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Abstract: In this paper, the influence of structural modifications on basic quasi-periodic (QP) photonic
crystals (PhC’s) on self-similarity feature in their spectral responses is examined. Investigated crystals
are chosen based on a present knowledge on the QP crystals, and are classified according to their
structure. One of the QP crystals considered for the calculations is a concatenation, Fibonacci structure.
It characterizes with a self-similar spectra for its different orders, which means, that the spectral
shape repeats itself and can be partially identical for a different orders of the Fibonacci QP crystal.
The calculations were also performed for the fractal structure, based on a Cantor QP crystal. Just as
for the case of the Fibonacci structure, it characterizes with a self-similar spectra for different orders
of the structure. Considered photonic devices are next put through simple modification operations
by multiplication, conjugation or mirror reflection. Resulting, modified structures are used for the
calculations of their spectral response. Results show, that the self-similarity of the spectra is not
affected by performed modifications, and thus spectral response of QP PhC can be designed without
losing this feature. Moreover the regular expansion of the repeated central part of the spectrum
that appears in higher-order Fibonacci QP PhC spectra (due to the self-similarity) with the increase
Fibonacci crystal order is presented here for the first time.

Keywords: one dimensional photonic crystals; self-similarity; quasi-periodic structures; transfer
matrix method

1. Introduction

Photonic crystal devices have dominated the optical research in recent years. This
substantial interest is justified by the incredible elasticity of such systems. Apart from the
naturally occurring examples of photonic crystals, man-made structures were researched
as far as half an age ago, when thin-film dielectric stacks were used as extremely effec-
tive optical filters [1]. Later, Yablonovitch proposed that the three-dimensional periodic
structures could exhibit a range of frequencies, in which light could not propagate in any
direction thru the structure [2]. This range of forbidden electromagnetic (EM) frequencies,
or the photonic band-gap, allows for a strong confinement of EM fields, and moreover, for
stopping an unwanted spontaneous emission in the forbidden frequency range. It was
proven, that small disturbances in the structure do not destroy the properties of photonic
crystals [3], which opened the way for multitude of applications. Nowadays, photonic
crystals are utilised in laser systems [4–6], as efficient optical sensors [7–9], including com-
plete lab-on-chip devices [10,11]. Photonic devices allow for an exceptional control of light,
and therefore are utilised as negative refraction media [12], for the self-collimation [13] and
light bending [14].

It is a well established fact, that the three-dimensional photonic structures demand
excellent capabilities in matter manipulation, especially for the operation in the optical

Photonics 2021, 8, 558. https://doi.org/10.3390/photonics8120558 https://www.mdpi.com/journal/photonics

https://www.mdpi.com/journal/photonics
https://www.mdpi.com
https://orcid.org/0000-0001-5502-5422
https://orcid.org/0000-0002-2153-9844
https://orcid.org/0000-0001-7913-3452
https://doi.org/10.3390/photonics8120558
https://doi.org/10.3390/photonics8120558
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/photonics8120558
https://www.mdpi.com/journal/photonics
https://www.mdpi.com/article/10.3390/photonics8120558?type=check_update&version=1


Photonics 2021, 8, 558 2 of 10

frequency range. For all the purposes, it is much more efficient to utilize two-dimensional
structures, as the possible manufacturing methods are extremely precise and reliable.
Moreover, those methods offer much wider variety of accessible materials [15]. All things
considered, the fabrication is the most time consuming and cost ineffective process in the
photonic crystals research. Due to the above, testing of a new ideas with a cheap and
reliable computational tools is the first step towards realisation of fully functional devices.
One of the most complex, and therefore hard to fabricate, examples of photonic devices are
those, which contain quasi-periodic configuration of two or more optical materials. In this
work, one-dimensional transfer matrix method (TMM) is applied to analyze examples of
the photonic crystals with quasi-periodic Fibonacci, and fractal Cantor structures. In TMM
method, the incident, reflected and transmitted waves are related to each other by means
of matrices, which contain Fresnel coefficients determined analytically, and matrices repre-
senting the wave transmission through the homogeneous layers [16,17]. The calculated EM
plane-wave propagates at normal incidence to the surface of the structure. The method was
implemented in the MATLAB computer programming environment. The Fibonacci struc-
tures are established according to the Fibonacci sequence. Starting from the two regions of
lower (L) and higher (H) refractive indices, each consecutive added element is a sum of
the two previous elements. The rules governing of the assembling of such a structure are
described in detail in previously published works [18–22]. In these works it was shown,
that for the appropriate scaling of the frequency in graphical representation of the data, one
can observe the emergent self-similarity of the resulting spectral response. This spectral
response of the investigated structures is strongly dependent on the materials used, as well
as the media surrounding the quasi-periodic (QP) photonic crystal (PhC) [19,23]. Cantor
structure, on the other hand, is an example of the self-similar, fractal photonic crystal. The
Cantor structure is established by division of the base element into three equal sections, and
replacement of the middle section by another material. Starting from a uniform section of
the higher (H) refractive index, first order of the Cantor structure is established by division
of the whole section into three equal parts, and replacement of the middle section with a
material with the lower (L) refractive index. Higher orders of the structure are created by a
similar operation—each H part of the resulting structure is divided in three equal sections,
with middle part replaced by L material. All the resulting L sections remain unaffected
by the process. Good examples of the Cantor structures and their spectral response are
presented in previously published works [24–26]. Both mentioned basic examples of QP
crystals manifest self-similarity in observed spectral response. The clue difference in these
spectra being: the order of the structure for which the similarity is observed, as well as the
frequency range of the similar parts of the spectra [18,23,24]. There are some reports on
possible additional modifications on the QP crystals [20,27,28], which affect the spectral
response of the resulting composite. In this paper the influence of the operations performed
on the basic QP PhC on the resulting spectral responses, especially self-similarity feature, is
examined. Considered modifications include: mirror reflection, conjugation and multiplica-
tion of the base structure. Two classes of QP PhC structures, i.e., concatenation (Fibonacci)
and fractal (Cantor) are taken into consideration.

2. Materials and Methods

In the research presented here, Transfer Matrix Method [16,17] was deployed for the
purpose of the analysis of the spectral response of the quasi-periodic, one-dimensional
photonic crystals. Structures under investigation were selected based on the method of
their formation. In the most fundamental level, those can be classified as follows:

• concatenation structure—in which successive elements are created on the basis of
the structure of the lower order. In case of the work presented here, the first two
elements were defined as S1 = L, S2 = H, S3 = S2 + S1 = HL, S4 = S3 + S2 = HLH...
Sn = Sn−1 + Sn−2 for n ≥ 3. Resulting quasi-periodic structure fulfills the Fibonacci
sequence, and is further referred to as a Fibonacci structure (Fibn, where n is the



Photonics 2021, 8, 558 3 of 10

order of the structure). The example of the Fibonacci structure of the eighth order is
presented in Figure 1a.

• fractal structure—in which successive elements are formed in an iterative algorithm,
by transforming each layer of the structure in a strictly defined manner. Cantor
structure, described in detail in a previous section is an example of the fractal. In case
of the work presented here, the 0th order of the structure is defined as a uniform slab
of material H with higher refractive index. The algorithm for the creation of the higher
orders of the Cantor structure (Cann, where n is the order of the Cantor structure) is
very straight forward. To create Cantor structure of the first order (Can1), the length
of the H material is divided in three equal sections, and the middle section is then
replaced with the L material with lower refractive index. For the creation of the nth
order of the Cantor structure, the procedure is repeated recursively for each H section
of the Cantor structure from Can1 to Cann. Every L section of each resulting order of
the Cantor structure always remains unchanged. The example of the first three orders
of the Cantor structures created by the above set of rules is presented in Figure 1b.

(a)

(b)

Figure 1. Schematic representation of the Fibonacci and Cantor structures used in the calculations.
The complexity of the structures grows rapidly with the order of the structure, and for the sake of
the clear images, only comparably low-order structures are presented here. (a) Example Fibonacci
structure (Fib8), with first four orders marked in an eighth order structure, (b) Cantor structure with
the orders from one to three presented from the top to bottom.

In all the performed calculations, the value of the H material refractive index is taken
to be 2.3, which corresponds to titanium dioxide (TiO2). The refractive index for L material
is taken to be 1.45 (SiO2 silica glass) [29,30]. Both media are assumed to be lossless, optically
passive, and dispersionless, for the sake of the calculations. The central frequency for the
considered structures was chosen to be ν0 = 600 THz, which corresponds to wavelength
λ0 = 500 nm. For the defined central wavelength λ0, the thicknesses of the layers were
chosen to be dH = λ0

4nH
≈ 54 nm, and dL = λ0

4nL
≈ 86 nm, so that effective path for the

light in both the media is equal to λ0/4. In the case of the Cantor structures, the above
thicknesses are used for the smallest features of the given order n, as presented in Figure 1b.
In all the calculations, the structure is surrounded by air with refractive index n0 = 1. The
graphical data is presented in the frequency domain normalized to the central frequency
(i.e., ν

ν0
), so the symmetries of the spectral response are well exposed. It was shown, that
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the centre of the symmetry for the QP crystal spectral response is at ν0, and at 2ν0 for
the Fibonacci, and Cantor structures respectively. The self-similarity is observed for the
spectra of the basic Fibonacci structures for the orders n, n + 6, n + 12..., where n ≥ 6 is a
natural number [23]. In case of the basic Cantor structures, self-similarity is observed in
the spectral response of every order of the QP crystal [24].

Calculation method was verified by comparison against previously published
works [23–26]. The validated code was then used to test new ideas of the QP PhC com-
plex structures modified by mirror symmetry, conjugation and multiplication operations
performed on different orders of Fibonacci and Cantor PhC’s. Considered operations were
implemented by adding modified structure of the certain order n to the base structure
according to a well defined algorithm.

The mirror symmetry is implemented by establishing the plane of symmetry for
the QP structure at its end, and performing the modification operation according to the
Figure 2a. In simple terms, modified structure is a sum of itself and its reflection at the
mirror symmetry plane. Resulting structure is then codified with letter R (e.g., second order
Fibonacci structure with mirror operation is referred in the text as R(Fib2)). The conjugated
structure is created by exchange of every H layer by L, and every L by H respectively in
a base structure, and combining the base with its conjugation. The conjugated structure
is codified by letter C, and the whole process is shown schematically in Figure 2b. The
example of the second order Fibonacci structure with conjugation (base structure + negative
structure) is referred in the text as C(Fib2) The last operation performed on the investigated
structures is multiplication. It is achieved by simple addition of a repeated structure
without alterations at the end of the base structure. The multiplication process is presented
schematically in Figure 2c. The example of a second order Fibonacci structure modified by
multiplication is referred in the text as K(Fib2), where K is the number of repetitions of the
base structure.

(a) Mirror symmetry.

(b) Conjugated structure.

(c) Repeated structure.

Figure 2. General rule for the creation of the complex QP structures by modification operations:
(a) mirror symmetry, (b) conjugation, (c) multiplication.

3. Results

The calculation results presented in Figure 3 point to an interesting quality of the
resulting spectra. For each n + 6 increment in the complex Fibonacci structure, the reported
scaling factor of the frequency axis stays the same, as in previously reported basic Fibonacci
QP PhC [23]. In case of the work presented here, it was calculated as the ratio of the
spectral distance between two outer maximums contained within an orange frame visible
in Figure 3: between Fib8 and Fib14; between Fib14 and Fib20; and so on. For every instance,
it was estimated to be close to 26, which is consistent with the previous reports. However,
it was also observed, that for the increased order of the Fibonacci structure, the similar
part of the spectrum repeated in the higher order structure contains the original part of
the spectra (orange frame in Figure 3, and the additional side-bands (green and violet
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frame in Figure 3). The situation repeats with every +6 increment of the order of the
Fibonacci crystal. The estimate for the broadening factor of the similar part of the spectra
was achieved by comparison of the spectral distance between the peaks furthest from the
centre frequency (1 on the normalised frequency axis) contained in the colored frames in
Figure 3. Taking all the above into account, the broadening factor for the similar part of the
spectrum was calculated to be ∼6. Combining the frequency axis scaling factor with the
broadening factor of the similar part of the spectrum, gives the estimate for the spectral
range of the similar part of the spectrum for the next +6 order of the Fibonacci structure. If
the spectral width of the central part of the spectra of the Fib8 crystal is measured to be
∆ω (orange frame Figure 3), then the similar part of the spectra repeated in Fib14 structure
will have the spectral width of ∆ω/26, but the part of the Fib14 spectra repeated in Fib20
is estimated to be 6∆ω/26 (green frame), and the whole repeated part in Fib20 crystal
will have a spectral width of 6∆ω/262. The estimate of the spectral width in Fib20 to be
repeated in Fib26 is again six times broader: 62∆ω/262, and this estimate can be repeated
for every next generation of the Fibonacci structure in a recursive manner.

Figure 3. Scaling of the self-similar part of the spectrum with increasing order of the Fibonacci
structure. (a) Fib8 structure, (b) Fib14 structure, (c) Fib20 structure, (d) Fib26 structure. The spectral
width of the similar part of the calculated spectra for every order is compressed around ν0, which
corresponds to 1 on the normalized axis. However, for each +6 order, the repeated part of the
spectra broaden.
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3.1. Modified Fibonacci Structures

Calculated spectral responses for the complex Fibonacci structures with mirror sym-
metry is presented in Figure 4. It contains central (and similar) part of the spectra for
the R(Fib7), R(Fib13), and R(Fib19) quasi-periodic crystals. The arbitrary values of the
transmittance (from 0 to 1) correspond to 0% and 100% transmission through the media,
and the values presented here are the result of the calculations made with TMM model.
In this model the transmittance is calculated as T = | Eout

Ein
|2, and it is assumed that inci-

dent Ein = 1 V/m. In the figures, the normalized frequency is ν
ν0

, where ν0 = 600 THz
corresponds to the wavelength λ0 = 500 nm. In Figure 3 it is observed, that with every
increment n = 6 of the Fibonacci structure order, the similar part of the spectra preserves its
shape, but contracts in the frequency domain. Apart from those, the shape of the calculated
spectral response is well preserved in case of all the orders of the structures. The spectral
response of the conjugated Fibonacci structure is presented in Figure 5. Similar to the case
of the mirror symmetry, the self-similarity is observed for the structure orders separated by
6. It can be observed, that introducing different operations on a base structure results in a
drastic change of the resulting spectral response. These effect might be utilised as a control
tool in a design process of a certain optical filter. The shape in all the resulting spectra of
the conjugated structures is well preserved. However, the width of the similar part of the
spectrum is again contracting in the frequency domain with increasing order of the QP
structure. The repetition of the Fibonacci structure gives interesting results with regards
of the number of the repetitions K. The differences in the Fibonacci structure response of
the same orders, but repeated K = 2, and K = 3 times are presented in Figure 6. All the
calculations performed seem to point to a general rule, that for the even number of the
repetitions 2K (K is a natural number), the spectra always has a maximum for the centre
frequency ν0. Moreover, for every odd number of the repetition 2K + 1, the resulting spectra
has a minimum at the central frequency ν0. Considering the differences in the spectral
shapes of the multiplied Fibonacci structures, it can be observed, that the multiplication
leads to a sequential splitting of the transmission peaks, similar to an analogical process
reported for the case of the Cantor structures [24]. It can be seen, that for complex Fibonacci
QP PhC with multiplication of the base structure, the self-similarity feature (with the order
of +6) is also preserved.
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Figure 4. Self-similar spectra presented for the modified Fibonacci structure with mirror symmetry.
Self-similarity is observed, just as in the case of standalone Fibonacci structure, between the orders
differing by 6.
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Figure 5. Self-similar spectra presented for the conjugated Fibonacci structure. Self-similarity
observed for the orders separated by 6.
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Figure 6. Self-similar spectra presented for the modified Fibonacci structure with multiplication of
the base structure. Self-similarity observed for the orders separated by 6.

3.2. Modified Cantor Structures

Due to the recursive algorithm for the construction of the Cantor structure, the result-
ing crystal always preserves the centre of symmetry in its middle. The consequence of the
above is, that the modification by the repetition and the mirror image of the Cantor crystal
yields the same structure. Creation of the modified Cantor structure by mirror symmetry
or repetition are always equivalent. The calculation results for the repetition/mirror sym-
metry modification of the Cantor structures are presented in Figure 7. The self-similarity
in the spectrum is observed between every order of the structure. The spectral width of
the similar parts of the spectra contracts with increasing order of the structure as for the
case of the Fibonacci structures. The conjugation of the Cantor structures yields similar
results. The self-similar part of the spectrum is shown in Figure 8, and can observed for
every order of the structure. The spectral width of the similar fragment of the spectrum
also contracts with increasing order of the structure. However, the resulting shapes of the
self-similar parts of all the Cantor structures spectra is not preserved as well as for the case
of the Fibonacci structures presented in the previous subsection.
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Figure 7. Self-similar spectra calculated for the repetition/reflection of the Cantor structure. Self-
similarity observed for the orders separated by 1.



Photonics 2021, 8, 558 8 of 10

1 2 3

Normalized Frequency [a.u.]

0

0.5

1

T
ra

n
s
m

it
a
n
c
e
 [
a
.u

.]
(a) C(Can2)

1.67 2 2.33

Normalized Frequency [a.u.]

0.2

0.4

0.6

0.8

1

T
ra

n
s
m

it
a
n
c
e
 [
a
.u

.]

(b) C(Can3)

1.89 2 2.11

Normalized Frequency [a.u.]

0.4

0.6

0.8

1

T
ra

n
s
m

it
a

n
c
e

 [
a

.u
.]

(c) C(Can4)

Figure 8. Self-similar spectra presented for the conjugated Cantor structure. Self-similarity observed
for the orders separated by 1.

The calculations clearly show, that for the introduced modification operations on
the basic QP structures, the self-similarity of the resulting spectra is always preserved.
Moreover, the orders of the structures, at which the self-similar patterns are observed
remain the same as in the case of the non-modified structures, for both: Fibonacci (6), and
Cantor (1) structures alike. The centre of symmetry in both cases also remain unaffected
by the modification of the structures, and stay at ν0, and 2ν0 for Fibonacci, and Cantor
structure respectively.

4. Discussion

Calculations performed allow for a conclusive finding, that the proposed modifications
(mirror symmetry, conjugation and multiplication) of the basic quasi-periodic structures
do not affect the self-similarity of the resulting spectra. In fact, such operations do not
affect the central frequency for the spectral response symmetry, as well as any other
quantitative parameter of the resulting spectra (e.g., orders for the self-similar behaviour
of the calculated spectra). The main advantage of using of an additional modification
operations on QP crystals is the effect of such operations on the shape of the resulting
spectra. The possible variations of such complex structures are virtually inexhaustible.
Moreover, it was also shown for the first time, that together with the increasing order of
the Fibonacci structure, the central part of the self-similar spectrum repeated in the higher-
order Fibonacci QP PhC is broadened, and includes additional side bands, not present
in the lower-order spectra. This phenomena together with the introduction of presented
structural modifications of QP PhC’s can be used for more conscious and predictable design
of their spectral properties.

The work presented here is a first step towards systematic analysis of different varia-
tions of the modification operations on quasi-periodic structures, and their influence on the
QP PhC spectral responses. By performing of a simple operations on a base structures in
presented calculations, the present knowledge about the possible mechanisms governing
the spectral response of QP structures is increased. From the point of view of the possible
applications of such devices, which include optical filtering, especially multi-wavelength
narrow-band optical filters, design and development of reflection calibration standards
for experimental optics, or wavelength division multiplexing purposes; it is essential to
provide meticulous analysis of the possible modifications, or combinations of QP structures,
that can be used as a point of reference in the design process of the functional photonic
devices. It is also worth to mention, that presented results provide the new knowledge on
band structure modification of quasi-periodic low dimensional photonic devices. It shows
another degree of freedom in predictable shaping of the QP PhC’s spectral characteristics,
where not only the increase of the order, but also the modifications of the basic structures
is accounted for. In this way the QP PhC’s can be widely optimized taking into account
possibilities and limitations of current fabrication technologies. As already mentioned, the
most efficient fabrication technology for such structures would be thin-film application
by one of the well established methods, like magnetron sputtering, or plasma-enhanced
chemical vapour deposition [15].It has been experimentally proven that above-mentioned
technologies are suitable for thin-film layered structures fabrication using TiO2 and SiO2
materials [30]. The work presented here will be continued for the full classification of the
possible operations and its effect on the resulting spectra. Results presented here point to a
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strong relation between the performed modification, kind of the base structure, number
of repetitions in the modified structure, and the spectral response. Future plans include
possible realisation of the simulated structures by a fruitful cooperation with a potential
partner with an access to a suitable technology.
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