A Design Approach of Optical Phased Array with Low Side Lobe Level and Wide Angle Steering Range
Abstract
:1. Introduction
2. Design Approach of Optical Phased Array
2.1. Optimizing the Spacing Distribution of the Antennas
- (i)
- Initialization of particle swarm. First of all, appropriate search space range and flight velocity range should be set. After that, a set of random initialization velocities and positions are given in the preset velocity range and space range. Meanwhile, the number of particles is set.
- (ii)
- Calculation of particles fitness value. It is necessary to set up a fitness function for evaluating the performance of the particles. In our study, the SLL is used for fitness evaluation.
- (iii)
- Searching for global optimal solution. Firstly, the historical optimal solution found by each particle is regarded as the individual optimal solution pbest. Secondly, an optimal solution is found from these individual optimal solutions as the global optimal solution gbest.
- (iv)
- Updating the velocities and positions. The velocity and position for i-th particle are obtained by the following equations:
- (v)
- Termination condition. If the difference of four consecutive results is smaller than the preset value, the optimization is terminated.
2.2. Optimizing the Antenna Phase Distribution under Beam Steering
3. Results and Discussions
3.1. Simulation Results Obtained by Optimizing the Spacing Distribution of the Antennas
3.2. Simulation Results Obtained by Optimizing the Antenna Phase Distribution under Beam Steering
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, K.; Yuan, Z.; Wong, E.; Alameh, K.; Li, H.; Sithamparanathan, K.; Skafidaset, E. Experimental demonstration of indoor infrared optical wireless communications with a silicon photonic integrated circuit. J. Lightw. Technol 2019, 37, 619–626. [Google Scholar] [CrossRef]
- Poulton, C.V.; Byrd, M.J.; Russo, P.; Timurdogan, E.; Khandaker, M.; Vermeulen, D.; Watts, M.R. Long-range lidar and free-space data communication with high-performance optical phased arrays. J. Sel. Top. Quantum Electron. 2019, 25, 1–8. [Google Scholar] [CrossRef]
- Montoya, J.; Sanchez-Rubio, A.; Hatch, R.; Payson, H. Optical phased-array ladar. Appl. Opt. 2014, 53, 7551–7555. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Dong, T.; Xu, Y. Review of photonic integrated optical phased arrays for space optical communication. Access 2020, 8, 188284–188298. [Google Scholar] [CrossRef]
- Sun, J.; Timurdogan, E.; Yaacobi, A.; Hosseini, E.S.; Watts, M.R. Large-scale nanophotonic phased array. Nature 2013, 493, 195–199. [Google Scholar] [CrossRef] [PubMed]
- Doylend, J.K.; Heck, M.J.R.; Bovington, J.T.; Peters, J.D.; Coldren, L.O.; Bowers, J.E. Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator. Opt. Express 2011, 19, 21595–21604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, S.W.; Abediasl, H.; Hashemi, H. A monolithically integrated large-scale optical phased array in silicon-on-insulator CMOS. J. Solid-State Circuits 2018, 53, 275–296. [Google Scholar] [CrossRef]
- Xie, W.; Komljenovic, T.; Huang, J.; Tran, M.; Davenport, M.; Torres, A.; Pintus, P.; Bowers, J. Heterogeneous silicon photonics sensing for autonomous cars. Opt. Express 2019, 27, 3642–3663. [Google Scholar] [CrossRef] [PubMed]
- Yin, S.; Kim, J.H.; Wu, F.; Ruffin, P.; Luo, C. Ultra-fast speed, low grating lobe optical beam steering using unequally spaced phased array technique. Opt. Commun 2006, 270, 41–46. [Google Scholar] [CrossRef]
- Hulme, J.C.; Doylend, J.K.; Heck, M.J.R.; Peters, J.D.; Davenport, M.L.; Bovington, J.T.; Coldren, L.A.; Bowers, J.E. Fully integrated hybrid silicon two dimensional beam scanner. Opt. Express 2015, 23, 5861–5874. [Google Scholar] [CrossRef] [PubMed]
- Shin, M.C.; Mohanty, A.; Watson, K.; Bhatt, G.R.; Phare, C.T.; Miller, S.A.; Zadka, M.; Lee, B.S.; Ji, X.; Datta, I.; et al. Chip-scale blue light phased array. Opt. Lett 2020, 45, 1934–1937. [Google Scholar] [CrossRef] [PubMed]
- Hutchison, D.N.; Sun, J.; Doylend, J.K.; Kumar, R.; Heck, J.; Kim, W.; Phare, C.T.; Feshali, A.; Rong, H. High-resolution aliasing-free optical beam steering. Optica 2016, 3, 887–890. [Google Scholar] [CrossRef]
- Zhang, D.C.; Zhang, F.Z.; Pan, S.L. Grating-lobe-suppressed optical phased array with optimized element distribution. Opt. Commun 2018, 419, 47–52. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; pp. 1942–1948. [Google Scholar]
- Xu, Y.; Dong, T.; He, J.; Wan, Q. Large scalable and compact hybrid plasmonic nanoantenna array. Opt. Eng. 2018, 57, 1–7. [Google Scholar] [CrossRef]
- Zhuang, D.; Zhagn, L.; Han, X.; Li, Y.; Li, Y.; Liu, X.; Gao, F.; Song, J. Omnidirectional beam steering using aperiodic optical phased array with high error margin. Opt. Express 2018, 26, 19154–19170. [Google Scholar] [CrossRef] [PubMed]
Approach | Parameter | 0° | 20° | 30° | 45° | 60° |
---|---|---|---|---|---|---|
Without phase optimization | SLL (dB) | −20.50 | −15.36 | −15.36 | −15.41 | −15.41 |
HPBW (°) | 0.05 | 0.05 | 0.05 | 0.07 | 0.09 | |
With phase optimization | SLL (dB) | −21.35 | −18.79 | −17.91 | −18.46 | −18.51 |
HPBW (°) | 0.05 | 0.05 | 0.05 | 0.06 | 0.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, X.; Dong, T.; He, J.; Xu, Y. A Design Approach of Optical Phased Array with Low Side Lobe Level and Wide Angle Steering Range. Photonics 2021, 8, 63. https://doi.org/10.3390/photonics8030063
He X, Dong T, He J, Xu Y. A Design Approach of Optical Phased Array with Low Side Lobe Level and Wide Angle Steering Range. Photonics. 2021; 8(3):63. https://doi.org/10.3390/photonics8030063
Chicago/Turabian StyleHe, Xinyu, Tao Dong, Jingwen He, and Yue Xu. 2021. "A Design Approach of Optical Phased Array with Low Side Lobe Level and Wide Angle Steering Range" Photonics 8, no. 3: 63. https://doi.org/10.3390/photonics8030063
APA StyleHe, X., Dong, T., He, J., & Xu, Y. (2021). A Design Approach of Optical Phased Array with Low Side Lobe Level and Wide Angle Steering Range. Photonics, 8(3), 63. https://doi.org/10.3390/photonics8030063