High Speed Visible Light Communication Using Digital Power Domain Multiplexing of Orthogonal Frequency Division Multiplexed (OFDM) Signals
Abstract
:1. Introduction
2. Principle and Experiment
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chow, C.W.; Yeh, C.H.; Liu, Y.; Lai, Y.; Wei, L.Y.; Hsu, C.W.; Chen, G.H.; Liao, X.L.; Lin, K.H. Enabling techniques for optical wireless communication systems. In Proceedings of the Optical Fiber Communication Conference 2020, San Diego, CA, USA, 8–12 March 2020. M2F.1. [Google Scholar]
- Elgala, H.; Mesleh, R.; Haas, H. Indoor optical wireless communication: Potential and state-of-the-art. IEEE Commun. Mag. 2011, 49, 56–62. [Google Scholar] [CrossRef]
- Lu, H.H.; Lin, Y.P.; Wu, P.Y.; Chen, C.Y.; Chen, M.C.; Jhang, T.W. A multiple-input-multiple-output visible light communication system based on VCSELs and spatial light modulators. Opt. Exp. 2014, 22, 3468–3474. [Google Scholar] [CrossRef]
- Yu, T.C.; Huang, W.T.; Lee, W.B.; Chow, C.W.; Chang, S.W.; Kuo, H.C. Visible light communication system technology review: Devices, architectures, and applications. Crystals 2021, 11, 1098. [Google Scholar] [CrossRef]
- Chi, N.; Zhou, Y.; Wei, Y.; Hu, F. Visible light communication in 6G: Advances, challenges, and prospects. IEEE Vehicular Technol. Mag. 2020, 15, 93–102. [Google Scholar] [CrossRef]
- Luo, P.; Ghassemlooy, Z.; Minh, H.L.; Tang, X.; Tsai, H.M. Undersampled phase shift on-off keying for camera communication. In Proceedings of the WCSP’14, Hefei, China, 23–25 October 2014. [Google Scholar]
- Wu, Y.C.; Chow, C.W.; Liu, Y.; Lin, Y.S.; Hong, C.Y.; Lin, D.C.; Song, S.H.; Yeh, C.H. Received-signal-strength (RSS) based 3D visible-light-positioning (VLP) system using kernel ridge regression machine learning algorithm with sigmoid function data preprocessing method. IEEE Access 2020, 8, 214269–214281. [Google Scholar] [CrossRef]
- Lin, D.C.; Chow, C.W.; Peng, C.W.; Hung, T.Y.; Chang, Y.H.; Song, S.H.; Lin, Y.S.; Liu, Y.; Lin, K.H. Positioning unit cell model duplication with residual concatenation neural network (RCNN) and transfer learning for visible light positioning (VLP). J. Lightw. Technol. 2021, 39, 6366–6372. [Google Scholar] [CrossRef]
- Shen, C.; Guo, Y.; Oubei, H.M.; Ng, T.K.; Liu, G.; Park, K.H.; Ho, K.T.; Alouini, M.S.; Ooi, B.O. 20-meter underwater wireless optical communication link with 1.5 Gbps data rate. Opt. Express 2016, 24, 25502–25509. [Google Scholar] [CrossRef] [PubMed]
- Danakis, C.; Afgani, M.; Povey, G.; Underwood, I.; Haas, H. Using a CMOS camera sensor for visible light communication. In Proceedings of the OWC’12, Anaheim, CA, USA; pp. 1244–1248.
- Lin, Y.S.; Chow, C.W.; Liu, Y.; Chang, Y.H.; Lin, K.H.; Wang, Y.C.; Chen, Y.Y. PAM4 rolling-shutter demodulation using a pixel-per-symbol labeling neural network for optical camera communications. Opt. Express 2021, 29, 31680–31688. [Google Scholar] [CrossRef] [PubMed]
- Haas, H.; Yin, L.; Wang, Y.; Chen, C. What is LiFi? J. Lightw. Technol. 2016, 34, 1533–1544. [Google Scholar] [CrossRef]
- Chow, C.W.; Yeh, C.H.; Liu, Y.F.; Liu, Y. Improved modulation speed of LED visible light communication system integrated to main electricity network. Elect. Lett. 2011, 47, 867–868. [Google Scholar] [CrossRef] [Green Version]
- Minh, H.L.; O’Brien, D.; Faulkner, G.; Zeng, L.; Lee, K.; Jung, D.; Oh, Y.J.; Won, E.T. 100-Mb/s NRZ visible light communications using a postequalized white LED. IEEE Photon. Technol. Lett. 2009, 21, 1063–1065. [Google Scholar] [CrossRef]
- Hsu, C.W.; Chow, C.W.; Lu, I.C.; Liu, Y.L.; Yeh, C.H.; Liu, Y. High speed imaging 3 × 3 MIMO phosphor white-light LED based visible light communication system. IEEE Photon. J. 2016, 8, 7907406. [Google Scholar] [CrossRef]
- Cossu, G.; Khalid, A.M.; Choudhury, P.; Corsini, R.; Ciaramella, E. 3.4 Gbit/s visible optical wireless transmission based on RGB LED. Opt. Exp. 2012, 20, B501–B506. [Google Scholar] [CrossRef] [PubMed]
- Chi, N.; Zhang, M.; Zhou, Y.; Zhao, J. 3.375-Gb/s RGB-LED based WDM visible light communication system employing PAM-8 modulation with phase shifted Manchester coding. Opt. Exp. 2016, 24, 21663–21673. [Google Scholar] [CrossRef] [PubMed]
- James Singh, K.; Huang, Y.M.; Ahmed, T.; Liu, A.C.; Huang Chen, S.W.; Liou, F.J.; Wu, T.; Lin, C.C.; Chow, C.W.; Lin, G.R.; et al. Micro-LED as a promising candidate for high-speed visible light communication. Appl. Sci. 2020, 10, 7384. [Google Scholar] [CrossRef]
- Tsonev, D.; Chun, H.; Rajbhandari, S.; McKendry, J.J.D.; Videv, S.; Gu, E.; Haji, M.; Watson, S.; Kelly, A.E.; Faulkner, G.; et al. A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED. IEEE Photon. Technol. Lett. 2014, 26, 637–640. [Google Scholar] [CrossRef]
- Lan, H.Y.; Tseng, I.C.; Lin, Y.H.; Lin, G.R.; Huang, D.W.; Wu, C.H. High-speed integrated micro-LED array for visible light communication. Opt. Lett. 2020, 45, 2203–2206. [Google Scholar] [CrossRef]
- Chang, Y.H.; Huang, Y.M.; Gunawan, W.H.; Chang, G.H.; Liou, F.J.; Chow, C.W.; Kuo, H.C.; Liu, Y.; Yeh, C.H. 4.343-Gbit/s green semipolar (20-21)—LED for high speed visible light communication. IEEE Photon. J. 2021, 13, 7300204. [Google Scholar] [CrossRef]
- Denaulta, K.A.; Cantore, M.; Nakamura, S.; DenBaars, S.P.; Seshadri, R. Efficient and stable laser-driven white lighting. AIP Adv. 2013, 3, 072107. [Google Scholar] [CrossRef]
- Chi, Y.C.; Hsieh, D.H.; Lin, C.Y.; Chen, H.Y.; Huang, C.Y.; He, J.H.; Ooi, B.; DenBaars, S.P.; Nakamura, S.; Kuo, H.C.; et al. Phosphorous diffuser diverged blue laser diode for indoor lighting and communication. Sci. Rep. 2015, 5, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.H.; Li, C.Y.; Lu, H.H.; Lin, C.Y.; Chen, J.H.; Wan, Z.W.; Cheng, C.J. A 100-Gb/s multiple-input multiple-output visible laser light communication system. J. Lightw. Technol. 2014, 32, 4723–4729. [Google Scholar] [CrossRef]
- Liu, X.; Yi, S.; Zhou, X.; Fang, Z.; Qiu, Z.J.; Hu, L.; Cong, C.; Zheng, L.; Liu, R.; Tian, P. 34.5 m underwater optical wireless communication with 2.70 Gbps data rate based on a green laser diode with NRZ-OOK modulation. Opt. Express 2017, 25, 27937–27947. [Google Scholar] [CrossRef]
- Wei, L.Y.; Chen, S.I.; Yeh, C.H.; Liu, Y.; Chen, G.H.; Peng, C.W.; Gunawan, W.H.; Chang, Y.H.; Guo, P.C.; Chow, C.W. 2.333-Tbit/s bi-directional optical mobile networks using optical wireless communication (OWC). Opt. Comm. 2020, 475, 126187. [Google Scholar] [CrossRef]
- Wei, L.Y.; Liu, Y.; Chow, C.W.; Chen, G.H.; Peng, C.W.; Guo, P.C.; Tsai, J.F.; Yeh, C.H. 6.915-Gbit/s white-light phosphor laser diode-based DCO-OFDM visible light communication (VLC) system with functional transmission distance. Electron. Lett. 2020, 56, 945–947. [Google Scholar] [CrossRef]
- Wu, T.C.; Chi, Y.C.; Wang, H.Y.; Tsai, C.T.; Huang, Y.F.; Lin, G.R. Tricolor R/G/B laser diode based eye-safe white lighting communication beyond 8 Gbit/s. Sci. Rep. 2017, 7, 11. [Google Scholar] [CrossRef] [Green Version]
- Wei, L.Y.; Chow, C.W.; Chen, G.H.; Liu, Y.; Yeh, C.H.; Hsu, C.W. Tricolor visible-light laser diodes based visible light communication operated at 40.665 Gbit/s and 2 m free-space transmission. Opt. Exp. 2019, 27, 25072–25077. [Google Scholar] [CrossRef] [PubMed]
- Gunawan, W.H.; Liu, Y.; Chow, C.W.; Chang, Y.H.; Peng, C.W.; Yeh, C.H. Two-level laser diode color-shift-keying orthogonal-frequency-division-multiplexing (LD-CSK-OFDM) for optical wireless communications (OWC). J. Lightwave Technol. 2021, 39, 3088–3094. [Google Scholar] [CrossRef]
- Yeh, C.H.; Chen, H.Y.; Chow, C.W.; Liu, Y.L. Utilization of multi-band OFDM modulation to increase traffic rate of phosphor-LED wireless VLC. Opt. Exp. 2015, 23, 1133–1138. [Google Scholar] [CrossRef] [PubMed]
- Saito, Y.; Kishiyama, Y.; Benjebbour, A.; Nakamura, T.; Li, A.; Higuchi, K. Non-orthogonal multiple access (NOMA) for cellular future radio access. In Proceedings of the VTC Spring 2013, Dresden, Germany, 2–5 June 2013; pp. 1–5. [Google Scholar]
- Wu, Q.; Feng, Z.; Tang, M.; Li, X.; Luo, M.; Zhou, H.; Fu, S.; Liu, D. Digital domain power division multiplexed dual polarization coherent optical OFDM transmission. Sci. Rep. 2018, 8, 15827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adnan, A.; Liu, Y.; Chow, C.W.; Yeh, C.H. Analysis of non-Hermitian symmetry (NHS) IFFT/FFT size efficient OFDM for multiple-client non-orthogonal multiple access (NOMA) visible light communication (VLC) system. Opt. Comm. 2020, 472, 125991. [Google Scholar] [CrossRef]
System Parameter | |
---|---|
FFT Size | 512 |
Subcarrier | 125 |
Cyclic Prefix | 32 |
LD Drive Current | 70 mA |
AWG Bandwidth | 18 GHz |
PD Bandwidth | 1.2 GHz |
RTO Bandwidth | 16 GHz |
Transmission Distance | 1.5 m |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gunawan, W.-H.; Liu, Y.; Chow, C.-W.; Chang, Y.-H.; Yeh, C.-H. High Speed Visible Light Communication Using Digital Power Domain Multiplexing of Orthogonal Frequency Division Multiplexed (OFDM) Signals. Photonics 2021, 8, 500. https://doi.org/10.3390/photonics8110500
Gunawan W-H, Liu Y, Chow C-W, Chang Y-H, Yeh C-H. High Speed Visible Light Communication Using Digital Power Domain Multiplexing of Orthogonal Frequency Division Multiplexed (OFDM) Signals. Photonics. 2021; 8(11):500. https://doi.org/10.3390/photonics8110500
Chicago/Turabian StyleGunawan, Wahyu-Hendra, Yang Liu, Chi-Wai Chow, Yun-Han Chang, and Chien-Hung Yeh. 2021. "High Speed Visible Light Communication Using Digital Power Domain Multiplexing of Orthogonal Frequency Division Multiplexed (OFDM) Signals" Photonics 8, no. 11: 500. https://doi.org/10.3390/photonics8110500
APA StyleGunawan, W. -H., Liu, Y., Chow, C. -W., Chang, Y. -H., & Yeh, C. -H. (2021). High Speed Visible Light Communication Using Digital Power Domain Multiplexing of Orthogonal Frequency Division Multiplexed (OFDM) Signals. Photonics, 8(11), 500. https://doi.org/10.3390/photonics8110500