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Abstract: A new family of partially coherent pulsed beams with spatial cosine-Gaussian and tempo-
ral Laguerre–Gaussian correlations, named spatial cosine-Gaussian and temporal Laguerre–Gaussian
correlated Schell-model (SCTLGSM) pulsed beams, is introduced. An analytic propagation formula
is derived for the SCTLGSM pulsed beam through the spatiotemporal ABCD optical system charac-
terizing a continuous dispersive medium. As an example, the evolution of spatiotemporal intensity
of the SCTLGSM pulsed beam in a still, pure water column is then investigated. It is found that
the SCTLGSM pulsed beams simultaneously exhibit spatiotemporal self-splitting and self-focusing
phenomena, which can be attributed to the special spatial/temporal coherence structures and the
presence of pulse chirper in the source plane. The physical interpretation of the obtained phenomena
is given. The results obtained in this paper will be of interest in underwater optical technologies, e.g.,
directed energy and communications.

Keywords: coherence and statistical optics; spatiotemporal intensity; partially coherent; pulses

1. Introduction

In the past few years, a great deal of attention has been paid to partially coherent
beams radiated by sources with non-Gaussian correlation functions [1–9]. This is due to a
variety of extraordinary features that these beams exhibit on free-space propagation, such
as self-splitting [10–12], self-focusing [13], self-steering [14], and useful shapes they acquire
in the far field: flat-tops [15], rings [7,16], rectangles [17], grids [18], and dark-hollow
intensity profiles [19]. These new properties have already stimulated new applications
in optical particle trapping, free-space optical communications [20], classic imaging [21]
and remote sensing [22]. It was also recently revealed that partially coherent sources with
complex coherence states (non-trivial phase distributions) can be used for fine directional
control of the produced far-field spectral density and polarization distributions [23,24].

All of the aforementioned investigations are confined to statistically stationary light
sources/beams in the spatial domain. More recently, non-stationary optical pulses, i.e.,
those with partial temporal/spectral and spatial coherence states were introduced [25–28].
Such pulses are envisioned to benefit applications in pulse shaping, laser micromachining,
medical diagnosis, ghost imaging, etc. Conventionally, in time domain, a partially coherent
light pulse was characterized by Schell model with a temporal Gaussian correlation func-
tion. In 2013, Lajunen et al. introduced the non-uniformly partially coherent pulse sources,
i.e., sources with a non-Gaussian correlation function [29]. The generated pulsed beams
were shown to lead to self-focusing upon propagation in time domain. Subsequently,
other models for partially coherent pulsed sources were developed [30–34] to illustrate
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temporal self-splitting, multispot self-focusing and formation of flat far-fields, among other
effects. Partially coherent pulses with the structured phase of the correlation function
were also recently studied to demonstrate the control in the average pulse arrival time [35].
However, investigations in [27–36] were solely confined to the time domain while spatial
pulse profiles were assumed to be constant. The non-stationary pulses can be realized
experimentally. A stationary, spatially partially coherent beam with a prescribed profile
of the coherence function can be first realized with the help of a spatial light modulator
or Fourier optics 2f system [12]. Then the spatial correlation can be converted to temporal
correlation with the direct space-to-time pulse shaper [37].

Thus, an interesting question arises: what new phenomena can one observe on propa-
gation of partially coherent pulsed beams radiated from sources having non-Gaussian, and
in general different, profiles in temporal and spatial correlation functions at the same time?
In fact, partially coherent pulses with both spatial and temporal/spectral structured corre-
lations were already considered [38,39] but the analysis relied on Gaussian distributions
alone. It would be interesting to consider non-Gaussian but analytically tractable models
for the spatial and temporal partial coherence.

In this paper, we choose a combination of the cosine-Gaussian Schell model for the
spatial correlations and the Laguerre–Gaussian correlated Schell-model for the temporal
ones. Each of these two types of partial coherence was studied separately in the literature.
The cosine-Gaussian Schell model for the spatial correlations was studied both theoret-
ically [10] and experimentally [12] and it was demonstrated that the initially Gaussian
intensity distribution changes to the dark-hollow distribution and remains shape-invariant
in the far field. It was shown also that this model is much simpler for analytical treatment
compared to other non-Gaussian models. The Laguerre–Gaussian correlated Schell-model
for the temporal correlations was studied theoretically [31] and it was found that it exhibits
temporal self-splitting into n + 1 lobes upon propagation in a dispersive medium, where n
is the order of the Laguerre polynomial. A potentially high number of lobes distinguishes
this model from the alternative ones, which may be attractive for some applications. Thus,
we introduce a new family of spatially and temporally partially coherent pulsed beams
with spatial cosine-Gaussian and temporal Laguerre–Gaussian correlations, named SCTL-
GSM pulses. The mathematical consistency and physical feasibility of such beams are
briefly discussed in the Appendix A. We then explore the evolution of the spatiotemporal
intensity of a typical SCTLGSM pulsed beam through an ABCD optical system describing
a diffractive and a dispersive medium, generalizing the particular media considered in
Refs. [10,12,31]. Using the second-order optical coherence theory of the non-stationary opti-
cal fields, we derive, in Section 2, the analytical expressions for the spatiotemporal intensity
of the SCTLGSM pulsed beams passing through the ABCD optical systems. In Section 3, the
detailed numerical results regarding the SCTLGSM pulse evolution are presented and the
corresponding physical interpretations are given. In Section 4, the main results obtained in
this paper are summarized. The self-splitting/self-focusing of a non-stationary pulse in the
temporal and spatial domains can be potentially used in optical communication systems
operating in dispersive environments, e.g., underwater, for information encoding. This
phenomenon can also be applied in temporal ghost imaging [40,41] and optical coherence
tomography [42] for obtaining the pulse replicas that can be used for further manipulation
of imaged/sensed fields.

2. Theory and Method

In the space–time domain, the second-order correlation properties of a partially coher-
ent pulsed beam are described by the mutual coherence function (MCF) [39,43,44]. Let for
the SCTLGSM pulsed beam, the mutual coherence function at the source plane z = 0 be
defined as

Γ0(ρ1, τ1; ρ2, τ2) = S(ρ1, ρ2)T(τ1, τ2) (1)
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where S and T characterize the spatial and the temporal parts, respectively:
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Here ρ1 = (x′1, y′1) and ρ2 = (x′2, y′2) are the two-dimensional transverse position
vectors, τ1 and τ2 are two time instants, cos(•) is the cosine function, and m is the beam
order parameter. Further, Ln(•) denotes the Laguerre polynomial of mode order n, ω0 is
the pulse’s carrier frequency, while w0 and δ denote the r.m.s. spatial beam width and
the r.m.s. beam transverse coherence width, respectively. T0 and Tc represent the pulse
duration and the temporal coherence length, respectively. The pulsed beam expressed
by Equation (1) is therefore the spatial cosine-Gaussian and temporal Laguerre–Gaussian
correlated Schell-model (SCTLGSM) pulsed beam. The SCTLGSM pulsed beam reduces to
the conventional Gaussian Schell-model (GSM) pulsed beam when m = 0 and n = 0. For
m 6= 0 and n 6= 0, the spatial and the temporal coherence parts of the mutual coherence
function are modulated by the cosine function and the Laguerre function, respectively. The
details of the model can be found in the Appendix A.

We will now consider propagation of the SCTLGSM pulsed beam in the spatiotemporal
domain by means of the extended Collins formula, under the paraxial approximation. We
consider an additional linear chirp s imposed on the pulse before it enters the dispersive
medium [45]. This chirp is described by the factor exp

(
iτ2s/2

)
in the field amplitude, can be

realized by an amplitude modulator, and results in pulse compression upon propagation in
a dispersive medium in the case of Gaussian Schell model [26]. A similar effect is expected
for the SCTLGSM pulsed beam. Adopting the ABCD characterization of the optical system
embedded in a dispersive medium in the absence of spatiotemporal coupling, we employ
the following integral formula [46,47]
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(4)

here k(ω0) = n(ω0)ω0/c denotes the wave number, in which n(ω0) is the refrac-
tive index of the medium at carrier frequency ω0, c is the speed of light in vacuum,
r1 = (x1, y1) and r2 = (x2, y2) are position vectors in any plane z > 0 and t1 and t2 are two
time instants of the pulse profile. Further, AS, BS and DS are the transfer matrix elements of
the optical system in the spatial domain [48], while AT, BT and DT are those in the temporal
domain [45].

On substituting from Equations (1)–(3) into Equation (4), one can derive the following
simplified expression

Γ(r1, r2, t1, t2, z) = HS(r1, r2, z)HT(t1, t2, z), (5)

where
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After tedious calculation, one can obtain the following expression, for the spatial domain:

HS(r1, r2, z) = HS(x1, x2, z)HS(y1, y2, z) (8)

where
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with the spatial ABCD matrix in the form(
AS BS
CS DS

)
=

(
1 z
0 1

)
. (14)

On the other hand, in the temporal domain, one can obtain the expression
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where H2q is Hermite polynomial of order 2q, and

t = (t1 + t2)/2, td = t2 − t1, (16)
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with the temporal ABCD matrix given by expression(
AT BT
CT DT

)
=

(
1 + sβ2z ω0β2z

s/ω0 1

)
. (19)

Here we assume that the refractive index of the dispersive medium is given by
expression n(ω) = naω + nb, where na = β2c and nb = c/vg − 2β2ω0c. Here β2 denotes the
group velocity dispersion and vg is the group velocity of the pulse [49]. Furthermore, the
time coordinate is a retarded time with respect to a frame moving with group velocity vg
and s is the chirp coefficient of the pulse.
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Let r1 = r2 = r and t1 = t2 = t in Equations (8) and (15), respectively. Then the spa-
tiotemporal intensity of the SCTLGSM pulsed beam becomes

I(r, t, z) = Γ(r, r, t, t, z) = HS(r, r, z)HT(t, t, z)

= 1
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where cosh(•) is the hyperbolic cosine function. Equation (20) is the main formula derived
in this paper. It can be used to investigate the spatiotemporal intensity evolution of the
SCTLGSM pulsed beams in any diffractive and dispersive medium.

3. Spatiotemporal Intensity Evolution of the SCTLGSM Pulsed Beams in Water

In this section, the interaction of the SCTLGSM pulsed beams in a column of still, pure
water is examined by means of numerical examples. The group velocity refractive index of
water at 20 ◦C and the standard atmospheric pressure is ng = c/vg = 1.3591 and its group
velocity dispersion coefficient is β2 = 58.174 ps2km−1 [50]. In the following calculation,
the pulses’ and medium’s parameters are chosen to be w0 = 2 mm, σ = 2 mm, T0 = 4 ps,
Tc = 2 ps, ω0 = 3.667 rad/fs (λ0 = 514 nm [51]), unless different values are specified. Because
of still water absorption [52] the propagation distances will be limited to 100 m throughout
the text.

Figure 1a–d shows the evolution of the spatiotemporal intensity I(x, y, t, z) of the
SCTLGSM pulsed beam as a function of propagation distance z and horizontal coordinate
x with different beam orders, m = 0, 1, 2 and 3. The other values of parameters are y = 0,
t = 0, s =0 and n = 0. Figure 2a,b shows the same as Figure 1 but at different time instants
t = 2 ps, 5 ps, and for m = 1. As can be seen, beam order plays an important role in the
spatial splitting of the SCTLGSM pulsed beam. Of course, for the GSM pulsed beam
(m = 0), there is no beam splitting upon propagation. However, for m = 1, the beam splits
into two sub-beams when the propagation distance z exceeds 30 m. For larger beam orders
(see m = 2 and m = 3), the starting point of the split moves closer to the source plane z = 0.
Note that time t has no impact on the beam splitting position. For larger time instants t,
the spatiotemporal intensity is gradually reduced (see t = 2 ps and 5 ps in Figure 2). These
results can be interpreted physically as follows. Equation (20) can be expressed as
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Further, when y = 0, t = 0 and n = 0, Equation (21) can be expressed as
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(22)

It can be seen from Equation (22) that the spatiotemporal intensity I(x, y, t, z) is
a superposition of two exponential functions symmetric with respect to the coordinate
axis x = 0. When the propagation distance z is short, the two exponential functions are
similar, hence the two beams cannot be distinguished. However, when z grows large
enough, the two beams become visibly different. Further, when beam order m increases,
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the position where the beam starts to split moves closer to the source plane z = 0. Moreover,
when t 6= 0, the decrease of the spatiotemporal intensity is attributed to the last exponential
function in Equation (21), which plays an important role in determining the value of spatiot-
emporal intensity.
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Figure 2. Evolution of spatiotemporal intensity I(x, y, t, z) (Equation (20)) of spatial cosine-Gaussian
and temporal Laguerre–Gaussian correlated Schell-model (SCTLGSM) pulsed beam as a function of
propagation distance z and horizontal coordinate x with different time (a) t = 2 ps and (b) t = 5 ps,
and for m = 1, s = 0.

Figures 3 and 4 show the density plots for the normalized spatiotemporal intensity
I(x, y, t, z) of the SCTLGSM pulsed beam in the x–y plane at some propagation distances
z = 0, 30 m, 40 m, 60 m and for m = 1 (Figure 3) and m = 2 (Figure 4), respectively. The
other values of parameters are t = 0, s = 0 and n = 0. It is shown that the SCTLGSM pulsed
beam exhibits self-splitting properties upon propagation in water, i.e., the initial beam spot
evolves into four sub-beam spots in the far field depending on the value of beam order
m. For larger m, the self-splitting time is smaller. These results can be explained from the
Equation (22). When m increases, coefficient (2π)1/2m/δk of z in the exponential function
increases as well. Hence, the rate of change in the spatiotemporal intensity increases with
the increasing propagation distance.
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Figure 5 illustrates the evolution of the spatiotemporal intensity I(x, y, t, z) of the
SCTLGSM pulsed beam as a function of propagation distance z and time t, with different
beam orders n = 0, 1, 2 and 3. The other calculation parameters are x = 0, y = 0, s =−0.4ps−2

and m = 0. One can see from Figure 5 that the beam exhibits self-splitting behavior when
n > 0. Specifically, the beam splits into n + 1 sub-beams with increasing propagation distance
z, being in good agreement with the results of the Laguerre–Gaussian Schell-model pulsed
beam in time domain [31]. While for n = 0, i.e., for the conventional Gaussian-correlated
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Schell-model pulsed beam, there is no self-splitting upon propagation. These results can be
interpreted as follows. For n = 0, the last term of Equation (21) can be re-expressed as

In=0 =
ω0T0

2
√

2aBT
exp

(
−

ω2
0

4aB2
T

t2

)
, (23)

while for n=1,

In=1 =
ω0T0

2
√

2aBT
exp

(
−

ω2
0

4aB2
T

t2

)[
ω2

0
4a2B2

TT2
c

t2 + 1− 1
2aT2

c

]
, (24)

and for n = 2,

In=2 =
ω0T0

2
√

2aBT
exp

(
−

ω2
0

4aB2
T

t2

)[
ω4

0

32a4B4
T T4

c
t4 +

(
1− 3

2aT2
c

)
ω2

0

4a2B2
T T2

c
t2 + 1− 1

2aT2
c
+

3
8a2T4

c

]
, (25)

where Equations (24) and (25) can be re-written as:

In=1 = ε exp
(
−ϕt2

)[
ξ1t2 + ψ1

]
, (26)

In=2 = ε exp
(
−ϕt2

)[
ζt4 + ξ2t2 + ψ2

]
, (27)

ε =
ω0T0

2
√

2aBT
, ϕ =

ω2
0

4aB2
T

, ξ1 =
ω2

0
4a2B2

TT2
c

, ψ1 = 1− 1
2aT2

c
, (28)

ζ =
ω4

0

32a4B4
TT4

c
, ξ2 =

(
1− 3

2aT2
c

)
ω2

0
4a2B2

TT2
c

, ψ2 = 1− 1
2aT2

c
+

3
8a2T4

c
. (29)

From Equation (24) we see that In=1 is a product of functions exp
(
−ϕt2) and ξ1t2 + ψ1.

Thus, letting
dIn=1

dt
= 2ε exp[−ϕt2](−ϕξ1t2 + ξ1 − ϕψ1) = 0, (30)

and solving Equation (30), In=1 will obtain two symmetric intensity maxima at
t = ±

√
(ξ1 − ϕψ1)/ϕξ1 when ξ1 6= ϕψ1. Therefore, the beam starts splitting into two

sub-beams in Figure 5b. In addition, when z is very short, the influence of term ξ1 t2+Ψ1
can be neglected compared with that of exp(−ϕt2). This is why there is only one beam
when z is much closer to the source plane. Similarly, for n = 2 and n = 3, we can obtain
3 intensity maxima and 4 intensity maxima in the far field, respectively.

Figure 6 shows the evolution of spatiotemporal intensity I(x, y, t, z) of the SCTLGSM
pulsed beam as a function of propagation distance z and time t with different values of
chirp coefficient s = 0, −0.4ps−2, −0.8ps−2, −1.2ps−2, and for n = 0, m = 0, x = 0, y = 0. It
is shown that the self-focusing phenomenon takes place upon propagation when chirp
coefficient s < 0, and it becomes more noticeable with decreasing chirp coefficient s, while
the position of the focus shifts towards the source plane. This result can be explained as
follows. When n = 0, m = 0, x = 0, y = 0, Equation (23) can be expressed as

In=0 =
ω0T0

2
√

2aBT
exp

(
−

ω2
0

4aB2
T

t2

)
=

T0√
2T(z)

exp
(
− 1

T2(z)
t2
)

, (31)

where

T2(z) =

(
2

T2
0
+

2
T2

c

)
β2

2z2 +
(1 + sβ2z)2T2

0
2

=

(
2

T2
0
+

2
T2

c
+

T2
0 s2

2

)
β2

2z2 + sT2
0 β2z +

T2
0

2
. (32)



Photonics 2021, 8, 102 9 of 17

Photonics 2021, 8, x FOR PEER REVIEW 10 of 20 
 

 

and solving Equation (30), In = 1 will obtain two symmetric intensity maxima at 
ξ ϕψ ϕξ= ± −1 1 1( )t  when ξ ϕψ≠1 1 . Therefore, the beam starts splitting into two 

sub-beams in Figure 5b. In addition, when z is very short, the influence of term ξ1 t2+Ψ1 
can be neglected compared with that of exp(−φt2). This is why there is only one beam 
when z is much closer to the source plane. Similarly, for n = 2 and n = 3, we can obtain 3 
intensity maxima and 4 intensity maxima in the far field, respectively. 

 
Figure 5. Evolution of spatiotemporal intensity I(x, y, t, z) (Equation (20)) of SCTLGSM pulsed 
beam as a function of propagation distance z and time t with different beam orders (a) n = 0, (b) n 
=1, (c) n =2 and (d) n =3. 

Figure 6 shows the evolution of spatiotemporal intensity I(x, y, t, z) of the SCT-
LGSM pulsed beam as a function of propagation distance z and time t with different 
values of chirp coefficient s = 0, −0.4ps−2, −0.8ps−2, −1.2ps−2, and for n = 0, m = 0, x = 0, y = 0. 
It is shown that the self-focusing phenomenon takes place upon propagation when chirp 
coefficient s < 0, and it becomes more noticeable with decreasing chirp coefficient s, 
while the position of the focus shifts towards the source plane. This result can be ex-
plained as follows. When n = 0, m = 0, x = 0, y = 0, Equation (23) can be expressed as 

ω ω   
= − −       

2
2 20 0 0 0

=0 2 2

1exp = exp ,
4 ( )2 2 2 ( )n

TT

T T
I t t

aB T zaB T z
 (31)

where 

β
β β β

   +
= + + = + + + +      
   

2 2 2 2 2
2 2 2 2 2 22 0 0 0

2 2 0 22 2 2 2
0 0

(1 )2 2 2 2( ) .
2 2 2c c

s z T T s T
T z z z sT z

T T T T
 (32)

One can see from Equation (32) that 2( )T z  is a quadratic function of z, and will 
reach minima when 

β
= −

+ +

2
0 2

min 2 2 2 2
0 0

.
4 4 c

sT
z

T s T T
 (33)

Figure 5. Evolution of spatiotemporal intensity I(x, y, t, z) (Equation (20)) of SCTLGSM pulsed beam
as a function of propagation distance z and time t with different beam orders (a) n = 0, (b) n =1,
(c) n =2 and (d) n =3.
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One can see from Equation (32) that T2(z) is a quadratic function of z, and will reach
minima when

zmin = −
sT2

0 β2

T2
0 s2 + 4/T2

0 + 4/T2
c

. (33)

Hence, the self-focusing phenomenon appears upon propagation when chirp coef-
ficient s < 0. Moreover, with increasing |s|, zmin will decrease, which can be seen from
Equation (33), because for large |s|, 4/T2

0 + 4/T2
c can be omitted. Equation (33) can be

expressed as zmin ≈ β2/|s| which is why the position of focus shifts towards the source



Photonics 2021, 8, 102 10 of 17

plane with increasing |s|. Here the influence of s on propagation in the temporal ABCD
matrix is equivalent to a lens. Hence, the self-focusing phenomenon appears.

Figure 7 shows the evolution of spatiotemporal intensity I(x, y, t, z) of SCTLGSM
pulsed beam as a function of propagation distance z and time t with different chirp coeffi-
cients s = 0, −0.4ps−2, −0.8ps−2, −1.2ps−2, and for n = 1, m = 0, x = 0, y = 0. It is shown that
the self-focusing and the self-splitting phenomena take place at the same time when chirp
coefficient s < 0. Due to the shift of the position of self-focusing, there are three intensity
peaks appearing for larger |s|.
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Figure 8a–e shows the density plots for the normalized spatiotemporal intensity I(x, y,
t, z) of the SCTLGSM pulsed beam in the x–t plane at fixed propagation distances z = 0,
20 m, 30 m, 40 m, 50 m and for s = −0.4ps−2, n = 0, m = 0, y = 0. As can be seen, there is a
circular intensity distribution in the x–t plane for z = 0. With the increasing propagation
distance z, the circular intensity distribution becomes elliptical (Figure 8c–e), where the self-
focusing appears in the coordinate axis t. Figure 8f shows the normalized spatiotemporal
intensity I(x, y, t, z) of the SCTLGSM pulsed beam as a function of propagation distance
z for different values of the chirp coefficient s = 0, −0.4ps−2, −0.8ps−2, −1.2ps−2, where
n = 0, m = 0, x = 0, y = 0. One can see that the self-focusing phenomenon becomes
more and more noticeable with increasing chirp coefficient |s|. Moreover, for the case of
m = n = 1, shown in Figure 9a–c, the beam splits first in the coordinate axis t, and then
splits in the coordinate axis x (Figure 9d). In the far field, the beam splits into four sub-
beam spots in the x–t plane. Figure 9f shows the normalized spatiotemporal intensity
I(x, y, t, z) of the SCTLGSM pulsed beam as a function of propagation distance z for
different chirp coefficient values: s = 0, −0.4ps−2, −0.8ps−2, −1.2ps−2, where n = 1, m = 1,
x = 0, y = 0, t = 0. One can find that the self-focusing phenomenon is more noticeable for
s = −1.2ps−2. Comparison of Figure 8 with Figure 9 implies that the beam orders m
and n play an important role in determining the spatiotemporal intensity distribution in
x–t plane.
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= 0, m = n = 1, m = n = 2, m = n = 3 at z = 50 m, and for s = −0.4 ps−2, y = 0. It is shown that 
no beam splitting occurs in the far field for m = n = 0. However, for m = n = 1, the initial 
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spectively. With increasing beam order, such as m = n = 2, the initial beam starts to split 
into three sub-beams in coordinate axis t and two sub-beams in coordinate axis x, re-

Figure 8. Density plots for the normalized spatiotemporal intensity I(x, y, t, z) (Equation (20))
of SCTLGSM pulsed beam in the x–t plane at some propagation distances (a) z = 0, (b) z =20 m,
(c) z =30 m, (d) z =40 m, (e) z =50 m and for s = −0.4ps−2, n = 0, m = 0. (f) Normalized intensity I(x, y,
t, z) (Equation (22)) of SCTLGSM pulsed beam as a function of propagation distance z for different
chirp coefficients s = 0, −0.4ps−2, −0.8ps−2, −1.2ps−2.
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Figure 9. Density plots for the normalized spatiotemporal intensity I(x, y, t, z) (Equation (20))
of SCTLGSM pulsed beam in the x–t plane at some propagation distances (a) z = 0, (b) z =20 m,
(c) z = 30 m, (d) z = 40 m, (e) z = 50 m and for s = −0.4, n = 1, m = 1. (f) Normalized intensity I(x, y,
t, z) (Equation (22)) of SCTLGSM pulsed beam as a function of propagation distance z for different
chirp coefficients s = 0, −0.4 ps−2, −0.8 ps−2 and −1.2 ps−2.

Figure 10a–d includes the density plots for the normalized spatiotemporal intensity
I(x, y, t, z) of the SCTLGSM pulsed beam in the x–t plane for different beam orders m = n = 0,
m = n = 1, m = n = 2, m = n = 3 at z = 50 m, and for s = −0.4 ps−2, y = 0. It is shown that no
beam splitting occurs in the far field for m = n = 0. However, for m = n = 1, the initial beam
starts to split into two sub-beams in coordinate axis t and coordinate axis x, respectively.
With increasing beam order, such as m = n = 2, the initial beam starts to split into three
sub-beams in coordinate axis t and two sub-beams in coordinate axis x, respectively. In
addition, for m = n = 3, the initial beam starts to split into four sub-beams in coordinate
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axis t and two sub-beams coordinate axis x, respectively. These results are consistent with
those of Figure 5.
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Figure 10. Density plots for the normalized spatiotemporal intensity I(x, y, t, z) (Equation (20))
of SCTLGSM pulsed beam in the x–t plane for different beam orders (a) m = n = 0, (b) m = n = 1,
(c) m = n = 2, (d) m = n = 3 at z = 50 m with s = −0.4ps−2.

4. Concluding Remarks

In this paper, a new class of partially coherent pulsed beams with spatial cosine-
Gaussian and temporal Laguerre–Gaussian correlations is introduced. The analytical
expressions of the spatiotemporal intensity of the SCTLGSM pulsed beam through the
ABCD optical system on passing in a diffractive/dispersive medium are obtained and used
to investigate the evolution of the spatiotemporal intensity of the SCTLGSM pulsed beam
in still, pure water. It is found that the SCTLGSM pulsed beam exhibits the phenomena of
simultaneous spatiotemporal self-splitting and self-focusing. When the chirp coefficient
is trivial, s = 0, in the x–z plane, the beam always splits into two sub-beams, when m > 0,
while in the t–z plane, the beam splits into n + 1 sub-beams. When s < 0, the spatiotemporal
self-focusing phenomenon takes place. The influence of s on propagation in a dispersive
medium is equivalent to the effect of a lens in a diffractive medium. Physically, the
special structuring of the spatial coherence and temporal coherence states result in the
spatiotemporal self-splitting phenomenon of the SCTLGSM pulsed beam. Furthermore,
the pulse chirp leads to the spatiotemporal self-focusing phenomenon of the SCTLGSM
pulsed beam. The results obtained in this paper can be readily extended to other dispersive
media and/or other temporal ABCD optical systems.

More importantly, we have explored the possibility of shaping of optical pulsed signals
by source correlations in one of the most frequently encountered natural environments—
pure water. Such a method can be of interest for rapidly developing underwater opti-
cal technologies, including wireless communications and directed energy. In particular,
one can obtain the desired beam profiles delivered at suitable time instants by modulat-
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ing the spatial and temporal coherence structures of the pulsed beams and/or adding a
linear chirp.

It should be stressed that our work was carried out under the assumption that the
refractive index of the dispersive medium is linear. The self-focusing effect comes from the
source-induced spatial and temporal interference effects (pulse chirp) and should not be
associated with the medium’s non-linear effects. In cases when the dispersive medium is
nonlinear, the four-wave-mixing [53] and formation of optical solitons must be additionally
discussed [54]. We note that there is a report available on propagation of the spatially par-
tially coherent beams with non-Gaussian correlation in oceanic turbulence [55] in which the
correlation-induced phenomenon of self-focusing also appears, confirming the validity of
our results.

Author Contributions: C.D. (Investigation, Methodology, Writing—Original Draft Preparation,
Writing—Review & Editing); O.K. (Formal Analysis, Writing—Review & Editing); D.H. (Formal
Analysis, Validation); Z.Z. (Formal Analysis, Validation); L.P. (Resources, Formal Analysis, Project
Administration). All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded partially by the National Natural Science Foundation of China
(61575091), China Scholarship Council (202008410578), 2020 Central Plains Talents Program of Henan,
High-level talents international training program and Excellent Overseas Visiting Scholar Program
of Henan.

Institutional Review Board Statement: This study did not involve humans or animals.

Informed Consent Statement: This study did not involve humans.

Data Availability Statement: The study did not report any data.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

In this appendix, we will justify the validity of adopted mutual coherence function
with spatial cosine-Gaussian and temporal Laguerre–Gaussian correlations. The mutual
coherence function of the SCTLGSM pulsed beam at the source plane z = 0 is defined as

Γ0(ρ1, τ1; ρ2, τ2) = S(ρ1, ρ2)T(τ1, τ2), (A1)

where the spatial and the temporal mutual coherence functions can be written in the
following forms, respectively,

S(ρ1, ρ2) =
∫

pS(ε)H∗(ρ1, ε)H(ρ2, ε)d2ε, (A2)

T(τ1, τ2) =
∫

pT(v)h∗(τ1, v)h(τ2, v)dv, (A3)

where pS and pT are non-negative weight functions, and H(ρ, ε) and h(t, v) are arbitrary
kernels in the space domain and the time domain, respectively. We assume that

H(ρ, ε) = − i
πδσ

exp

(
− ρ2

4w2
0

)
exp

[
i

δσ

(
ε2 − 2ρ · ε

)]
, (A4)

h(τ, v) = exp

(
− τ2

T2
0

)
exp

[
i
√

2
2Tc

(
v2 − 2τv

)]
exp(−iω0τ), (A5)

and choose the weighting functions pS and pT as follows:

pS(ε) = cosh
(

2n
√

2πεx/σ
)

cosh
(

2n
√

2πεy/σ
)

exp
(
−2ε2

σ2

)
, (A6)
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pT(v) =
1

2nn!
√

π
H2

n(v) exp
(
−v2

)
, (A7)

where parameter σ is a factor relating to beam width [12], and Hn is a Hermite polynomial
of order n [31]. Here, we choose the mutual coherence functions in the spatial domain and
in time domain from Refs. [12,31], respectively.

The cross-spectral density function W0(ρ1, ω1; ρ2, ω2) is obtained from the mutual
coherence function using the generalized Wiener–Khintchine theorem

W0(ρ1, ω1; ρ2, ω2) =
1

(2π)2

∫ ∫ ∞

−∞
Γ0(ρ1, τ1; ρ2, τ2) exp[−i(ω1t1 −ω2t2)]dt1dt2. (A8)

After tedious calculation and considering the specific Equations (2) and (3), one obtains

W0(ρ1, τ1; ρ2, τ2) = S(ρ1, ρ2)W(ω1, ω2), (A9)

where

W(ω1, ω2) = T0
2π2nn!Ω0

exp
[
−
(

(ω1−ω0)
2+(ω2−ω0)

2

Ω2
0

)]
exp

[
− (ω1−ω2)

2

2Ω2
c

]
×

n
∑

k=0

2kk!
(1+Ω2

c /Ω2
0)

n−k

(
n
k

)2

H2(n−k)

[
ω1+ω2−2ω0√

2Ω0

]
,

(A10)

and the pulse duration T0, temporal coherence length Tc, spectral bandwidth Ω and the
spectral coherence width Ωc are related by

Ω2
0

4
=

1
T2

0
+

1
T2

c
, Ωc =

Tc

T0
Ω0. (A11)

On the one hand, Equations (A2) and (A3) guarantee that the mutual coherence
function of the SCTLGSM pulsed beam is a non-negative kernel and is therefore physically
realizable [56]. On the other hand, they show how such a pulsed beam can be realized by
transformations of an incoherent field Ei(ρ, τ) with the mutual coherence function

Γi
(
ρ, τ; ρ′, τ′

)
=
〈

E∗i (ρ, τ)Ei
(
ρ′, τ′

)〉
= pS(ρ)pT(τ)δ

(
ρ− ρ′

)
δ
(
τ − τ′

)
. (A12)

The field Ei(ρ, τ) can be obtained from a perfectly spatially and temporally incoher-
ent source, e.g., a broadband light-emitting diode, by spatial and temporal amplitude
modulation with the modulation profiles pS(ρ) and pT(τ) respectively.

In order to obtain the SCTLGSM pulsed beam, we need to pass the field Ei(ρ, τ)
through a spatial and temporal imaging system with the transfer function H(ρ, ε)h(τ, v)
so that the output field becomes

E0(ρ, τ) =
+∞x

−∞

H(ρ, ε)h(τ, v)Ei(ε, v)d2εdv, (A13)

which, according to Equations (A2), (A3) and (A12), will give us a field with the desired
mutual coherence function Γ0(ρ1, τ1; ρ2, τ2) =

〈
E∗0 (ρ1, τ1)E0(ρ2, τ2)〉 , given by Equation

(A1). The spatial transfer function, Equation (A4), can be regarded as a product of three
terms (up to an irrelevant constant factor) [12]: (i) the transfer function corresponding to
diffraction at a distance L, Hdiff(ρ, ε) = exp

[
ik
2L (ρ− ε)2

]
, (ii) the phase factor of a thin lens

with the focal distance f, Hlens(ρ) = exp
[
− ik

2 f ρ2
]
, and (iii) the transmission coefficient of a

Gaussian amplitude filter with the intensity standard deviation w0, Hfilter(ρ) = exp
[
− ρ2

4w2
0

]
,

where k is the wave number corresponding to the carrier frequency and L = f = δσk/2. The
above considerations are valid for the fields of bandwidth much less than the carrier frequency.
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In a similar way, the temporal transfer function, Equation (A5), can be regarded as
a product of three terms corresponding to standard components of a temporal imaging
system [57] (again, up to a constant factor): (i) the transfer function corresponding to
propagation through a dispersive medium with the total group delay dispersion (GDD)
D, hdisp(τ, v) = exp

[
i

2D (τ − v)2
]
, (ii) the phase factor of a time lens with the focal GDD

Df, hlens(τ) = exp
[
− i

2Df
τ2
]
, and (iii) the transmission coefficient of a Gaussian amplitude

modulator with the intensity standard deviation T0/2, hmod(τ) = exp
[
− τ2

T2
0

]
, where

D = Df = Tc/
√

2.
Thus, a combination of elementary transformations described above gives a possible

way of generation of a SCTLGSM pulsed beam.
In the Figure A1, we present an explanatory figure for the source of SCTLGSM pulsed

beam with spatial cosine-Gaussian and temporal Laguerre–Gaussian correlations and show
the spectral density profiles of the source.
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