Wide Area Uniform Illumination Scheme Using LED Matrix for Optogenetic Cardiac Pacing
Abstract
:1. Introduction
Problem Statement
2. Methods
2.1. LED Matrix Design
2.2. Radiometry Measurements and Analysis of Single LED
2.3. Illuminator Assembly and Packaging
2.4. Set up for Optogenetic Cardiac Pacing with LED Devices
3. Results and Analysis
3.1. Optical Assessment of LED Matrix
3.2. Comparison of Thermal Properties in DC and Pulsed Modes
3.3. Optogenetic Cardiac Pacing with the Four LED Matrix
3.4. Reproducible Optogenetic Cardiac Pacing with the Two LED Matrix
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Nagel, G.; Szellas, T.; Huhn, W.; Kateriya, S.; Adeishvili, N.; Berthold, P.; Ollig, D.; Hegemann, P.; Bamberg, E. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc. Natl. Acad. Sci. USA 2003, 100, 13940–13945. [Google Scholar] [CrossRef] [Green Version]
- Elvis, C.; Sjöström, P.J. Novel Optogenetic Approaches in Epilepsy Research. Front. Neurosci. 2019, 13, 947. [Google Scholar]
- Chen, Y.; Xiong, M.; Zhang, S.C. Illuminating Parkinson’s therapy with optogenetics. Nat. Biotechnol. 2015, 33, 149–150. [Google Scholar] [CrossRef] [Green Version]
- Seyed Javad Javaheri, E.S.; Bigdeli, M.R.; Zibaii, M.I.; Dargahi, L.; Pouretemad, H.R. Optogenetic Stimulation of the Anterior Cingulate Cortex Ameliorates Autistic-Like Behaviors in Rats Induced by Neonatal Isolation, Caudate Putamen as a Site for Alteration. NeuroMol. Med. 2019, 21, 132–142. [Google Scholar] [CrossRef]
- Muir, J.; Lopez, J.; Bagot, R.C. Wiring the depressed brain: Optogenetic and chemogenetic circuit interrogation in animal models of depression. Neuropsychopharmacology 2019, 44, 1013–1026. [Google Scholar] [CrossRef]
- Carter, M.E.; de Lecea, L. Optogenetic investigation of neural circuits in vivo. Trends Mol. Med. 2011, 17, 4. [Google Scholar] [CrossRef] [Green Version]
- Packer, A.M.; Roska, B.; Haeusser, M. Targeting neurons and photons for optogenetics. Nat. Neurosci. 2013, 16, 805–815. [Google Scholar] [CrossRef] [Green Version]
- Barret, J.M.; Palmini, R.B.; Degenaar, P. Optogenetic approaches to retinal prosthesis. Vis. Neurosci. 2014, 31, 345–354. [Google Scholar] [CrossRef]
- McGovern, B.; Drakakis, E.; Neil, M.; O’Brian, P.; Corbett, B.; Berlinguer-Palmini, R.; Degenaar, P. Individually addressable optoelectronic arrays for optogenetic neural stimulation. In Proceedings of the IEEE Biomedical Circuits and Systems Conference (BioCAS), San Diego, CA, USA, 10–12 November 2011; pp. 329–332. [Google Scholar]
- Jeschke, M.; Moser, T. Considering optogenetic stimulation for cochlear implants. Hear. Res. 2015, 322, 224–234. [Google Scholar] [CrossRef]
- Gossler, C.; Bierbrauer, C.; Moser, R.; Kunzer, M.; Holc, K.; Pletschen, W.; Koehler, K.; Wagner, J.; Schwaerzle, M.; Ruther, P.; et al. Gan-based micro-led arrays on flexible substrates for optical cochlear implants. J. Phys. D Appl. Phys. 2014, 47, 205401. [Google Scholar] [CrossRef]
- Samineni, V.K.; Yoon, J.; Crawford, K.E.; Jeong, Y.R.; McKenzie, K.C.; Shin, G.; Xie, Z.; Sundaram, S.S.; Li, Y.; Yang, M.Y.; et al. Fully implantable, battery-free wireless optoelectronic devices for spinal optogenetics. Pain 2017, 158, 2108–2116. [Google Scholar] [CrossRef]
- Magown, P.; Shettar, B.; Zhang, Y.; Rafuse, V.F. Direct optical activation of skeletal muscle fibres efficiently controls muscle contraction and attenuates denervation atrophy. Nat. Commun. 2015, 6, 8506. [Google Scholar] [CrossRef] [Green Version]
- Sasse, P.; Funken, M.; Beiert, T.; Bruegmann, T. Optogenetic Termination of Cardiac Arrhythmia: Mechanistic Enlightenment and Therapeutic Application? Front. Physiol. 2019, 10, 675. [Google Scholar] [CrossRef]
- Jia, Z.; Valiunas, V.; Lu, Z.; Bien, H.; Liu, H.; Wang, Z.H.; Rosati, B.; Brink, P.; Cohen, I.; Entcheva, E. Stimulating cardiac muscle by light cardiac optogenetics by cell delivery. Circ. Arrhythm. Electrophysiol. 2011, 4, 753–760. [Google Scholar] [CrossRef] [Green Version]
- Nussinovitch, U.; Shinnawi, R.; Gepstein, L. Modulation of cardiac tissue electrophysiological properties with light-sensitive proteins. Cardiovasc. Res. 2014, 102, 176–187. [Google Scholar] [CrossRef] [PubMed]
- Aravanis, A.M.; Wang, L.P.; Zhang, F.; Meltzer, L.A.; Mogri, M.Z.; Schneider, M.B.; Deisseroth, K. An optical neural interface: In vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J. Neural Eng. 2007, 4, S143–S156. [Google Scholar] [CrossRef]
- Huber, D.; Petreanu, L.; Ghitani, N.; Ranade, S.; Hromadka, T.; Mainen, Z.; Svoboda, K. Sparse optical microstimulation in barrel cortex drives learned behaviour in freely moving mice. Nat. Lett. 2008, 451, 61–65. [Google Scholar] [CrossRef] [PubMed]
- Gradinaru, V.; Thompson, K.R.; Zhang, F.; Mogri, M.; Kay, K.; Schneider, M.B.; Deisseroth, K. Targeting and readout strategies for fast optical neural control in vitro and in vivo. J. Neurosci. 2007, 27, 14231–14238. [Google Scholar] [CrossRef]
- Boyle, P.M.; Williams, J.C.; Ambrosi, C.M.; Entcheva, E.; Trayanova, N.A. A comprehensive multiscale framework for simulating optogenetics in the heart. Nat. Commun. 2013, 4, 2370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferenczi, E.A.; Tan, X.; Huang, C.L.-H. Principles of Optogenetic Methods and Their Application to Cardiac Experimental Systems. Front. Physiol. 2019, 10, 1096. [Google Scholar] [CrossRef]
- Sparrow, C. On Spectroscopic Resolving Power. Astrophys. J. 1916, 44, 76. [Google Scholar] [CrossRef]
- Moreno, I.; Avendaño-Alejo, M.; Tzonchev, R.I. Designing light-emitting diode arrays for uniform near-field irradiance. Appl. Opt. 2006, 45, 10. [Google Scholar] [CrossRef]
- Bruegmann, T.; Malan, D.; Hesse, M.; Beiert, T.; Fuegemann, J.C.; Fleischmann, K.B.; Sasse, P. Optogenetic control of heart muscle in vitro and in vivo. Nat. Methods 2010, 7, 897–900. [Google Scholar] [CrossRef]
- Bruegmann, T.; Beiert, T.; Vogt, C.C.; Schrickel, J.W.; Sasse, P. Optogenetic termination of atrial fibrillation in mice. J. Cardiovasc. Res. 2018, 114, 713–723. [Google Scholar] [CrossRef]
- Bruegmann, T.; Boyle, P.M.; Vogt, C.C.; Karathanos, T.V.; Arevalo, H.J.; Fleischmann, B.K.; Trayanova, N.A.; Sasse, P. Optogenetic defibrillation terminates ventricular arrhythmia in mouse hearts and human simulations. J. Clin. Investig. 2016, 126, 3894–3904. [Google Scholar] [CrossRef] [PubMed]
- Tucci, V. Handbook of Neurobehavioral Genetics and Phenotyping; John Wiley & Sons: Hoboken, NJ, USA, 2016; p. 471. [Google Scholar]
- Vogt, C.C.; Bruegmann, T.; Malan, D.; Ottersbach, A.; Roell, W.; Fleischmann, K.B.; Sasse, P. Systemic gene transfer enables optogenetic pacing of mouse hearts. Cardiovasc. Res. 2015, 106, 338–343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Credi, C.; Balducci, V.; Munagala, U.; Cianca, C.; Bigiarini, S.; de Vries, A.F.; Loew, L.M.; Pavone, F.S.; Cerbai, E.; Sartiani, L.; et al. Fast Optical Investigation of Cardiac Electrophysiology by Parallel Detection in Multiwell Plates. Front. Physiol. 2021, 12, 1439. [Google Scholar] [CrossRef]
- Zgierski-Johnston, C.M.; Ayub, S.; Fernández, M.C.; Rog-Zielinska, E.A.; Barz, F.; Paul, O.; Kohl, P.; Ruther, P. Cardiac pacing using transmural multi-LED probes in channelrhodopsin-expressing mouse hearts. Prog. Biophys. Mol. Biol. 2020, 154, 51–61. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Izadi, I.; Dusend, V.; Takrouni, A.; Nudds, N.; Gradkowski, K.; O’Brien, P.; Sasse, P.; Corbett, B. Wide Area Uniform Illumination Scheme Using LED Matrix for Optogenetic Cardiac Pacing. Photonics 2021, 8, 499. https://doi.org/10.3390/photonics8110499
Izadi I, Dusend V, Takrouni A, Nudds N, Gradkowski K, O’Brien P, Sasse P, Corbett B. Wide Area Uniform Illumination Scheme Using LED Matrix for Optogenetic Cardiac Pacing. Photonics. 2021; 8(11):499. https://doi.org/10.3390/photonics8110499
Chicago/Turabian StyleIzadi, Ida, Vanessa Dusend, Abdulaziz Takrouni, Noreen Nudds, Kamil Gradkowski, Peter O’Brien, Philipp Sasse, and Brian Corbett. 2021. "Wide Area Uniform Illumination Scheme Using LED Matrix for Optogenetic Cardiac Pacing" Photonics 8, no. 11: 499. https://doi.org/10.3390/photonics8110499
APA StyleIzadi, I., Dusend, V., Takrouni, A., Nudds, N., Gradkowski, K., O’Brien, P., Sasse, P., & Corbett, B. (2021). Wide Area Uniform Illumination Scheme Using LED Matrix for Optogenetic Cardiac Pacing. Photonics, 8(11), 499. https://doi.org/10.3390/photonics8110499