47.5 GHz Membrane-III-V-on-Si Directly Modulated Laser for Sub-pJ/bit 100-Gbps Transmission
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Laser Characterization
3.2. Evaluation of 60 GBaud PAM-4 Transmission
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Symbol | Quantity | Value |
---|---|---|
DFB section length | 100 μm | |
DBR section length | 80 μm, 200 μm | |
DFB section coupling coefficient | 400 cm−1 (design), 524 cm−1 (fitting) | |
DBR section coupling coefficient | 400 cm−1 (design), 405 cm−1 (fitting) | |
Bragg wavelength detuning between DBR-1 and DFB | +3.04 nm | |
Internal loss coefficient | 22 cm−1 | |
Filling factor in the MQW active region | 0.14 | |
Linewidth enhancement (Henry) factor | 2.6 | |
Thermal chirp coefficient | 0.1265 nm/mA | |
Threshold current | 1.35 mA | |
Power and phase of rear-facet reflectivity 1 | 1%, 0.7π | |
Internal quantum efficiency | 40% |
References
- Cisco. Global Cloud Index: Forecast and Methodology; Cisco: San Jose, CA, USA, 2017–2021. [Google Scholar]
- Ethernet Alliance. 2020 Ethernet Roadmap. Available online: https://ethernetalliance.org/technology/2020-roadmap/ (accessed on 21 December 2020).
- Consortium for On-Board Optics. Optical Connectivity Options for 400 Gbps and Higher On-Board Optics. Available online: https://www.onboardoptics.org/whitepapers (accessed on 21 December 2020).
- Matsuo, S.; Kakitsuka, T. Low-operating-energy directly modulated lasers for short-distance optical interconnects. Adv. Opt. Photon 2018, 10, 567–643. [Google Scholar] [CrossRef]
- Fujii, T.; Takeda, K.; Nishi, H.; Diamantopoulos, N.-P.; Sato, T.; Kakitsuka, T.; Tsuchizawa, T.; Matsuo, S. Multiwavelength mem-brane laser array using selective area growth on directly bonded InP on SiO2/Si. Optica 2020, 7, 838–846. [Google Scholar] [CrossRef]
- Nishi, H.; Fujii, T.; Takeda, K.; Hasebe, K.; Kakitsuka, T.; Tsuchizawa, T.; Yamamoto, T.; Yamada, K.; Matsuo, S. Membrane dis-tributed-reflector laser integrated with SiOx-based spot-size converter on Si substrate. Opt. Express 2016, 24, 18346–18352. [Google Scholar] [CrossRef] [PubMed]
- Nishi, H.; Fujii, T.; Diamantopoulos, N.-P.; Takeda, K.; Kanno, E.; Kakitsuka, T.; Tsuchizawa, T.; Fukuda, H.; Matsuo, S. Integration of eight-channel directly modulated membrane-laser array and SiN AWG Multiplexer on Si. J. Light. Technol. 2019, 37, 266–273. [Google Scholar] [CrossRef]
- Diamantopoulos, N.-P.; Shikama, K.; Nishi, H.; Fujii, T.; Kishi, T.; Takeda, K.; Abe, Y.; Matsui, T.; Kakitsuka, T.; Fukuda, H.; et al. 400-Gb/s DMT-SDM Transmission based on membrane DML-array-on-silicon. J. Light. Technol. 2018, 37, 1805–1812. [Google Scholar] [CrossRef]
- Feiste, U. Optimization of modulation bandwidth in DBR lasers with detuned Bragg reflectors. IEEE J. Quantum Electron. 1998, 34, 2371–2379. [Google Scholar] [CrossRef]
- Morthier, G.; Schatz, R.; Kjebon, O. Extended modulation bandwidth of DBR and external cavity lasers by utilizing a cavity resonance for equalization. IEEE J. Quantum Electron. 2000, 36, 1468–1475. [Google Scholar] [CrossRef]
- Matsui, Y.; Schatz, R.; Pham, T.; Ling, W.A.; Carey, G.; Daghighian, H.M.; Adams, D.; Sudo, T.; Roxlo, C. 55 GHz Bandwidth Dis-tributed Reflector Laser. J. Lightw. Technol. 2017, 35, 397–403. [Google Scholar] [CrossRef]
- Diamantopoulos, N.-P.; Yamaoka, S.; Fujii, T.; Nishi, H.; Takeda, K.; Tsuchizawa, T.; Kakitsuka, T.; Matsuo, S. Net 113-Gbps PAM-4 Transmission using membrane DML-on-Si with 0.34 pJ/bit at 50 °C. In Proceedings of the 46th European Conference on Optical Communication (ECOC 2020), Brussels, Belgium, 6–10 December 2020. Mo2B-4. [Google Scholar]
- Radziunas, M.; Glitzky, A.; Bandelow, U.; Wolfrum, M.; Troppenz, U.; Kreissl, J.; Rehbein, W. Improving the modulation bandwidth in semiconductor lasers by passive feedback. IEEE J. Sel. Top. Quantum Electron. 2007, 13, 136–142. [Google Scholar] [CrossRef]
- Dalir, H.; Koyama, F. Bandwidth enhancement of single-mode VCSEL with lateral optical feedback of slow light. IEICE Electron. Express 2011, 8, 1075–1081. [Google Scholar] [CrossRef] [Green Version]
- Abbasi, A.; Moeneclaey, B.; Verbist, J.; Yin, X.; Bauwelinck, J.; Duan, G.-H.; Roelkens, G.; Morthier, G. Direct and electroabsorption modulation of a III–V-on-silicon dfb laser at 56 GB/S. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 1–7. [Google Scholar] [CrossRef]
- Matsui, Y.; Schatz, R.; Che, D.; Khan, F.; Kwakernaak, M.; Sudo, T. Low-chirp isolator-free 65-GHz-bandwidth directly modulated lasers. Nat. Photon. 2021, 15, 59–63. [Google Scholar] [CrossRef]
- Yamaoka, S.; Diamantopoulos, N.-P.; Nishi, H.; Nakao, R.; Fujii, T.; Takeda, K.; Hiraki, T.; Tsurugaya, T.; Kanazawa, S.; Tanobe, H.; et al. Directly modulated membrane lasers with 108 GHz bandwidth on a high-thermal-conductivity silicon carbide substrate. Nat. Photon. 2021, 15, 28–35. [Google Scholar] [CrossRef]
- Diamantopoulos, N.-P.; Yamazaki, H.; Wakita, H.; Ida, M.; Nosaka, H.; Koyama, F.; Miyamoto, Y.; Matsuo, S.; Yamaoka, S.; Nagatani, M.; et al. >100-ghz bandwidth directly-modulated lasers and adaptive entropy loading for energy-efficient >300-GBPS/Λ IM/DD systems. J. Light. Technol. 2021, 39, 771–778. [Google Scholar] [CrossRef]
- IEEE Standard 802.3bs: IEEE Standard for Ethernet-Amendment 10: Media access control parameters, physical layers, and management, parameters for 200 GB/S and 400 GB/S operation. IEEE Std. 2017. [CrossRef]
- Kim, B.-S.; Chung, Y.; Lee, J.-S. An efficient split-step time-domain dynamic modeling of DFB/DBR laser diodes. IEEE J. Quantum Electron. 2000, 36, 787–794. [Google Scholar] [CrossRef]
- Soda, H.; Imai, H. Analysis of the spectrum behavior below the threshold in DFB lasers. IEEE J. Quantum Electron. 1986, 22, 637–641. [Google Scholar] [CrossRef]
- Radziunas, M.; Wünsche, H.-J. Multisection lasers: Longitudinal modes and their dynamics. In Optoelectronic Devices; Piprek, J., Ed.; Springer: New York, NY, USA, 2005; pp. 121–150. [Google Scholar]
- Diamantopoulos, N.-P.; Nishi, H.; Kobayashi, W.; Takeda, K.; Kakitsuka, T.; Matsuo, S. On the complexity reduction of the SEC-ond-order volterra nonlinear equalizer for im/Dd systems. J. Lightw. Technol. 2019, 37, 1214–1224. [Google Scholar] [CrossRef]
- ITU-T. Recommendation G.975.1: Forward Error Correction for High Bit-Rate DWDM Submarine Systems; ITU: Geneva, Switzerland, 2004. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diamantopoulos, N.-P.; Yamaoka, S.; Fujii, T.; Nishi, H.; Takeda, K.; Tsuchizawa, T.; Kakitsuka, T.; Matsuo, S. 47.5 GHz Membrane-III-V-on-Si Directly Modulated Laser for Sub-pJ/bit 100-Gbps Transmission. Photonics 2021, 8, 31. https://doi.org/10.3390/photonics8020031
Diamantopoulos N-P, Yamaoka S, Fujii T, Nishi H, Takeda K, Tsuchizawa T, Kakitsuka T, Matsuo S. 47.5 GHz Membrane-III-V-on-Si Directly Modulated Laser for Sub-pJ/bit 100-Gbps Transmission. Photonics. 2021; 8(2):31. https://doi.org/10.3390/photonics8020031
Chicago/Turabian StyleDiamantopoulos, Nikolaos-Panteleimon (Pandelis), Suguru Yamaoka, Takuro Fujii, Hidetaka Nishi, Koji Takeda, Tai Tsuchizawa, Takaaki Kakitsuka, and Shinji Matsuo. 2021. "47.5 GHz Membrane-III-V-on-Si Directly Modulated Laser for Sub-pJ/bit 100-Gbps Transmission" Photonics 8, no. 2: 31. https://doi.org/10.3390/photonics8020031
APA StyleDiamantopoulos, N. -P., Yamaoka, S., Fujii, T., Nishi, H., Takeda, K., Tsuchizawa, T., Kakitsuka, T., & Matsuo, S. (2021). 47.5 GHz Membrane-III-V-on-Si Directly Modulated Laser for Sub-pJ/bit 100-Gbps Transmission. Photonics, 8(2), 31. https://doi.org/10.3390/photonics8020031