Performance Evaluation of Underwater Wireless Optical Communication System by Varying the Environmental Parameters
Abstract
:1. Introduction
2. System Architecture
3. Calculation of Transmission Distance in the Ideal State
4. Environmental Parameters Measurement and Discussion of Results
4.1. Impact of Turbulence Factor on UWOC
4.2. Impact of Both Turbulence and Thermal Factors on UWOC
4.2.1. Temperature Rise Experiment
4.2.2. Cooling Experiment
4.3. Impact of Artificial Seawater Factor on UWOC
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khalighi, M.A.; Uysal, M. Survey on Free Space Optical Communication: A Communication Theory Perspective. IEEE Commun. Surv. Tutor. 2014, 16, 2231–2258. [Google Scholar] [CrossRef]
- Ghassemlooy, Z.; Popoola, W.O. Terrestrial Free-Space Optical Communications. 2010. Available online: https://books.google.com.hk/books?hl=en&lr=&id=huecDwAAQBAJ&oi=fnd&pg=PA355&ots=udGbviR6aX&sig=QCvK82gtw14ICGlsWAI15kBQh-Q&redir_esc=y#v=onepage&q&f=false (accessed on 8 February 2021).
- Zhu, X.; Kahn, J.M. Free-space optical communication through atmospheric turbulence channels. IEEE Trans. Commun. 2002, 50, 1293–1300. [Google Scholar]
- Paul, P.; Bhatnagar, P.P.M.R.; Jaiswal, A. Jamming in Free Space Optical Systems: Mitigation and Performance Evaluation. IEEE Trans. Commun. 2019, 68, 1631–1647. [Google Scholar] [CrossRef]
- Gu, Z.; Zhang, J.; Sun, X.; Ji, Y. Optimizing Networked Flying Platform Deployment and Access Point Association in FSO-Based Fronthaul Networks. IEEE Wirel. Commun. Lett. 2020, 9, 1221–1225. [Google Scholar] [CrossRef]
- Yeh, C.-H.; Xie, Y.-R.; Luo, C.-M.; Chow, C.-W. Integration of FSO Traffic in Ring-Topology Bidirectional Fiber Access Network with Fault Protection. IEEE Commun. Lett. 2020, 24, 589–592. [Google Scholar] [CrossRef]
- Jung, K.-J.; Nam, S.S.; Alouini, M.-S.; Ko, Y.-C. Unified Finite Series Approximation of FSO Performance Over Strong Turbulence Combined With Various Pointing Error Conditions. IEEE Trans. Commun. 2020, 68, 6413–6425. [Google Scholar] [CrossRef]
- Zhu, S.; Chen, X.; Liu, X.; Zhang, G.; Tian, P. Recent progress in and perspectives of underwater wireless optical communication. Prog. Quantum Electron. 2020, 73, 100274. [Google Scholar] [CrossRef]
- Doubilet, D. Light in the Sea. World Lit. Today 2013, 87, 94–97. [Google Scholar] [CrossRef]
- Gilbert, G.D.; Stoner, T.R.; Jernigan, J.L. Underwater experiments on the polarization, coherence and scattering properties of a Pulsed Blue-Green Laser. Underw. Photo Opt. I 1966, 0007, 8–14. [Google Scholar]
- Oubei, H.M.; Li, C.; Park, K.-H.; Ng, T.K.; Alouini, M.-S.; Ooi, B.S. 23 Gbit/s underwater wireless optical communications using directly modulated 520 nm laser diode. Opt. Express 2015, 23, 20743–20748. [Google Scholar] [CrossRef] [PubMed]
- Chao, S.; Guo, Y.J.; Oubei, H.M.; Ng, T.K.; Liu, G.Y.; Park, K.H.; Ho, K.T.; Alouini, M.S.; Boon, S. 20-meter underwater wireless optical communication link with 15 Gbps data rate. Opt. Express 2016, 24, 25502. [Google Scholar]
- Watson, S.; Viola, S.; Giuliano, G.; Najda, S.P.; Perlin, P.; Suski, T.; Marona, L.; Leszczyński, M.; Wisniewski, P.; Czernecki, R.; et al. High speed visible light communication using blue GaN laser diodes. Adv. Free-Space Opt. Commun. Tech. Appl. II 2016, 9991, 99910A. [Google Scholar]
- Chen, Y.; Kong, M.; Ali, T.; Wang, J.; Sarwar, R.; Han, J.; Guo, C.; Sun, B.; Deng, N.; Xu, J. 26 m/55 Gbps air-water optical wireless communication based on an OFDM-modulated 520-nm laser diode. Opt. Express 2017, 25, 14760–14765. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yin, H.; Ji, X.; Wu, B. Design and implementation of underwater wireless optical communication system with high-speed and full-duplex using blue/green Light. In Proceedings of the 2018 10th International Conference on Communication Software and Networks (ICCSN), Chengdu, China, 6–9 July 2018; pp. 99–103. [Google Scholar]
- Li, C.-Y.; Huang, X.-H.; Lu, H.-H.; Huang, Y.-C.; Huang, Q.-P.; Tu, S.-C. A WDM PAM4 FSO–UWOC Integrated System with a Channel Capacity of 100 Gb/s. J. Light. Technol. 2019, 38, 1766–1776. [Google Scholar] [CrossRef]
- Akbari, E.; Alavipanah, S.K.; Jeihouni, M.; Hajeb, M.; Haase, D.; Alavipanah, S. A Review of Ocean/Sea Subsurface Water Temperature Studies from Remote Sensing and Non-Remote Sensing Methods. Water 2017, 9, 936. [Google Scholar] [CrossRef] [Green Version]
- Weng, Y.; Guo, Y.; Alkhazragi, O.; Ng, T.K.; Guo, J.-H.; Ooi, B.S. Impact of Turbulent-Flow-Induced Scintillation on Deep-Ocean Wireless Optical Communication. J. Light. Technol. 2019, 37, 5083–5090. [Google Scholar] [CrossRef]
- Cossu, G.; Sturniolo, A.; Messa, A.; Grechi, S.; Costa, D.; Bartolini, A.; Scaradozzi, D.; Caiti, A.; Ciaramella, E. Sea-Trial of Optical Ethernet Modems for Underwater Wireless Communications. J. Light. Technol. 2018, 36, 5371–5380. [Google Scholar] [CrossRef]
Transmission Distance M (m) | 1.5 | 3 | 6 |
Input optical power(dBm) | 4.32 | 4.32 | 4.32 |
Received optical power(dBm) | 2.94 | 0.60 | −4.32 |
Total loss caused by glass and reflector(dB) | 0.70 | 2.05 | 4.75 |
Optical power loss in water(dB) | 0.68 | 1.67 | 3.89 |
Optical loss per meter of light transmitted in water Y (dB/m) | 0.45 | 0.56 | 0.65 |
(dBm) | Input Optical Power | 16.99 |
(dBm) | Minimum received optical power (BER =) | −15.96 |
(dB) | Optical loss through the glass | 0.35 |
(dB) | Reflection loss of mirrors | 0.65 |
(dB/m) | Optical power loss in water | 0.65 |
R | Fresnel lens reflection | 4% |
Optical Transmission Distance (m) | After Seawater Sedimentation (dB) | Turn on the Submerged Motor (dB) |
---|---|---|
1.5 | 5.66 | 6.60 |
3 | 11.56 | 13.70 |
4.5 | 20.64 | 21.91 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.-C.; Chen, C.-C.; Liaw, S.-K.; Afifah, S.; Sung, J.-Y.; Yeh, C.-H. Performance Evaluation of Underwater Wireless Optical Communication System by Varying the Environmental Parameters. Photonics 2021, 8, 74. https://doi.org/10.3390/photonics8030074
Li D-C, Chen C-C, Liaw S-K, Afifah S, Sung J-Y, Yeh C-H. Performance Evaluation of Underwater Wireless Optical Communication System by Varying the Environmental Parameters. Photonics. 2021; 8(3):74. https://doi.org/10.3390/photonics8030074
Chicago/Turabian StyleLi, Dong-Chang, Chia-Chun Chen, Shien-Kuei Liaw, Shofuro Afifah, Jiun-Yu Sung, and Chien-Hung Yeh. 2021. "Performance Evaluation of Underwater Wireless Optical Communication System by Varying the Environmental Parameters" Photonics 8, no. 3: 74. https://doi.org/10.3390/photonics8030074
APA StyleLi, D. -C., Chen, C. -C., Liaw, S. -K., Afifah, S., Sung, J. -Y., & Yeh, C. -H. (2021). Performance Evaluation of Underwater Wireless Optical Communication System by Varying the Environmental Parameters. Photonics, 8(3), 74. https://doi.org/10.3390/photonics8030074