degree field of 

view. Due to the ellipsoidal imaging, the spot size in the horizontal direction remained 

constant (12.871 μm) as the FOV changed. 

In the designed system, the spot size in the central region was approximately 12.871 

μm. The main advantage of the designed system was that it could achieve an ultrawide 

field that could not be achieved by the conventional system; in addition, the inherent ab-

erration in the designed system can be guaranteed to be relatively small for all FOVs. The 

Zernike standard coefficients and wavefront maps of the designed system in the central 

FOV and the edge FOVs (±55° in the vertical direction) are shown in Table 1 and Figure 7. 

The data in Table 1 indicate that defocus, 45° astigmatism and vertical coma were also the 

main aberrations in this system. During the design process, the defocus aberration in the 

central FOV was minimized. Therefore, the defocus values for the edge FOVs, especially 

the −55° FOV, were larger than those for the central FOV. In the central FOV, the resolution 

was affected mainly by the vertical coma, consistent with the imaging characteristics of 

the ellipsoidal mirror. The wavefront maps in Figure 7 intuitively show that the wave-

fronts in the edge FOVs were comparable to that in the central FOV in the designed sys-

tem. This designed system sacrificed the resolution in the central FOV but increased the 

FOV by 57%. 

Table 1. Zernike standard coefficients in the designed system. 

Order 
Zernike Standard Coefficients/Waves 

Aberration Meaning 
−55° 0° +55° 

4 −0.85054148 −0.03969461 −0.12081888 Defocus 

5 0.00000000 0.00000000 0.00000000 Oblique astigmatism 

6 −0.02730028 −0.00247943 −0.00020895 45° astigmatism 

7 0.08704811 0.08029944 0.02916162 Vertical coma 

8 0.00000000 0.00000000 0.00000000 Horizontal coma 

9 −0.00087236 −0.00002330 −0.00000153 Tilted trefoil 

10 0.00000000 0.00000000 0.00000000 Horizontal trefoil 

 

Figure 7. Wavefront maps at −55° (a), 0° (b) and +55° (c) in the designed system when the eye is an 

ideal lens. 

4.2. Aberrations in Retinal Imaging 

The data in Figure 8 and Figure 9 show that the imaging FOV in the designed system 

was much larger than that in the conventional system. For larger FOVs (above ±30°), the 

aberrations in the eye increased. In the designed system, aberrations in the eye were the 

Figure 7. Wavefront maps at −55◦ (a), 0◦ (b) and +55◦ (c) in the designed system when the eye is an
ideal lens.

4.2. Aberrations in Retinal Imaging

The data in Figures 8 and 9 show that the imaging FOV in the designed system was
much larger than that in the conventional system. For larger FOVs (above ±30◦), the
aberrations in the eye increased. In the designed system, aberrations in the eye were the
leading factor causing the deterioration in imaging quality. The scanning range of the
designed system was as wide as ±100◦ in the horizontal direction, but the wavefront
difference obtained from the eye model was only ±60◦. Thus, the simulation could be
carried out only over the range of ±60◦.
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From the above results, it can be concluded that in the ultrawide field, the inherent
aberration in the designed system was very small and that the final imaging quality was
limited mainly by the aberrations in the eye. Here, a further analysis of the aberration for
retinal imaging was performed. Considering the reliability of the data, the standard Zernike
aberrations for retinal imaging at −40◦, 0◦ and +40◦ in the vertical and horizontal directions
are listed in Tables 2 and 3. The aberrations for retinal imaging in the vertical direction and
the horizontal direction were different from those of the designed system, not only because
of the imaging characteristics of the designed system, but also because of the different
aberrations in the eye in the two directions. In the central FOV, the main aberrations for
retinal imaging were 45◦ astigmatism, horizontal coma, vertical coma and defocus, but
all were relatively small. In the edge FOVs, astigmatism and coma aberration were the
main aberrations in both the vertical and horizontal directions and were relatively large.
This pattern was consistent with the results in other studies [17]. Due to the aberration
characteristics of the eye, obtaining high-quality images in the ultrawide FOV directly was
difficult. In addition, different aberrations were found in different eyes; thus, there were
individual differences in the aberration correction.

Table 2. Zernike standard coefficients for retinal imaging in the vertical direction.

Order
Zernike Standard Coefficients/Waves

Aberration Meaning
−40◦ 0◦ +40◦

4 −0.04778938 −0.01478089 −0.08433465 Defocus
5 0.24196445 −0.00512765 −0.25042011 Oblique astigmatism
6 −1.32105706 −0.04584397 −1.38152437 45◦ astigmatism
7 −0.07660711 0.01120033 0.09391515 Vertical coma
8 −0.03552920 −0.03162284 −0.03574244 Horizontal coma
9 −0.08725283 0.00008356 0.09332905 Tilted trefoil

10 −0.01159125 −0.00031933 −0.01132933 Horizontal trefoil

Table 3. Zernike standard coefficients of retinal imaging in the horizontal direction.

Order
Zernike Standard Coefficients/Waves

Aberration Meaning
−40◦ 0◦ +40◦

4 −0.10397192 −0.01478089 −0.12819229 Defocus
5 −0.02110464 −0.00512765 0.00707697 Oblique astigmatism
6 1.33305503 −0.04584397 0.83154376 45◦ astigmatism
7 0.01305138 0.01120033 0.01273088 Vertical coma
8 −0.08885472 −0.03162284 0.06125572 Horizontal coma
9 −0.00258951 0.00008356 −0.00220010 Tilted trefoil

10 0.12015452 −0.00031933 −0.08867846 Horizontal trefoil

5. Conclusions

In this paper, a design for an ultrawide field OCT retinal imaging scanning system was
proposed and this system was simulated by optical design software Zemax. In addition,
with the aberration of eye model, the quality of the retinal imaging by the designed system
was presented and analyzed. The designed system could achieve ultrawide field retinal
imaging (vertical: 110◦, horizontal: 200◦) unachievable by conventional systems. The
working distance of the designed system is more than 30 mm, while that for the multi-
lens systems that were reported for ultrawide range OCT imaging are only ranges of a
few millimeters [10]. Compared to the multi-lens systems, the ellipsoidal mirror design
maintains a relatively uniform spot size, especially at the large angle. Moreover, this
system did not require pupil dilation. This work provided a new design for ultrawide
field retinal imaging. It can provide structural information of peripheral retina for diseases
such as retinal hyperplasia, retinal tear and detachment, retinal perforation, congenital
retinal pigment epithelium hypertrophy, retinal capsular degeneration and retinal pigment
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degeneration. This ultrawide field retinal imaging design could expand possibilities for
the diagnosis and treatment of retinopathy.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/photonics8110476/s1. Table S1: Input parameters of the designed ellipsoidal mirror
scanning system for Zemax simulation.
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