A Broadband Gold-Coated Photonic Crystal Fiber Polarization Filter with a High Loss Ratio of Both Polarizations at 1550 and 1310 nm
Abstract
:1. Introduction
2. Structure Design
3. Numerical Simulation and Results Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schmidt, M.A.; Russell, P.S.J. Long-range spiralling surface plasmon modes on metallic nanowires. Opt. Express 2008, 16, 13617–13623. [Google Scholar] [CrossRef]
- Otupiri, R.; Akowuah, E.K.; Haxha, S.; Ademgil, H.; AbdelMalek, F.; Aggoun, A. A Novel Birefrigent Photonic Crystal Fiber Surface Plasmon Resonance Biosensor. IEEE Photon. J. 2014, 6, 6801711. [Google Scholar] [CrossRef]
- Zhao, Y.; Deng, Z.Q.; Li, J. Photonic crystal fiber based surface plasmon resonance chemical sensors. Sens. Actuators B Chem. 2014, 202, 557–567. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, R.; Cox, F.M.; Kuhlmey, B.T.; Large, M.C.J. Selective coating of holes in microstructured optical fiber and its application to in-fiber absorptive polarizers. Opt. Express 2007, 15, 16270–16278. [Google Scholar] [CrossRef]
- Khaleque, A.; Hattori, H.T. Polarizer based upon a plasmonic resonant thin layer on a squeezed photonic crystal fiber. Appl. Opt. 2015, 54, 2543–2549. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.Y.; Yu, X.; Zhang, Y.; Shum, P.; Zhang, Y.T.; Xia, L.; Liu, D.M. Theoretical Study of Dual-Core Photonic Crystal Fibers with Metal Wire. IEEE Photon. J. 2012, 4, 1178–1187. [Google Scholar] [CrossRef]
- An, G.W.; Li, S.G.; Zhang, W.; Fan, Z.K.; Bao, Y.J. A polarization filter of gold-filled photonic crystal fiber with regular triangular and rectangular lattices. Opt. Commun. 2014, 331, 316–319. [Google Scholar] [CrossRef]
- Wang, H.Y.; Yan, X.; Li, S.G.; An, G.W.; Zhang, X.N.; Yuan, Z.Y. Design of the polarization filter based on photonic crystal fiber with Au-coated air holes. Opt. Quant. Electron. 2016, 48, 512. [Google Scholar] [CrossRef]
- Shi, M.; Li, S.G.; Chen, H.L.; Wang, G.Y.; Zhao, Y.Y. Surface plasmon resonance effect induced tunable polarization filter based on gold film selectively coated photonic crystal fiber. Opt. Commun. 2017, 396, 257–260. [Google Scholar] [CrossRef]
- Hossen, M.N.; Ferdous, M.; Ahmed, K.; Khalek, M.A.; Chakma, S.J.; Paul, B.K. Single polarization photonic crystal fiber filter based on surface plasmon resonance. Front. Optoelectron. 2019, 12, 157–164. [Google Scholar] [CrossRef]
- Qu, Y.W.; Yuan, J.H.; Zhou, X.; Li, F.; Mei, C.; Yan, B.B.; Wu, Q.; Wang, K.R.; Sang, X.Z.; Long, K.P.; et al. A V-shape photonic crystal fiber polarization filter based on surface plasmon resonance effect. Opt. Commun. 2019, 452, 1–6. [Google Scholar] [CrossRef]
- Kuhlmey, B.T.; Pathmanandavel, K.; McPhedran, R.C. Multipole analysis of photonic crystal fibers with coated inclusions. Opt. Express 2006, 14, 10851–10864. [Google Scholar] [CrossRef]
- Lee., H.W.; Schmidt, M.A.; Tyagi, H.K.; Sempere, L.P.; Russell, P.S.J. Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber. Appl. Phy. Lett. 2008, 93, 111102. [Google Scholar] [CrossRef]
- Nagasaki, A.; Saitoh, K.; Saitoh, M. Polarization characteristics of photonic crystal fibers selectively filled with metal wires into cladding air holes. Opt. Express 2011, 19, 3799–3808. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.R.; Li, S.G.; Xiao, Y.Z.; Qin, W.; Xin, X.J.; Zhu, X.P. Polarization filter characters of the gold-coated and the liquid filled photonic crystal fiber based on surface plasmon resonance. Opt. Express 2013, 21, 13733–13740. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Li, S.G.; Li, H.; Zi, J.C.; Zhang, W.; Fan, Z.K.; An, G.W.; Bao, Y.J. Broadband Single-Polarization Photonic Crystal Fiber Based on Surface Plasmon Resonance for Polarization Filter. Plasmonics 2015, 10, 931–939. [Google Scholar] [CrossRef]
- Dou, C.; Jing, X.L.; Li, S.G.; Liu, Q.; Bian, J. A Photonic Crystal Fiber Polarized Filter at 1.55 μm based on Surface Plasmon Resonance. Plasmonics 2016, 11, 1163–1168. [Google Scholar] [CrossRef]
- Wang, X.Y.; Li, S.G.; Liu, Q.; Wang, G.Y.; Zhao, Y.Y. Design of a Single-Polarization Single-Mode Photonic Crystal Fiber Filter Based on Surface Plasmon Resonance. Plasmonics 2017, 12, 1325–1330. [Google Scholar] [CrossRef]
- Wang, Y.J.; Li, S.G.; Chen, H.L.; Shi, M.; Liu, Y.C. Ultra-wide bandwidth polarization filter based on gold-coated photonic crystal fiber around the wavelength of 1.55 μm. Opt. Laser Technol. 2018, 106, 22–28. [Google Scholar] [CrossRef]
- Lu, X.L.; Chang, M.; Chen, N.; Zhang, X.D.; Zhuang, S.L.; Xu, J. Design of a Metal-Filled Photonic-Crystal Fiber Polarization Filter Based on Surface Plasmon Resonance at 1.31 and 1.55 µm. IEEE Photon. J. 2018, 10, 7203913. [Google Scholar] [CrossRef]
- Zhao, X.T.; Hua, L.; Jiang, G.H.; Cheng, J.R.; Xiong, Q. A Novel Polarization Filter Based on Photonic Crystal Fiber with a Single Au-Coated Air Hole and Semi-Hourglass Structure. Plasmonics 2019, 14, 1725–1733. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Yuan, J.H.; Qu, Y.W.; Zhou, X.; Yan, B.B.; Wu, Q.; Wang, K.R.; Sang, X.Z.; Long, K.P.; Yu, C.X. Design of diamond-shape photonic crystal fiber polarization filter based on surface plasma resonance effect. Chin. Phys. B 2020, 29, 034208. [Google Scholar] [CrossRef]
- Ghosh, G.; Endo, M.; Iwasaki, T. Temperature-Dependent Sellmeier Coefficients and Chromatic Dispersions for Some Optical Fiber Glasses. J. Lightwave Technol. 1994, 12, 1338–1342. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.S.; Sultana, J.; Rifat, A.A.; Ahmed, R.; Dinovitser, A.; Brian, W.H.N.; Heike, E.H.; Abbott, D. Dual-polarized highly sensitive plasmonic sensor in the visible to near-IR spectrum. Opt. Express 2018, 26, 30347–30361. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Chen, M.Y.; Zhou, J.; Zhang, Y.K. Surface Plasmon Induced Polarization Splitting Based on Dual-Core Photonic Crystal Fiber with Metal Wire. Plasmonics 2013, 8, 1253–1258. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Shi, Y.F.; Bian, B.M.; Lu, J. Dependence of leaky mode coupling on loss in photonic crystal fiber with hybrid cladding. Opt. Express 2008, 16, 1915–1922. [Google Scholar] [CrossRef]
- Florous, N.; Saitoh, K.; Koshiba, M. A novel approach for designing photonic crystal fiber splitters with polarization-independent propagation characteristics. Opt. Express 2005, 13, 7365–7373. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, W.G.; Zhang, Z.; Liu, Y.J.; Sieg, J.; Zhang, L.Y.; Zhou, Q.; Wang, L.; Wang, L.; Yan, T.Y. Design for a Single-Polarization Photonic Crystal Fiber Wavelength Splitter Based on Hybrid-Surface Plasmon Resonance. IEEE Photon. J. 2014, 6, 1–9. [Google Scholar]
- Mahdiraji, G.A.; Chow, D.M.; Sandoghchi, S.R.; Amirkhan, F.; Dermosesian, E.; Yeo, K.S.; Kakael, Z.; Ghomeishi, M.; Poh, S.Y.; Gang, S.Y.M.; et al. Challenges of solutions in fabrication of silica-based photonic crystal fibers: An experimental study. Fiber Integr. Opt. 2014, 33, 85–104. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, Q.; Zhu, W.J.; Yang, M.H.; Lewis, E. Novel optical fiber SPR temperature sensor based on MMF-PCF-MMF structure and gold-PDMS film. Opt. Express 2018, 26, 1910–1917. [Google Scholar] [CrossRef]
- Liu, B.; Jiang, Y.; Zhu, X.; Tang, X.; Shi, Y. Hollow fiber surface plasmon resonance sensor for the detection of liquid with high refractive index. Opt. Express 2013, 21, 32349–32357. [Google Scholar] [CrossRef] [PubMed]
- Leon-Saval, S.G.; Birks, T.A.; Joly, N.Y.; George, A.K.; Wadsworth, W.J.; Kakarantzas, G. Splice-free interfacing of photonic crystal fibers. Opt.Lett. 2005, 30, 1629–1631. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.M.; Jin, W.; Demokan, M.S. Fusion splicing small-corephotonic crystal fibers and single-mode fibers by repeated arc discharges. Opt. Lett. 2007, 32, 115–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asiful Islam, M.; Shah Alam, M. Design Optimization of Equiangular Spiral Photonic Crystal Fiber for Large Negative Flat Dispersion and High Birefringence. J. Lighwave Technol. 2012, 30, 3545–3551. [Google Scholar] [CrossRef]
B1 | B2 | B3 | C1 (μm2) | C2 (μm2) | C3 (μm2) |
---|---|---|---|---|---|
0.6961663 | 0.4079426 | 0.8974794 | 0.00467914826 | 0.0135120631 | 97.9340025 |
5.9673 | 2113.60 | 15.92 | 650.07 | 104.86 | 1.09 |
Ref. | Resonance Wavelength | Y-Polarized Loss | X-Polarized Loss | Loss Ratio | Filter Length | Bandwidth |
---|---|---|---|---|---|---|
9 | 1550 nm | 433.65 dB/cm | 2.64 dB/cm | 164.26 | 4000 μm | 150 nm |
10 | 1420 nm | 1.13 dB/cm | 692.25 dB/cm | 612.61 | 1000 μm | 830 nm |
17 | 1550 nm | 630.20 dB/cm | 36.90 dB/cm | 17.10 | 2000 μm | 220 nm |
19 | 1550 nm | 718.87 dB/cm | 0.95 dB/cm | 756.70 | 300 μm | 360 nm |
22 | 1550 nm | 563.29 dB/cm | 3.75 dB/cm | 150.21 | 5000 μm | 990 nm |
our filter | 1550 nm | 1024.84 dB/cm | 0.12 dB/cm | 8540.33 | 200 μm | 640 nm |
1310 nm | 682.14 dB/cm | 0.03 dB/cm | 22738 | 200 μm | 180 nm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Zhang, G.; Wu, Z.; Zhang, Y.; Zhang, Y.; Jiang, L.; Bi, W. A Broadband Gold-Coated Photonic Crystal Fiber Polarization Filter with a High Loss Ratio of Both Polarizations at 1550 and 1310 nm. Photonics 2021, 8, 488. https://doi.org/10.3390/photonics8110488
Wang C, Zhang G, Wu Z, Zhang Y, Zhang Y, Jiang L, Bi W. A Broadband Gold-Coated Photonic Crystal Fiber Polarization Filter with a High Loss Ratio of Both Polarizations at 1550 and 1310 nm. Photonics. 2021; 8(11):488. https://doi.org/10.3390/photonics8110488
Chicago/Turabian StyleWang, Chao, Guoxu Zhang, Zheng Wu, Yajing Zhang, Yiyang Zhang, Linghong Jiang, and Weihong Bi. 2021. "A Broadband Gold-Coated Photonic Crystal Fiber Polarization Filter with a High Loss Ratio of Both Polarizations at 1550 and 1310 nm" Photonics 8, no. 11: 488. https://doi.org/10.3390/photonics8110488
APA StyleWang, C., Zhang, G., Wu, Z., Zhang, Y., Zhang, Y., Jiang, L., & Bi, W. (2021). A Broadband Gold-Coated Photonic Crystal Fiber Polarization Filter with a High Loss Ratio of Both Polarizations at 1550 and 1310 nm. Photonics, 8(11), 488. https://doi.org/10.3390/photonics8110488