Illumination Calibration for Computational Ghost Imaging
Abstract
:1. Introduction
2. Theory
2.1. The Principle of CGI
2.2. The Calibration of Non-uniform Illumination in CGI
3. Simulation and Experiment
3.1. Numerical Simulation Results
3.2. Experimental Results
4. Discussions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pittman, T.B.; Shih, Y.H.; Strekalov, D.V.; Sergienko, A.V. Optical imaging by means of two-photon quantum entanglement. Phys. Rev. A 1995, 52, R3429–R3432. [Google Scholar] [CrossRef]
- Bennink, R.S.; Bentley, S.J.; Boyd, R.W. “Two-photon” coincidence imaging with a classical source. Phys. Rev. Lett. 2002, 89, 113601. [Google Scholar] [CrossRef] [Green Version]
- Valencia, A.; Scarcelli, G.; Angelo, M.D.; Shih, Y.H. Two-photo imaging with thermal light. Phys. Rev. Lett. 2005, 94, 063601. [Google Scholar] [CrossRef] [Green Version]
- Ferri, F.; Magatti, D.; Gatti, A.; Bache, M.; Brambilla, E.; Lugiato, L.A. High-resolution ghost image and ghost diffraction experiments with thermal light. Phys. Rev. Lett. 2005, 94, 183602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basano, L.; Ottonello, P. A conceptual experiment on single-beam coincidence detection with pseudothermal light. Opt. Express 2007, 15, 12386–12394. [Google Scholar] [CrossRef]
- Zhai, Y.H.; Chen, X.H.; Zhang, D.; Wu, L.A. Two-photon interference with true thermal light. Phys. Rev. A 2005, 72, 043805. [Google Scholar] [CrossRef] [Green Version]
- Shapiro, J.H. Computational ghost imaging. Phys. Rev. A 2008, 78. [Google Scholar] [CrossRef]
- Duarte, M.F.; Davenport, M.A.; Takhar, D.; Laska, J.N.; Sun, T.; Kelly, K.F.; Baraniuk, R.G. Single-pixel imaging via compressive sampling. Ieee Signal Process. Mag. 2008, 25, 83–91. [Google Scholar] [CrossRef] [Green Version]
- Bromberg, Y.; Katz, O.; Silberberg, Y. Ghost imaging with a single detector. Phys. Rev. A 2009, 79. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.-H.; Liu, Q.; Luo, K.-H.; Wu, L.-A. Lensless ghost imaging with true thermal light. Opt. Lett. 2009, 34, 695–697. [Google Scholar] [CrossRef]
- Ferri, F.; Magatii, D.; Lugiato, L.A.; Gatti, A. Diferential ghost imaging. Phys. Rev. A 2010, 104, 253603. [Google Scholar]
- Aßmann, M.; Bayer, M. Compressive adaptive computational ghost imaging. Sci. Rep. 2013, 3, 1545. [Google Scholar]
- Sun, B.; Edgar, M.P.; Bowman, R.; Vittert, L.E.; Welsh, S.; Bowman, A.; Padgett, M.J. 3D Computational Imaging with Single-Pixel Detectors. Science 2013, 340, 844–847. [Google Scholar] [CrossRef] [Green Version]
- Radwell, N.; Mitchell, K.J.; Gibson, G.M.; Edgar, M.P.; Bowman, R.; Padgett, M.J. Single-pixel infrared and visible microscope. Optica 2014, 1, 285–289. [Google Scholar] [CrossRef]
- Sun, M.J.; Edgar, M.P.; Gibson, G.M.; Sun, B.Q.; Radwell, N.; Lamb, R.; Padgett, M.J. Single-pixel three-dimensional imaging with time-based depth resolution. Nat. Commun. 2016, 7, 12010. [Google Scholar] [CrossRef]
- Sun, M.J.; Edgar, M.P.; Phillips, D.B.; Gibson, G.M.; Padgett, M.J. Improving the signal-to-noise ratio of single-pixel imaging using digital microscanning. Opt. Express 2016, 24, 10476–10485. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.B.; Wang, X.Y.; Zheng, G.; Zhong, J.G. Hadamard single-pixel imaging versus Fourier single-pixel imaging. Opt. Express 2017, 25, 19619–19639. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.J.; Meng, L.T.; Edgar, M.P.; Padgett, M.J.; Radwell, N. A Russian Dolls ordering of the Hadamard basis for compressive single-pixel imaging. Sci. Rep. 2017, 7, 3464. [Google Scholar] [CrossRef] [Green Version]
- Sun, M.-J.; Chen, W.; Liu, T.-F.; Li, L.-J. Image Retrieval in Spatial and Temporal Domains with a Quadrant Detector. IEEE Photonics J. 2017, 9. [Google Scholar] [CrossRef]
- Li, H.; Shi, J.H.; Zeng, G.H. Ghost imaging with nonuniform thermal light fields. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2013, 30, 1854–1861. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Liu, W.-T.; Gu, J.-H.; Lin, H.-Z.; Jiang, L.; Chen, P.-X. Ghost imaging normalized by second-order coherence. Opt. Lett. 2019, 44, 5993–5996. [Google Scholar] [CrossRef] [PubMed]
- Land, E.H.; McCann, J.J. Lightness and retinex theory. J. Opt. Soc. Am. 1971, 61, 1–11. [Google Scholar] [CrossRef]
- Land, E.H. The retinex theory of color vision. Sci. Am. 1977, 237, 108–128. [Google Scholar] [CrossRef]
- Dey, N. Uneven illumination correction of digital images: A survey of the state-of-the-art. Optik 2019, 183, 483–495. [Google Scholar] [CrossRef]
- Wang, W.; He, C.; Tang, L.; Ren, Z. Total variation based variational model for the uneven illumination correction. Neurocomputing 2018, 281, 106–120. [Google Scholar] [CrossRef]
- Jobson, D.J.; Rahman, Z.; Woodell, G.A. Properties and performance of a center/surround retinex. IEEE Trans. Image Process. A Publ. 1997, 6, 451–462. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Li, H.; Qian, Y.; Zhang, L.; Yuan, Q. An effective thin cloud removal procedure for visible remote sensing images. ISPRS J. Photogramm. Remote Sens. 2014, 96, 224–235. [Google Scholar] [CrossRef]
- Gao, Y.; Hu, H.-M.; Li, B.; Guo, Q. Naturalness Preserved Nonuniform Illumination Estimation for Image Enhancement Based on Retinex. IEEE Trans. Multimed. 2018, 20, 335–344. [Google Scholar] [CrossRef]
- Morel, J.M.; Belen Petro, A.; Sbert, C. A PDE Formalization of Retinex Theory. IEEE Trans. Image Process. 2010, 19, 2825–2837. [Google Scholar] [CrossRef]
- Liang, Z.; Liu, W.; Yao, R. Contrast Enhancement by Nonlinear Diffusion Filtering. IEEE Trans. Image Process. 2016, 25, 673–686. [Google Scholar] [CrossRef]
- Ng, M.K.; Wang, W. A Total Variation Model for Retinex. Siam J. Imaging Sci. 2011, 4, 345–365. [Google Scholar] [CrossRef]
- Bigas, M.; Cabruja, E.; Forest, J.; Salvi, J. Review of CMOS image sensors. Microelectron. J. 2006, 37, 433–451. [Google Scholar] [CrossRef] [Green Version]
- Fossum, E.R.; Hondongwa, D.B. A Review of the Pinned Photodiode for CCD and CMOS Image Sensors. IEEE J. Electron Devices Soc. 2014, 2, 33–43. [Google Scholar] [CrossRef]
- Janesick, J.R. Photon Transfer; SPIE: Belingham, WA, USA, 2007; pp. 1–200. [Google Scholar]
- Schulz, M.; Caldwell, L. Non-uniformity correction and correctability of infrared focal plane arrays. Infrared Phys. Technol. 1995, 36, 763–777. [Google Scholar] [CrossRef]
- Bosco, A.; Bruna, A.; Messina, G.; Spampinato, G. Fast method for noise level estimation and integrated noise reduction. IEEE Trans. Consum. Electron. 2005, 51, 1028–1033. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, J.; Wang, X.; Nie, K.; Jin, W. A Fixed-Pattern Noise Correction Method Based on Gray Value Compensation for TDI CMOS Image Sensor. Sensors 2015, 15, 23496–23513. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Bray, M.A.; Jones, T.R.; Carpenter, A.E. Pipeline for illumination correction of images for high-throughput microscopy. J. Microsc. 2014, 256, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Model, M. Intensity calibration and flat-field correction for fluorescence microscopes. Curr. Protoc. Cytom. 2014, 68, 10.14.1–10.14.10. [Google Scholar] [CrossRef]
- Redding, B.; Choma, M.A.; Cao, H. Speckle-free laser imaging using random laser illumination. Nat. Photonics 2012, 6, 355–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, S.-M.; Sun, M.-J.; Chen, W.; Li, L.-J. Illumination Calibration for Computational Ghost Imaging. Photonics 2021, 8, 59. https://doi.org/10.3390/photonics8020059
Yan S-M, Sun M-J, Chen W, Li L-J. Illumination Calibration for Computational Ghost Imaging. Photonics. 2021; 8(2):59. https://doi.org/10.3390/photonics8020059
Chicago/Turabian StyleYan, Song-Ming, Ming-Jie Sun, Wen Chen, and Li-Jing Li. 2021. "Illumination Calibration for Computational Ghost Imaging" Photonics 8, no. 2: 59. https://doi.org/10.3390/photonics8020059
APA StyleYan, S. -M., Sun, M. -J., Chen, W., & Li, L. -J. (2021). Illumination Calibration for Computational Ghost Imaging. Photonics, 8(2), 59. https://doi.org/10.3390/photonics8020059